説明

自動臨床アナライザにおいて試薬リソースを二重にすることによって処理量を増大させる方法

処理されるべき異なった分析の混じり合った要求にも拘らず、アナライザの処理量を最大化させる方法であって、少なくとも2つの別々の試薬サーバ内において、選ばれた分析を行うために必要な試薬を二重にし、そしてまた新たに入ってくる選ばれた分析が、このような大容量分析で未処理分が少ない方の試薬サーバからの試薬を用いて行われるものである上記方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、患者の体液、たとえば、尿、血清、血漿、脳脊髄液などを自動的に処理する方法および装置に関する。特に、本発明は、多数の異なった臨床評価分析を実施するようになっている臨床アナライザにおいて患者サンプルの処理量を増大させる改良した方法を提供する。
【背景技術】
【0002】
患者の感染部、体液または膿瘍部のサンプルの分析測定によって患者の診断および治療に関連した種々のタイプの検査を実施できる。このような患者サンプルは、代表的には、サンプル・バイアルに入れられ、バイアルから抽出され、特殊な反応キュベットまたは反応チューブ内で種々の試薬と混ぜ合わされ、しばしばインキュベートされてから分析され、患者の治療の助けとなる。代表的な臨床化学分析では、1つまたは2つの分析評価試薬を別々の時間に液体サンプルに添加し、このサンプル−試薬の組み合わせを反応キュベット内で混合し、インキュベートする。周知の較正技術を使用して被検物質の量を決定するのに使用できるエンドポイント値または割合値を確認するために、サンプル−試薬の組み合わせと相互作用する検査用放射線ビームを使用して分析測定、たとえば、濁度読み取り、蛍光強度読み取り、吸収率読み取りなどが実行される。
【0003】
サンプルの化学的、免疫化学的、生物学的な検査のための自動化アナライザが利用できるが、分析臨床技術は、今、分析レベルの向上の必要性に迫られている。さらに、報告可能な結果当たりのコストを減らすよう臨床検査室への圧力が高まっていることにより、臨床アナライザの総コストパフォーマンスの向上が絶えず必要とされている。特に、評価分析処理量を増大させ、そのコストを低減することによってサンプル分析をもっと効果的にすることが可能である。
【0004】
自動アナライザの評価分析処理量を高く維持するための重要な一要因は、種々の異なった評価分析プロセスおよび信号測定段階を通じて複数のサンプルを迅速に処理できるという能力である。健康管理施設内のスペースがそれほど高値でなければ、単に複数の堅牢な構成要素を互いに離して専用の位置に設置し、異なった評価分析技術を実行させることにより高速処理を行えるように臨床アナライザを設計できる。これは実行不可能であり、さらに、臨床アナライザの処理速度を評価する基準は種々に異なる。大量処理量測定は、すべての被検査サンプルに対してすべての評価分析を完了するにはどのくらいの時間が必要であるかということに関係する。あるいは、評価分析処理量測定は、或る特定のサンプルの或る特定の評価分析を完了するにはどのくらいの時間がかかるかに関係し得る。たとえば、大量処理量に関して言えば、1000の患者サンプルの処理は4時間のうちに完了するかもしれないが、最初の結果は始動から3時間後にやっと利用できるかもしれないのである。しかしながら、評価分析処理量に関して言えば、サンプルをアナライザ上に置いた30分後に最初の評価分析結果を入手できるかもしれないが、最後の結果は始動からやっと10時間後に入手できるかもしれない。アナライザ処理量におけるこのような多様な値は、一般的に、検査室、作業員には受け入れられず、したがって、自動アナライザは、サンプル評価分析/時間ならびに最初に入手できる報告可能な結果に対する迅速なターンアラウンド時間を同時に持たなければならない。
【0005】
処理量を最大にするために評価分析リソースをスケジューリングする普通の方法の1つは、機器内のすべての評価分析リソースが一定長の所定サイクル内で作動する所定の固定サイクルを使用することに基礎を置いている。このスケジューリング法を用いるシステム
は、それぞれ、各サイクルの終わりに所定位置に戻る評価分析リソースを有する。リソースのタイミングをスケジュールに組み込んでいる所定の固定サイクル法を使用する自動アナライザもまた、単一の時間順序作業(chronology operation)を行う。各サンプル容器は、同じ順序でアナライザの作業ステーションの各々を通って前進する。Stratus (R) II免疫評価分析システムがこのような自動免疫評価分析システムであり、J. Clin. Immun.の41巻に記載されている。このStratusアナライザでは、ほぼ円形の反応回転コンベヤがシステムの各サイクルの間に一定距離前進し、インキュベーションステージ、洗浄ステージおよび読み取りステージを時計回りに通過して順次に割り出しを行う。同様のプロセスが米国特許第5,575,976号に記載されており、ここでは、各評価分析リソースが固定処理サイクル内で所定の固定作業ウィンドウを有する。したがって、1つの評価分析リソースのための制御は、他の従属、独立評価分析リソースの所定タイミングに依存し得る。したがって、可変プロトコルを有し、異なった時間順序で反応槽を移動させることにより処理される被検物質検査を、それらの評価分析リソース要求がかち合わなければ、間に挟むことができる。すなわち、処理時間が短い被検物質検査を行う前に処理時間の長い被検物質検査を行ってもよいし、そして処理時間が短い被検物質検査を最初に終わらせてもよい。これを行えるのは、評価分析成分を入れた反応槽を運ぶ手段が、実行順序とは無関係に、どんな順序が必要かに応じて必要な評価分析リソースに反応槽を与えることができるからである。
【0006】
米国特許第5,434,083号は、反応ライン上にある反応槽の循環時間数(サイクル数)に一致するように各検査項目についての分析時間を設定する回転反応槽列を使用している。反応槽更新デバイスが、サイクル数に従って各反応槽について選択的に制御される。したがって、短い反応時間を要する検査項目は、反応ラインのより少ないサイクル数で処理され、長い反応時間を要する検査項目は、より大きいサイクル数で処理される。アナライザは、1つのサンプルについて異なった反応時間を必要とする複数の検査項目を順次に処理できる。
【0007】
米国特許第5,482,861号は、複数の液体サンプルに同時に多数の評価分析を行うことができる自動連続・ランダムアクセス分析システムを扱っている。そこにおいては、複数の液体サンプルの種々の評価分析のスケジューリングをしてから単位投与量を決め、評価分析反応シーケンスを開始することなく最初の液体サンプルおよび試薬を反応槽に別々に移送し、次いで、使い捨て単位投与量を処理ワークステーションに物理的に転送し、インキュベーション中に単位投与量の使い捨て試薬とサンプルの混合を行う。
【0008】
米国特許第5,576,215号は、生物学的アナライザを扱っている。ここでは、アナライザに装填された生物学的サンプルの評価分析を実施するのに使用される機器システムが、スケジューラ・ルーチンにより開発されたスケジュールに従って作動させられる。スケジューラ・ルーチンは、作業と作業の間に一定の時間間隔が必要でない限り、入力された負荷リストの関数として各生物学的サンプルについてアナライザ機器システムの実施する作業と作業の間の時間間隔を決定し、機器システム作業および決定した時間間隔をスケジューリングする。この生物学的システム・アナライザは、創り出されたスケジュールに従ってアナライザ機器システムを作動させることによって生物学的サンプルの評価分析を実施する。
