説明

芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

【課題】分子が結晶化しにくく、有機エレクトロルミネッセンス素子を製造する際の歩留りが向上し、寿命が長い有機エレクトロルミネッセンス素子及びそれを実現する芳香族アミン誘導体を提供する。
【解決手段】本発明の芳香族アミン誘導体は、一般式(1)A−L−Bにおいて、Lは
特定のアリーレン基などからなる連結基であり、A及びBは特定のジアリールアミノ基であり、AとBは同一ではなく、4つの特定のアリール基のうち3つ以上は互いに異なる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス(EL)素子に関し、特に、分子が結晶化しにくく、有機EL素子を製造する際の歩留りが向上し、寿命が長い有機EL素子及びそれを実現する芳香族アミン誘導体に関するものである。
【背景技術】
【0002】
有機EL素子は、電界を印加することより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC.W.Tangらによる積層型素子による低電圧駆動有機EL素子の報告(C.W. Tang, S.A. Vanslyke,アプライドフィジックスレターズ(Applied Physics Letters),51巻、913頁、1987年等)がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。Tangらは、トリス(8−キノリノラト)アルミニウムを発光層に、トリフェニルジアミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。この例のように有機EL素子の素子構造としては、正孔輸送(注入)層、電子輸送発光層の2層型、又は正孔輸送(注入)層、発光層、電子輸送(注入)層の3層型等がよく知られている。こうした積層型構造素子では注入された正孔と電子の再結合効率を高めるため、素子構造や形成方法の工夫がなされている。
【0003】
通常、高温環境下で有機EL素子を駆動させたり、保管すると、発光色の変化、発光効率の低下、駆動電圧の上昇、発光寿命の短時間化等の悪影響が生じる。これを防ぐためには正孔輸送材料のガラス転移温度(Tg)を高くする必要があった。そのために正孔輸送材料の分子内に多くの芳香族基を有する必要があり(例えば、特許文献1の芳香族ジアミン誘導体、特許文献2の芳香族縮合環ジアミン誘導体)、通常8〜12個のベンゼン環を有する構造が好ましく用いられている。
しかしながら、分子内に多くの芳香族基を有すると、これらの正孔輸送材料を用いて薄膜を形成して有機EL素子を作製する際に結晶化が起こりやすく、蒸着に用いるるつぼの出口を塞いだり、結晶化に起因する薄膜の欠陥が発生し、有機EL素子の歩留り低下を招くなどの問題が生じていた。また、分子内に多くの芳香族基を有する化合物は、一般的にガラス転移温度(Tg)は高いものの、昇華温度が高く、蒸着時の分解や蒸着が不均一に形成される等の現象が起こると考えられるために寿命が短いという問題があった。
【0004】
一方、非対称な芳香族アミン誘導体が開示された公知文献がある。例えば、特許文献3に、非対称な構造を有する芳香族アミン誘導体が記載されているものの具体的な実施例はなく、非対称化合物の特徴についても一切記載されていない。また、特許文献4には、フェナントレンを有する非対称な芳香族アミン誘導体が実施例として記載されているが、対称の化合物と同列に扱われているとともに、非対称化合物の特徴については一切記載されていない。また、非対称化合物は特殊な合成法が必要であるにもかかわらず、これらの特許には非対称化合物の製造方法に関する記載が明示されていない。さらに、特許文献5には、非対称な構造を有する芳香族アミン誘導体の製造法については記載されているものの、非対称化合物の特徴については記載されていない。特許文献6には、ガラス転移温度の高い熱的に安定な非対称化合物の記載があるが、カルバゾールを有する化合物しか例示がない。また、本発明者らがこの化合物を用いて素子を作成した結果、寿命が短いことが問題であることが分かった。
以上のように、長寿命な有機EL素子の報告があるものの、未だ必ずしも充分なものとはいえない。そのため、より優れた性能を有する有機EL素子の開発が強く望まれていた。
【0005】
【特許文献1】米国特許第4,720,432号明細書
【特許文献2】米国特許第5,061,569号明細書
【特許文献3】特開平8−48656号公報
【特許文献4】特開平11−135261号公報
【特許文献5】特開2003−171366号公報
【特許文献6】米国特許第6,242,115号明細書
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、前記の課題を解決するためになされたもので、分子が結晶化しにくく、有機EL素子を製造する際の歩留りが向上し、寿命が長い有機EL素子及びそれを実現する芳香族アミン誘導体を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、下記一般式(1)で表されるように、異なる2種類のアミンユニットが連結基で結合した非対称な構造を有する新規な芳香族アミン誘導体を有機EL素子用材料として用い、特に正孔輸送材料として用いることによって、前記の課題を解決することができることを見出し、本発明を完成するに至った。
また非対称なアミンユニットとして、アリール置換されたアミノ基が好適であることを見出した。このアミンユニットは立体障害性があるため分子間の相互作用が小さいことから、結晶化が抑制され、有機EL素子を製造する歩留を向上させ、さらには、低い昇華温度で蒸着できるため、蒸着時の分子の分解が抑制され、得られる有機EL素子の寿命を長くする効果があり、特に青色発光素子と組み合わせることにより、顕著な長寿命効果が得られることが判った。
【0008】
すなわち、本発明は、下記一般式(1)で表