【0009】
米国特許第5,679,309号は、円周方向に間隔を置いてキュベットを有する回転可能な円形の反応回転コンベヤを含むアナライザを制御する方法を開示している。各キュベットは、アナライザのメニューに従って、反応、分析のための選定された試薬および選定されたサンプルを受け取り、分析後に再使用するために洗浄されるようになっている。駆動装置が反応回転コンベヤを割出して、試薬、サンプルの受け取り、洗浄、分析を行えるようにキュベットをメニューに従って適切なシーケンスで位置決めする。光度測定分析を使用する場合、駆動装置は、反応回転コンベヤが反応キュベットの光度測定分析のために回転するスピン・サイクルと、反応物質、サンプルの挿入および/または洗浄のためのパーク・サイクルのシーケンスで作動する。
【0010】
米国特許第5,846,491号では、多数の反応槽のうちの1つの槽にその槽の時間サイクルの関数として評価分析リソースを割り当てる手段を備えたアナライザ制御システムを使用し、複数の異なった所定の時間順序から選んだ時間順序に従って1つの評価分析リソース・ステーションから別の評価分析リソース・ステーションへ直接的に反応槽を移送することによって処理量を増大させている。
【0011】
米国特許第5,985,672号も、同心に位置したインキュベート用、処理用回転コンベヤを使用してサンプル内の被検物質についてサンプルの免疫評価分析を実施するためのプレプロセッサを使用することによって高速処理要望に応えている。ここでは、ただ1つの移送ステーションで、サンプルおよび試薬を入れた反応槽を回転コンベヤ間で移動させることができる。サンプルは、処理用回転コンベヤ上で分離、洗浄、混合され、インキュベート用回転コンベヤ上でインキュベートされる。こうして、処理速度を上げている。
【0012】
自動アナライザで使用される別のスケジューリング法は固定サイクルを使用せず、その代わりに「キット化(kitting)」と呼ばれるスケジューリング法を使用する。米国特許第6,096,561号は、複数の液体サンプルに同時に複数の評価分析を行うことができ、種々の評価分析を複数の液体サンプルについてスケジューリングする自動連続・ランダムアクセス分析システムを開示している。キット化により、このシステムは、評価分析反応シーケンスを開始することなく、液体サンプルおよび試薬を別々に反応槽に移送することによって単位投与量を決めることができる。キット化手段から、多数のキット化された使い捨て単位投与量がプロセス領域へ移送される。ここでは、アリコートを反応槽において異なった時刻に各独立したサンプルについて1つまたはそれ以上の液体試薬と混ぜてアリコートとし、独立した反応混合物を形成する。キット化および混合の独立したスケジューリングが、多数の反応混合物のインキュベーション中に同時にかつ独立して行われる。このシステムは、複数のスケジューリングされた評価分析を行う任意の順序で複数のスケジューリングされた評価分析を実施できる。インキュベートされた反応混合物は、予めスケジューリングされた少なくとも2つの評価分析手順に従って独立して個別に分析される。
【0013】
自動臨床アナライザにおける技術水準についての上記の説明から明らかなように、アナライザ処理量を増大させるべくかなりの進展があったが、特に、健康管理施設内での異なったピーク負荷時間についての処理量が、どのような評価分析を行うことを要請されているか、そして、これらの評価分析を1つのアナライザでどのように実施するかに応じて変わり得るという事実に鑑みて、異なったタイプの評価分析に対して高い大量処理量を与えるシステムおよび装置についての要望は満たされないままである。特に、早朝の患者サンプルについての評価分析需要パターンが、通常、昼のサンプルについての評価分析需要パターンとは異なっていることはわかっているのに、評価分析需要パターンのこの不一致をどのようにして有利に扱うかにはほとんど注意が払われていなかった。
【発明の開示】
【0014】
臨床アナライザは、普通、一定の円形方向の段階的運動において回転する反応キュベットを保持する評価分析反応回転コンベヤを含み、この段階的な移動は間に停止時間を挟んでおり、この停止時間中に、評価分析作業デバイスが、反応キュベット内に入っている評価分析混合物について種々の作業を実施できる。本発明を実施できるアナライザは、少なくとも2つの個別の試薬サーバまたは試薬在庫目録ならびに複数の在来の評価分析作業ステーション(たとえば、センサ、試薬添加ステーション、混合ステーション、分離ステー
ションなど)を有する。健康管理施設は、普通、一日の始めに最初の需要パターンを、一日の中頃までに異なった第2の需要パターンを経験するので、混ざり合った異なる評価分析と関係なくアナライザ処理量を最大にするという目的は達成が難しい。ほとんどの場合一日の始まりに新しい患者サンプルについて決まりきった評価分析を実施するという実務により、一日の始まりにアナライザによって「決まりきった午前(routine morning)」の大量評価分析の大部分が行われる。それに対して、その日の遅くには「難儀な午後(esoteric afternoon)」の少量評価分析の大部分が要求される。需要パターンにおけるこの差は、一連の「決まりきった午前」の評価分析を医師が行った後、その結果は付加的な診断検査の必要を示すことが多く、したがって、「難儀な午後」の評価分析が注文されるということで説明できる。本発明の主目的は、一日の異なった時刻にアナライザで行わなければならない種々の評価分析需要パターンと関係なく最高大量処理量を達成するように自動臨床アナライザを使用する方法を提供することにある。本発明は、少なくとも2つの個別の試薬サーバで少なくとも1つの大量評価分析を行うのに必要とする試薬を二重にし、入ってくる評価分析需要パターンが、第1群の評価分析の大部分(たとえば、「決まりきった午前」の大量の評価分析)または第2群の異なった評価分析の大部分(たとえば、(「難儀な午後」の少量評価分析)を有するかどうかに無関係に処理量を増大させることにより、この目的を達成する。さらに、本発明は、少なくとも2つの試薬サーバのうちの評価分析未処理分が少ない方の試薬サーバからの試薬を使用して新しく入ってくる大量評価分析を行うことを可能にする。
【0015】
本発明は、本出願の一部をなす添付図面と関連して解釈される以下の詳細な説明からより完全に理解して貰えよう。
図1は、本発明を実施できる自動アナライザの概略平面図である。
図2は、図1のアナライザの一部を示す簡略平面図である。
図3は、図1のアナライザの自動アリコート容器アレイ保管・取り扱いユニットの斜視図である。
図4は、図1のアナライザで役に立つアリコート容器アレイの斜視図である。
図5は、図1のアナライザで役に立つ反応容器の斜視図である。
図5Aは、図1のアナライザで役に立つバイアル・キャリアの斜視図である。
図6は、図1のアナライザで役に立つランダムアクセス試薬容器管理システムの頂面図である。
図7は、図1のアナライザの行った種々の評価分析について行った種々の作業事象に対するタイム・シーケンスを示すチャートである。
図8は、クリニック内で一日24時間にわたって評価分析を行った入ってくる患者サンプルの代表的な比率を示している。
図9は、図1のアナライザでの評価分析および試薬サーバの非最適化区分けを示している。
図9Aは、本発明に従った、図1のアナライザでの評価分析および試薬サーバの最適化区分けを示している。
【0016】
図1は、図2と共に、本発明を有利に実行できる自動化学アナライザ10の諸要素を概略的に示している。このアナライザ10は、キュベット・ポート20を形成した外側キュベット回転コンベヤ14と、容器ポート22を形成した内側キュベット回転コンベヤ16とを支持している反応回転コンベヤ12を含む。外側キュベット回転コンベヤ14と内側キュベット回転コンベヤ16は開放溝18により分離されている。キュベット・ポート20は、在来の臨床評価分析および免疫測定評価分析のための種々の試薬およびサンプル液を収容している複数の反応キュベット24を受け入れるようになっている。一方、容器ポート22は、超高感度発光免疫測定専用の試薬を収容している複数の反応容器25を受け入れるようになっている。反応回転コンベヤ12は、一定方向に段階的に移動するように回転可能であり、この段階的移動は間に一定の停止時間を挟んでおり、この停止時間中に、回転コンベヤ12が静止状態に保たれ、センサ、試薬添加ステーション、混合ステーションなどのコンピュータ制御評価分析作業デバイス13が、必要に応じて作動してキュベット24内に入っている評価分析混合物に対して臨床評価分析を実施するのに必要な複数の作業を実施する。これらのデバイスおよび在来のマイクロプロセッサ・ベースのコンピュータ15による運用制御は、この技術分野では周知であるからここで説明する必要はない。
【0017】
反応回転コンベヤ12のための割り出し駆動装置が、一定方向に所定数の増分段階で反応キュベットを移動させる。キュベット回転コンベヤ14、16の円周長、キュベット・ポート20、21間、更に、ポート22間の分離距離、キュベット・ポート20、21、22の数および1割り出し当たりの増分数は、任意の所与のキュベット・ポート20、21または22が或る一定の増分段階数の後にその当初の出発位置に戻るように選ぶ。こうして、反応回転コンベヤ12上のすべてのキュベット・ポート20、21、22は、完全な作業サイクル時間(以後、「CT」とする)で当初の位置に戻る。このCTは、一定数の増分段階×各評価分析デバイスでの停止時間の合計および段階的運動について必要な時間で決まる。この所定の運動サイクルにより、すべての反応キュベット24で行われる評価分析タイプに関する履歴データを含めて、コンピュータ15によるすべてのキュベット・ポート20、21、22およびその中に入っている反応キュベット24の精密な追跡が容易になる。
【0018】
図2は、「C」というマークを付けたポート22がタイプC評価分析(後に説明する)を行う専用となっており、半径方向に位置合わせをしてキュベット環16の円周に沿って等間隔に隔たっており、別のキュベット・ポート20がキュベット環14の円周に沿って等間隔に隔たっている回転コンベヤ12のレイアウトをさらに示している。それと対照的に、キュベット・ポート20および21は、タイプC評価分析ならびにタイプB評価分析およびタイプA評価分析(これも後に説明する)に役に立つ。有利な実施形態では、すべての他のキュベット・ポート20は、タイプC評価分析専用であり、これにも「C」というマークが付けてある。そして、間に挟まれた別のキュベット・ポート21は、タイプB専用であって「B」というマークが付けてあるが、タイプAの評価分析専用でもある。説明のために、ただ1つのキュベット・ポート21に「B/A」のマークが付けてあり、これは、或るポート21を最初に使用して或るタイプB評価分析をそこで実行することができ、このタイプB評価分析が完了した後、そのポート21を続いて使用して、一回の完全作業サイクル時間CT中に或るタイプA評価分析をそこで実行できることを示している。
【0019】
アナライザ10は、イリノイ州ディアフィールドのDade Behring Inc.が販売しているDimension(R)臨床化学アナライザで使用され、コンピュータ・ベースの電気機械制御プログラミングの分野で当業者によって広く使用されているような機械言語で書かれたコンピュータ・プログラムに基づいてコンピュータ15により実行されるソフトウェアにより制御される。コンピュータ15は、アナライザ10内の種々の分析ステーション17により行われる評価分析を実施するためのアプリケーション・ソフトウェア・プログラムも実行する。分析ステーション17は、外側反応回転コンベヤ12の近傍に設置することができ、種々の波長でのキュベット24内の吸光度またはそこからの発光度を測定するようになっている。これらの吸光度、発光度から、周知の分析手法を使用してサンプル液内の被検物質の存在を決定できる。ステーション17は、普通は、反応回転コンベヤ12が静止している任意の便利な時間間隔で問い合わせ測定(interrogating measurement)を実施するようになっている在来の光度測定デバイス、蛍光光度測定デバイスまたは発光測定デバイスを含む。
【0020】
温度制御式試薬保管領域26、27、28は、図5に示され、かつ本発明の譲受人に譲渡された審査係属中の出願第09/949132号に記載されているような複数のマルチ
・コンパートメント式の細長い試薬カートリッジ30、または図5Aに示すバイアル・キャリア30Aを格納しており、試薬カートリッジは、所与の評価分析を実施する必要に応じてウェル32内に試薬を収容している。使用済みの試薬容器30を不注意で再利用してしまうのを防ぐためにロックアウトデバイス31が設けてある。後述するように、試薬保管領域26は、第1の試薬操作回転コンベヤ26Aを含み、ここから、試薬カートリッジ30を、水和および再混合のような試薬調製作業のために移動させることができる。また、第2の試薬操作回転コンベヤ26Bを含み、ここでは、試薬カートリッジ30を、試薬吸引・計量分配アーム60によるアクセスができるように格納している。図1は、第1の試薬操作回転コンベヤ26Aと第2の試薬操作回転コンベヤ26Bが同心円に配置してある実施形態を示しており、第1の試薬操作回転コンベヤ26Aが第2の試薬操作回転コンベヤ26Bの内側にある。試薬容器30または試薬バイアル・キャリア30Aは、それら容器30またはキャリア30Aを後述する往復動位置に自動的に移送するようになっている装填トレイ29内に置くことによって作業者が装填できる。試薬バイアル・キャリア30Aには、バイアル30V内に既知の被検物質濃度の溶液が入っており、アナライザ10が較正・品質管理作業で使用する。
【0021】
入力レーン34Aおよび出力レーン34Bを有する双方向装入・送出サンプル・チューブ移送システム36が、試験しようとしている検体液を収容し、サンプル・チューブ・ラック42内に装着された個々の装入サンプル・チューブ40を液体サンプル採取アーム44のサンプル採取円弧内へ移送する。サンプル・チューブ40に収容された検体液は、そこに記録されたバーコード記号を在来のバーコード・リーダを用いて読み取ることにより識別され、項目の中でも特に患者の身元、実施されるべき検査、サンプルアリコートをアナライザ10内に保持するかどうか、およびその場合にどのくらいの期間保持したいのかという諸点を決定する。また、サンプル・チューブ・ラック42上にバーコード記号を設け、アナライザ10全体にわたって据え付けた多数のバーコード・リーダを使用してサンプル・チューブ40およびサンプル・チューブ・ラック42の位置を確認、制御、追跡することも普通の方法である。このようなリーダ・デバイスおよび追跡技術は、この技術分野では周知のものであるから、図1に示していないし、さらに説明することもない。
【0022】
サンプル採取アーム44は、回転可能シャフト48に装着された液体サンプル採取プローブ46を支持しており、サンプル採取アーム44の動きは、サンプル・チューブ移送システム36および図3に示すようなアリコート容器アレイ移送システム50を横切る円弧を描く。サンプル採取アーム44は、必要な評価分析を実施するのに必要なサンプルの量に応じてサンプル・チューブ40から液体サンプルを吸い込み、図4に示すようにアリコート容器アレイ52に設けた複数の容器またはウェル52Wのうち1つまたはそれ以上にアリコート・サンプルを計量分配し、アナライザ10によって環境室38内に保持されるべきサンプル・アリコートを提供するように作動可能である。
【0023】
アリコート容器アレイ移送システム50は、アリコート容器アレイ保管・計量分配モジュール56と、反応回転コンベヤ12に接近して設置したサンプル吸引・計量分配アーム54の下方にある多数のアリコート容器アレイ・トラック57内でアリコート容器アレイ52を双方向に平行移動させるようになっている多数のリニア駆動モータ58とを含む。サンプル吸引・計量分配アーム54は、コンピュータ15によって制御され、在来の液体プローブ54Pを使用して、トラック57内のサンプル採取位置に位置した個々の容器またはウェル52Wから制御された量のサンプルを吸引するようになっている。次いで、液体プローブ54Pが計量分配位置に動かされ、ここにおいて、適切な量の吸引サンプルがキュベット・ポート20にある1つまたはそれ以上のキュベット24に計量分配され、1つまたはそれ以上の被検物質についてアナライザ10が検査を行う。サンプルが反応キュベット24に計量分配された後、在来の移送手段が、必要に応じて、アリコート容器アレイ移送システム50、環境室38、廃棄領域(図示せず)間でアリコート容器アレイ52を動かす。
【0024】
それぞれ在来の液体試薬プローブ、60P、61P、62Pからなる多数の試薬吸引・計量分配アーム60、61、62が独立して装着してあり、試薬保管領域26、27、28のそれぞれと外側キュベット回転コンベヤ14との間を並進できる。プローブ60P、62Pは、試薬添加位置で適切な試薬カートリッジ30にあるウェル32から指定評価分析を行うのに必要な試薬を吸引する在来の機構を含む。次いで、プローブ60P、61P、62Pは試薬計量分配位置に戻され、そこにおいて、試薬が外側キュベット回転コンベヤ14にあるキュベット・ポート20に収容されている反応キュベット24に計量分配される。所望に応じて、融通性を向上させるために付加的なプローブを設けてもよい。多数の試薬カートリッジ30は、試薬保管領域26、27および28内部の制御された環境条件で保管される。アナライザ10の大量評価分析処理量を維持する際の主要な要因は、試薬保管領域26Aおよび26B、27および28内に多種多様な試薬カートリッジ30を格納し、次いで、プローブ60P、61P、62Pがアクセスできるように試薬カートリッジ30をランダムに試薬添加位置に迅速に移送する能力である。
【0025】
反応キュベット装填ステーション63および反応槽装填ステーション65が、それぞれ、外側キュベット回転コンベヤ14および内側容器回転コンベヤ16に接近して設置してあり、そして、たとえば並進可能なロボットアーム67を使用して、後に説明するように反応キュベット24を横向きにキュベット・ポート20に装填し、また、反応容器25を容器ポート22に装填するようになっている。操作に当たって、評価分析を最終的に行った使用済みのキュベット24は、本発明の譲受人に譲渡された同時係属中の出願第10/623,360号に開示されるように洗浄ステーション71で洗浄、乾燥させられる。本発明の譲受人に譲渡された同時係属中の出願第10/318,804号に開示されているような理由のために命令されない限り、以降の評価分析が清掃された使用済みのキュベット24で行われる。キュベット取り出しステーション59が、再び装填ステーション63、65に示すような並進可能なロボットアーム67を使用してキュベット・ポート20から使用不可な反応キュベット24を取り出すようになっている。
【0026】
図6は、試薬容器シャトル72下方の装填位置に容器30を自動的に位置させるモータ駆動式レーキ73を有する試薬容器装填トレイ29から試薬容器30を取り出すようになっているただ1つの双方向直線試薬容器シャトル72を示している。試薬容器30は、在来のバーコード状記号と試薬容器装填トレイ29に接近して設けたバーコード・リーダ41とを使用して、ウェル32内に収容されている評価分析化学物質のタイプに従って識別される。コンピュータ15は、試薬容器30のどれもこれもがアナライザ10内で移送されるにつれてその位置を追跡するようにプログラムされる。シャトル72は、さらに、少なくとも1つの試薬保管領域27または28内にある少なくとも1つのスロット付き試薬容器トレイ27Tまたは28Tのスロット内に試薬容器30を配置するようになっている。同じように、シャトル72は、またさらに、試薬容器トレイ27T、28Tから試薬容器30を取り出し、試薬保管領域26内の2つの同心の試薬用回転コンベヤ26A、26Bのいずれかにこの試薬容器30を配置するようになっている。シャトル72は、また、2つの同心の試薬用回転コンベヤ26A、26B間で試薬容器30を移動させるようにもなっている。双頭円弧状矢印で示すように、試薬用回転コンベヤ26Aは、左右両方向に回転してそこに配置された試薬容器30のうちの任意特定のものを試薬吸引アーム60下方に置くことができる。試薬用回転コンベヤ26Bもまた試薬吸引アーム60によってアクセスできる試薬容器30を収容していてもよいが、回転コンベヤ26Bは、試薬容器30および較正溶液または品質管理溶液を収容したバイアル・キャリア30Aの過剰分を格納するだけになっていてもよい。試薬容器トレイ27T、28T内に配置された試薬容器30のうち任意のものを、試薬保管領域27、28のそれぞれにある試薬容器シャトル27S、28Sによって試薬容器シャトル72下方にある装填位置または吸引・計量分配アーム61、62下方の試薬吸引位置で装填できる。以下、「サーバ」なる用語は、試薬容器シャトルのいずれか27Sまたは28Sと、試薬保管領域のいずれか27または28と、試薬容器トレイのいずれか27Tまたは28Tとの組み合わせを定義することを意味するものとする。試薬容器シャトル27S、28Sは、設計が試薬容器シャトル72と同様である。試薬吸引アーム60、61、62は点線で示してあり、これは回転コンベヤ26Bおよび試薬容器トレイ27T、28Tのそれぞれに格納された試薬容器30の表面より上方に位置していることを表している。外側キュベット回転コンベヤ14に支持された反応キュベット24も点線で示してあるが、これは試薬容器30の表面よりも上方に位置していることを同様に表している。
【0027】
前述の説明から明らかなように、シャトル72は、試薬容器装填トレイ29、試薬容器トレイ27T、28T、試薬用回転コンベヤ26A、26B間で試薬容器30を移動させることができる。さらに、シャトル27S、28Sは、26A、試薬容器トレイ27T、28T内の試薬容器30を適切な吸引位置へ(または、シャトル72下方の装填位置へ)移動させることができ、試薬用回転コンベヤ26A、26Bは、任意の試薬容器30を試薬吸引アーム60下方に置くことができる。したがって、アナライザ10は、異なった吸引位置に多数の異なった試薬容器30を位置させる融通性を持ったランダムアクセス試薬供給システムを備えていることになる。シャトル72、27S、28Sは、本発明の譲受人に譲渡された同時係属中の出願第10/623,311号に開示されているような自動張力制御器を備えており、アナライザ10での試薬供給に必要な時間が処理量制限となることはない。
【0028】
アナライザ10の作動に際して、本発明によれば、アナライザ10は、評価分析についての入ってくる需要またはアナライザ10に与えられる種々のサンプルについて行わなければならない種々の評価分析の混ぜ合わさった評価分析負荷とは無関係に高い処理量を達成するように作動する。さらなる説明のために、ここでは、本発明の或る実施形態を考える。この実施形態では、反応回転コンベヤ12は、キュベット・リング14に設けた184個のキュベット・ポート24を含み、機械サイクル毎にただ1つの回転方向(時計回りまたは逆時計回り)で段階的に全部で77箇所のキュベット位置を移動または前進する。77箇所のキュベット位置の階段的移動毎にそれに対応する停止時間が続く。段階的移動とそれに続く停止時間の組み合わせは次の通りである。機械サイクルは3.6秒であり、時間的には等しく、したがって、反応回転コンベヤ12は合計1.8秒で段階的に移動し、続いて1.8秒間静止する。184個のキュベット・ポート72の数と機械サイクル毎に動かされる77箇所のキュベット位置の数との素数関係は、この技術分野では周知である(米国特許第5,352,612号)。この素数関係から、合計184の機械サイクルが発生した後、すべてのキュベット・ポート24がその当初の出発位置に戻されるので、持続時間3.6秒の184回の機械サイクルの完全回転コンベヤ・サイクルを決定することができる。したがって、回転コンベヤ12の完全作業サイクル時間は662.4秒または約11分となる。ここで、この実施形態で使用される値が制限的なものではなく、任意の同じように作動可能なアナライザ10に本発明の原理を応用できることを強調したい。どのキュベット・ポート24も一定の時間量でその当初の出発位置に戻ることだけが必要とされる。
【0029】
米国特許出願第09/917132号に開示されているように、行うべき評価分析をこれらの評価分析を完了するのに必要な時間で定まる群に区分けすることによってアナライザ10の処理量を増大させ得ることは公知である。これらの目的を達成するために、試薬保管領域26近傍に設けた液体吸引・計量分配アーム60を、予めプログラムしたソフトウェア、ファームウェア、ハードウェア指令または回路に従ってCPU15で制御し、タイプC評価分析と呼ぶ第1の評価分析群のために試薬保管領域26内に格納されたカートリッジ30から試薬を取り出し、吸引試薬をキュベット24に計量分配する。タイプC評
価分析は、多数の試薬事象を有するか、または、回転コンベヤ12の完全作業サイクル時間の半分よりも長い時間で最終的なインキュベーションおよび検査読み取りを完了するすべての評価分析を含む。先に説明したような回転コンベヤ12の例示の作業サイクル時間を想定するならば、アナライザ10は、毎時約350回のタイプC評価分析を実施できる。
【0030】
吸引・計量分配アーム61も同様に作動して、タイプB評価分析と呼ぶもっと少ない評価分析からなる第2のより小さい評価分析群のために試薬保管領域27内に格納されたカートリッジ30から試薬を取り出し、この吸引試薬をキュベット24に計量分配できる。タイプB評価分析は、2つの試薬事象を有し、そして、回転コンベヤ12の完全作業サイクル時間の約半分よりも短い時間量でアナライザが最終的なインキュベーションおよび検査読み取りを完了できるすべての評価分析を含む。先に説明したような回転コンベヤ12の作業サイクル時間を想定するならば、アナライザ10は、毎時約500回のタイプB評価分析を実施できる。
【0031】
吸引・計量分配アーム62も同様に作動して、タイプA評価分析と呼ぶもっと少ない評価分析からなる第3のより小さい評価分析群のために試薬保管領域28内に格納されたカートリッジ30から試薬を取り出し、この吸引試薬をキュベット24に計量分配できる。タイプA評価分析は、ただ1つの試薬事象を有し、そして、回転コンベヤ12の完全作業サイクル時間の約半分よりも短い時間量でアナライザが最終的なインキュベーションおよび検査読み取りを完了できるすべての評価分析を含む。先に説明したような回転コンベヤ12の例示の作業サイクル時間を想定するならば、アナライザ10は、毎時約500回のタイプA評価分析を実施できる。
【0032】
図7は、上記のようにアナライザ10の実施できる評価分析を3つの時間依存分析カテゴリに区分けした状態を示している。しきたりに従って、検査キュベット19にサンプルを計量分配する瞬間として時刻t=0.0秒を定める。説明を簡潔にするために、3つすべてのタイプ評価分析が、サンプル添加前の一定時間でただ1回の試薬添加R1を行うものとして示してある。図7は、どのようにタイプAの評価分析が、サンプル添加後約130〜140秒以内で完了するただ1回の試薬事象と最終的な読み取り(Rfで示す)を有する評価分析フォーマットを含むかを示している。同様に、タイプB評価分析は、サンプル添加後約330〜350秒以内に完了する2つの試薬事象と最終的読み取りを有する評価分析フォーマットを含む。最後に、タイプC評価分析は、サンプル添加後約350〜560秒以内に完了する少なくとも1つの試薬事象と最終的読み取りを有する評価分析フォーマットを含む。評価分析中のRdで示す任意の時刻に、反応槽の読み取りまたは分析をデバイス70のうちのいずれかで行うことができる。
【0033】
表1は、種々の試薬添加およびデバイス動作についての詳細なタイミングと共に、種々のタイプA、B、Cの被検物質についての代表的な臨床評価分析、免疫評価分析の限られてはいるが説明に役立つリストを示している。
【0034】
【表1】

【0035】
3つの評価分析タイプA、B、Cを有利に実施するように作動するアナライザ10の一例は次の通りである。アリコート・ウェル52W内に入っていて、タイプAの評価分析を使用して検査しようとしているサンプルをキュベット24に装填する前に、試薬保管領域28内の試薬カートリッジ30の適切なコンパートメントからアーム62によって、第1の試薬R1を吸引し、時刻T1でキュベット・ポート21内のキュベット24Aに入れる。時刻T0で、タイプAの評価分析を行おうとしているサンプルをプローブ54Pで吸引し、試薬R1を予め装填したキュベット24A内に入れる。
【0036】
同様の方法で、アリコート・ウェル52W内に入っていて、タイプBの評価分析を使用して検査しようとしているサンプルをキュベット24Bに装填する前に、試薬保管領域27内の試薬カートリッジ24の適切なコンパートメントからアーム61によって第1の試薬R1を吸引し、時刻T1でキュベット・ポート21内のキュベット24Bに入れる。時刻T0で、タイプB評価分析を行うことになっているサンプルをプローブ54Pで吸引し、キュベット24B内に入れる。上述したように、タイプB評価分析の例では、ここで再び試薬保管領域27内の試薬カートリッジ30にアクセスするようにアーム61を使用して、時刻T0後の時刻T2で2回目の試薬添加を行ってもよい。
【0037】
最後に、アリコート・ウェル52W内に入っていて、タイプCの評価分析を使用して検査しようとしているサンプルをキュベット24Cに装填する前に、試薬保管領域26内の試薬カートリッジ24の適切なコンパートメントからアーム60によって第1の試薬R1を吸引し、時刻T1でキュベット・ポート20または22内のキュベット24Cに入れる。時刻T0で、タイプC評価分析を行おうとしているサンプルをプローブ54Pで吸引し、キュベット24B内に入れる。上述したように、タイプC評価分析の例では、ここで再び試薬保管領域26内の試薬カートリッジ24にアクセスするようにアーム60を使用して、時刻T0後の時刻T2および時刻T0前後の時刻Txで2回目の試薬添加または3回目の試薬添加を行ってもよい。
【0038】
キュベット24にたった今述べた試薬およびサンプルを装填した後、反応回転コンベヤ12はその段階的時計回りの移動を続ける。この機械サイクル中に、評価分析操作デバイス34が、適切な評価分析プロトコルに従ってキュベット・ポート20、21、22内のキュベット24内の混合物に対して作動する。
【0039】
タイプB評価分析は、反応回転コンベヤ12が完全作業サイクル時間を完了するのに必要な時間の半分より短い時間ですべての評価分析が完了するように区分けしてあるので、アナライザ10で実施する必要のある混ざり合った評価分析タイプに依存して、タイプB評価分析を完了したキュベット24Bを、反応回転コンベヤ12の外側キュベット環14において、洗浄ステーション71によって洗浄し、2回目のタイプB評価分析またはタイプA評価分析に利用できるようにしてもよい。この構成を表すためにキュベット・ポート21には「B/A」または「B/B」のマークが付けてある。反応回転コンベヤ12が完全作業サイクル時間を完了し、タイプA評価分析およびタイプC評価分析の両方が完了するまで、反応回転コンベヤ12はその段階的時計回りの移動を続け、この機械サイクル中に、在来の評価分析操作デバイス34が、適切な評価分析プロトコルに従ってタイプA評価分析を行うキュベット24A内およびタイプC評価分析を行うキュベット24C内の混合物に対して作動する。
【0040】
完全作業サイクル時間にわたって完了したタイプB評価分析が反応回転コンベヤ12上に残り、そしてアナライザ処理量を妨げる在来のアナライザと比較すると、タイプB評価分析として説明した1つの中間時間長分析およびタイプA評価分析として説明した1つの短時間長分析が、共に、タイプC評価分析として説明した1つの長時間長評価分析に必要な作業可能サイクル時間と同じ作業可能サイクル時間中に完了するこの別の処理方法を行えば、アナライザ10の処理量を増大させることができる。
【0041】
しかしながら、代表的な健康管理施設が、1日の始まりで第1の需要パターンを、そして、1日の中頃に向かって異なった第2の需要パターンを経験することがわかっている。図8は、1日24時間にわたって行われるべき評価分析を有する入ってくる患者サンプルの割合を示している。一般的には、1日のうちに2つのピーク負荷期間があり、評価分析に対する数値的な要求は同じながら、要求される評価分析のパターンは異なっている。「大量」検査室での実際の経験が下記の表2に示してある。この表は、タイプC評価分析のパーセンテージがかなり増大すると同時に、タイプA評価分析のパーセンテージがかなり減少することを示している。評価分析の「決まりきった午前」の混合状態は、表2に示すように或る評価分析分布を有する83のサンプルを含む。
【0042】
【表2】

【0043】
アナライザ10についてただ1つの評価分析プロトコルを維持することは、行う必要のある種々の評価分析の混合に関係なく、高処理量を達成するのに明らかに不利である。特に、表2における評価分析需要の午前の欄を使用する第1の実施例で先に定義した「午前に最適化された」作動プロトコルを使用すると、午後の時間中のアナライザ10の処理量は低下することになる。
【0044】
本発明の主要な特徴は、少数の選定した大量の「決まりきった午前」のタイプA評価分析を行うのに必要な試薬リソースを試薬サーバのうちの1つ26、27または28の2つ以上で二重にするならば、1日の始めの「決まりきった午前」の評価分析の処理量ならびにその日の数時間後の「難儀な午後」の評価分析の処理量を最適化することが可能であるという発見にある。こうして、ただ1回の完全作業サイクル時間中に多数のタイプAおよび/またはタイプBの評価分析を完全に実施できるようにタイプA、タイプBまたはタイプCの評価分析に評価分析を区分けすることに加えて、本発明は、また、選んだタイプA評価分析を実施するのに必要な試薬を、試薬の在庫目録に、少なくとも先にタイプC評価分析について予約した試薬サーバ26に、また、場合により、先にタイプB評価分析について予約した試薬サーバ27に追加する。
【0045】
本発明は、図9に示すような「非最適化」評価分析作動プロトコルを最初に識別することにより実施される。その場合、午後の評価分析需要パターンで評価分析を行うのに必要なできるだけ多くの試薬が試薬サーバ28から供給されるように、大量の「決まりきった午前」のタイプA評価分析の小群を定める。さらに、午後の評価分析需要パターンで評価分析を行うのに必要なできるだけ多くの試薬が試薬サーバ27から供給されるように、タイプB評価分析の小群を定める。この構成においては、第3の試薬サーバ26は、残りの第3群の評価分析を行うのに必要な試薬を供給する。この場合、第1、第2、第3の評価分析群は、アナライザ10が行うことになっているすべての評価分析を含む。
【0046】
続いて、図9Aに示すように、試薬サーバ26における試薬在庫目録内で、午前の評価分析需要パターンで大量の「決まりきった午前」のタイプA評価分析の小群を実行するのに必要な付加的な試薬を二重にすることによって、アナライザ10の処理量を、午前、午後両方の評価分析需要パターンについて最適化する。これらの或る評価分析(サーバを横切って共有されている)は、第1の小群の評価分析内から選ぶ。この試薬二重化は、垂直方向の鎖線71およびイタリック体の「Server 26」という用語で図8Aに示してある。場合により、午前の評価分析需要パターンで大量の「決まりきった午前」のタイプA評価分析の第1小群を行うのに必要な試薬の選定部分も、試薬の在庫目録内で、垂直方向鎖線73およびイタリック体の用語「Server 27」で示すような試薬サーバ27において二重化してもよい。この新規な試薬共有プロトコルは、アナライザ処理量をかなり増大させる。なぜなら、午前の評価分析需要パターンで大量の「決まりきった午前」のタイプA評価分析を行うのに必要な充分な量の試薬がアナライザ10上で利用できるので、午前中にタイプA評価分析の未処理分がないからである。ここで、サーバ26が、最初に、午後の評価分析需要パターンでタイプC評価分析を行うのに必要な充分な量の試薬を装填するかまたは在庫目録に入れ、そして、タイプC評価分析についての午前の評価分析需要パターンがこの評価分析に対して低くなっているので、サーバ26が、午前の評価分析需要パターンで大量の「決まりきった午前」のタイプAの評価分析の第1小群を実行するのに必要な付加的な試薬ならびに午後の評価分析需要パターンでタイプC評価分析を実行するのに必要な試薬の両方を在庫目録に入れるのに充分な容量を持っているということに留意されたい。したがって、アナライザ10は、大量の「決まりきった午前」のタイプA評価分析の小群内の新しく入ってくるタイプA評価分析が、前記大量の「決まりきった午前」のタイプA評価分析内からの先に割り当てられた評価分析の未処理分が少ない試薬サーバ26、27または28のいずれかからの試薬を使用して実行されるように、CPU15によって自動的に作動させられ得る。
【0047】
このような評価分析作動プロトコルの利点を説明するために、AMで示す「決まりきった午前」の評価分析についての午前の時間当たりの需要率を有し、表3にPMで示す評価分析についての「難儀な午後」の時間当たりの需要率を有し、そして、アナライザ10における関連した評価分析フォーマット・タイプを有する代表的な健康管理施設をここで検討する。図8に対応するこの第1の例において、アナライザ10の処理量は、「決まりきった午前」の評価分析についての時間当たりの需要を表すAM欄について最適化されることになる。第1群のタイプA評価分析についての付加的な時間当たりの需要は、総CO2量(185/hr)と、グルコース(170)と、クレアチニン(120)と、血中尿素窒素(106)と、カルシウム(105)とを含み、時間当たりのタイプA評価分析は総計686となり、これは、サーバ28から供給されるタイプA評価分析用の試薬と共に先に説明したアナライザ10の特別な実施形態についてのタイプA評価分析に対するアナライザ10の500評価分析/時の能力を超えている。したがって、午前の時間枠内で、アナライザ10は、これらの大量需要評価分析について時間当たり168のタイプA評価分析の未処理分を有することになる。
【0048】
この非最適シナリオにおいて、同じ午前の時間枠中、タイプB評価分析に対する付加的な時間当たりの需要は、アルカリホスファターゼ(55)と、トリグリセリド(45)と、燐(28)と、直接ビリルビン(30)と、C反応性タンパク質(8)と、クレアチンキナーゼ(5)と、ゲンタマイシン(5)と、フェニトイン(3)と、偽コリンエステラーゼ(0)とを含み、この総計151のタイプB評価分析は、時間当たりの約500のタイプB評価分析として先に説明した特別な実施形態について充分にアナライザ10の能力範囲内にある。
【0049】
また、この非最適シナリオにおいて、同じ午前の時間枠中、タイプC評価分析に対する付加的な時間当たりの需要は、総ビリルビン(74)と、HDLコレステロール(33)と、ジギトキシン(9)と、乳酸(3)と、前立腺酸性ホスファターゼ(3)と、アンモニア(3)と、バルプロ酸(3)と、トランスフェリン(2)と補体3(2)とを含み、これは、毎時総数132のタイプC評価分析である。サーバ26(1)が、最初に、午後の評価分析需要パターンでタイプC評価分析を行うのに必要な試薬を在庫目録に入れ、この午後の評価分析需要パターンは、総ビリルビン(152)と、HDLコレステロール(66)と、ジギトキシン(18)と、乳酸(6)と、前立腺酸性ホスファターゼ(6)と、アンモニア(6)と、バルプロ酸(6)と、トランスフェリン(4)と、補体3(4)とを含むタイプC評価分析についての付加的な時間当たりの需要(これは合計して毎時286のタイプC評価分析となる)を有する。次いで、アナライザ10が、時間当たり約350のタイプC評価分析を実施することができ、一方タイプAおよびタイプCの評価分析についての付加的な時間当たりの需要が合計して時間当たり632の評価分析となり、タイプAおよびタイプCの評価分析を実施する能力が合計して時間当たり850の評価分析となるので、サーバ26
(1)は午前の時間枠中、完全に利用されない。
【0050】
【表3】

【0051】
上記とは対照的に、そして、図8Aおよび表4に示すように、そして、本発明で提供されるように、サーバ26は、毎時168の大量需要のタイプA評価分析を実施するのに必要な試薬を在庫目録に入れることにもなる。代表的な健康管理施設についてのこの例に関して、アナライザ10により実行されるべき「決まりきった午前」の評価分析についての総時間当たりの能力は、
・サーバ28からのタイプA評価分析についての時間当たり500の評価分析、
・サーバ26からのタイプA評価分析についての時間当たり168の評価分析、
・サーバ27からのタイプB評価分析についての時間当たり151の評価分析、及び
・サーバ26からのタイプC評価分析についての時間当たり286の評価分析
として最適化され、その結果、アナライザ10の総能力は、1105の「決まりきった午
前」の評価分析/時となる。
【0052】
午後の評価分析需要パターンの時間中、タイプA評価分析についての付加的な時間当たりの需要は、表2に示すように減少する。これは、総CO2量(126/hr)と、グルコース(116)と、クレアチニン(105)と、血中尿素窒素(72)と、カルシウム(71)とを含み、時間当たりの総数490のタイプA評価分析は、サーバ28から供給されるタイプA評価分析用の試薬と共に上述のアナライザ10の特別な実施形態についてのタイプA評価分析に対するアナライザ10の500評価分析/時の能力範囲内にある。したがって、午後の時間枠中、アナライザ10は、タイプA評価分析の未処理分を持たないことになる。
【0053】
同じ午後の時間枠中、タイプB評価分析についての付加的な時間当たりの需要は、アルカリホスファターゼ(70)と、トリグリセリド(57)と、燐(36)と、直接ビリルビン(38)と、C反応性タンパク質(10)と、クレアチンキナーゼ(6)と、ゲンタマイシン(6)と、フェニトイン(4)と、偽コリンエステラーゼ(15)とを含み、この総計242のタイプB評価分析は、時間当たりの約500のタイプB評価分析として先に説明した特別な実施形態について充分にアナライザ10の能力範囲内にある。
【0054】
同様にして、同じ午後の時間枠中、先に説明したように、タイプC評価分析についての付加的な時間当たりの需要は、総ビリルビン(152)と、HDLコレステロール(66)と、ジギトキシン(18)と、乳酸(6)と、前立腺酸性ホスファターゼ(6)と、アンモニア(6)と、バルプロ酸(6)と、トランスフェリン(4)と、補体3(4)とを含み、時間当たりの総数268のタイプC評価分析となる。サーバ26(1)が、最初に、午後の評価分析需要パターンでタイプC評価分析を実行するのに必要な試薬を在庫目録に入れるので、サーバ26は、すべての要求されたタイプC評価分析を実施できる。
【0055】
小群の大量の「決まりきった午前」のタイプA評価分析を行うのに必要な付加的な試薬を試薬サーバ26内の試薬の在庫目録内で二重にすることによる、午前、午後両方の評価分析需要パターンについて表4における或る例のタイプA評価分析を識別することで、先に述べたようにアナライザ10の総時間当たりの能力を最適化する代表的な健康管理施設のこの例では、「難儀な午後」の評価分析の処理量は以下のようになる。
・タイプA評価分析について490の評価分析/時、
・タイプB評価分析について242の評価分析/時、及び
・タイプC評価分析について268の評価分析/時。
【0056】
その結果、アナライザ10の能力は、午前の時間枠での1105の評価分析/時に比べて、午後の時間枠内に毎時1000の評価分析となる。換言すれば、アナライザ10の処理量は、午前の評価分析需要パターン内で小群の大量の「決まりきった午前」のタイプA評価分析を行うのに必要な付加的な試薬を試薬サーバ26における試薬の在庫目録内で二重にすることによって、午前、午後両方の評価分析需要パターンについて最適化できる。
【0057】
【表4】

【0058】
さらにまた、本発明の主要な特徴は、試薬サーバ26、28の両方における必要な試薬を有するすべての新しく入ってくる選んだタイプA評価分析について、2つの試薬サーバ26、28のうちの、最も少ない需要未処理分を有するサーバからの試薬を使用して、新しい患者サンプルを評価分析することができ、それによって、完了しようとしているこれらの選んだタイプA評価分析について必要な個々の評価分析処理時間を改善するように、アナライザ10がCPU15によって作動させられ得るという付加的な利点にある。
【0059】
臨床アナライザ内の、表1及び3に示すような無数の評価分析を実施することについての詳細は、この技術分野で日常的に遭遇する作業であるから、ここで説明する必要はないであろう。本発明の教示は、少なくとも2つのサーバからの試薬を使用して或る選んだ評価分析を行うことを可能にすることによってアナライザ処理量全体を向上させることができることで充分である。さらに、少なくとも2つのサーバのうち、需要の未処理分が少ない方のサーバからの試薬を使用して、或る選んだ評価分析を実行することを可能にすることに加えて、入ってくる評価分析需要パターンが第1群の評価分析の大きい部分を有するか、または第2群の評価分析の大きい部分を有するかどうかに関係なく、同時に処理量を増大させるように臨床アナライザを作動させる上述の方法が、上記実施形態におけるアナライザ10の特定の作動パラメータに依存しないことは当業者であれば自明であろう。たとえば、アナライザ10は、完全作業サイクル時間で当初の位置に戻るキュベット・ポート20、21の配置、反応回転コンベヤ12の作動パターン、評価分析処理量、サンプル・試薬吸引・計量分配アームなどが異なっていてもよく、ここに開示した作業方法に影響を与えない。これらの理由により、本発明は、本明細書で明示し、説明した実施形態に限定されることがなく、特許請求の範囲によってのみ限定されるものである。
【図面の簡単な説明】
【0060】
【図1】本発明を実施できる自動アナライザの概略平面図である。
【図2】図1のアナライザの一部を示す簡略平面図である。
【図3】図1のアナライザの自動アリコート容器アレイ保管・取り扱いユニットの斜視図である。
【図4】図1のアナライザで役に立つアリコート容器アレイの斜視図である。
【図5】図1のアナライザで役に立つ反応容器の斜視図である。
【図5A】図1のアナライザで役に立つバイアル・キャリアの斜視図である。
【図6】図1のアナライザで役に立つランダムアクセス試薬容器管理システムの頂面図である。
【図7】図1のアナライザの行った種々の評価分析について行った種々の作業事象に対するタイム・シーケンスを示すチャートである。
【図8】クリニック内で一日24時間にわたって評価分析を行った入ってくる患者サンプルの代表的な比率を示している。
【図9】図1のアナライザでの評価分析および試薬サーバの非最適化区分けを示している。
【図9A】本発明に従った、図1のアナライザでの評価分析および試薬サーバの最適化区分けを示している。

【特許請求の範囲】
【請求項1】
第1の評価分析パターンを第1の時間で実施し、第2の異なった評価分析パターンを異なった第2の時間で実施するようになっており、第1の評価分析パターンで多数の評価分析を行うのに必要な試薬を少なくとも2つのサーバ内で二重にする、少なくとも2つのサーバにおいて、在庫目録に入れた試薬を使用して多数の異なった評価分析を実施するようになっている臨床アナライザの処理量を増大させる方法。
【請求項2】
第1の評価分析パターンが、第1群の評価分析の大きい部分および第2群の評価分析の小さい部分を有し、第2の評価分析パターンが、前記第2群の評価分析の大きい部分および前記第1群の評価分析の小さい部分を有する、請求項1記載の方法。
【請求項3】
アナライザが、評価分析を支援するためのキュベット・ポートを有する回転可能な反応回転コンベヤを含み、回転コンベヤの完全作業サイクル時間で、すべてのキュベット・ポートが前記回転コンベヤにおける当初の出発位置に戻され、第1群の評価分析が、前記作業サイクル時間の半分未満で完了する評価分析を含む、請求項2記載の方法。
【請求項4】
第2群の評価分析が、作業サイクル時間の半分より多い時間で完了されることを要求する評価分析を含む、請求項3記載の方法。
【請求項5】
少なくとも2つのサーバのうち、第1の評価分析パターンで評価分析を実行するという要求の未処理分が少ない方のサーバからの試薬を選ぶ段階をさらに含む、請求項1記載の方法。
【請求項6】
臨床評価分析を行うのに適した複数の反応キュベットを受け入れるようになっているキュベット・ポートを有するキュベット回転コンベヤを支持する反応回転コンベヤであって、すべてのキュベット・ポートが、前記回転コンベヤの完全作業サイクル時間で前記回転コンベヤにおける当初の出発位置に戻されるようになっている、反応回転コンベヤ、
前記臨床評価分析を実施するのに必要な試薬を在庫目録に入れる少なくとも2つのサーバ、および
第1の評価分析パターンで多数の評価分析を行うのに必要な試薬を少なくとも2つのサーバ内で二重にすることによって、第1の時間で第1の評価分析パターンを実施し、そして異なった第2の時間で異なった第2の評価分析パターンを実施するアナライザ制御手段を含む、反応キュベット内の患者サンプルに対して多数の臨床評価分析を自動的に行うようになっている分析アナライザ。
【請求項7】
第1の評価分析パターンが第1群の評価分析の大きい部分および第2群の評価分析の小さい部分を有し、そして第2の評価分析パターンが前記第2群の評価分析の大きい部分および前記第1群の評価分析の小さい部分を有する、請求項6記載のアナライザ。
【請求項8】
第1群の評価分析が、作業サイクル時間の半分未満で完了する評価分析を含む、請求項7記載のアナライザ。
【請求項9】
第2群の評価分析が、作業サイクル時間の半分より多い時間で完了しなければならない評価分析を含む、請求項8記載のアナライザ。
【請求項10】
アナライザ制御手段が、少なくとも2つのサーバのうち、第1の評価分析パターンで評価分析を実施するという要求の未処理分が少ない方のサーバから試薬を選ぶ、請求項9記載のアナライザ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図5A】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図9A】
image rotate


【公表番号】特表2007−531881(P2007−531881A)
【公表日】平成19年11月8日(2007.11.8)
【国際特許分類】
【出願番号】特願2007−506508(P2007−506508)
【出願日】平成17年3月30日(2005.3.30)
【国際出願番号】PCT/US2005/010668
【国際公開番号】WO2005/098452
【国際公開日】平成17年10月20日(2005.10.20)
【出願人】(500029718)デイド・ベーリング・インコーポレイテッド (20)
【氏名又は名称原語表記】DADE BEHRING INC.
【Fターム(参考)】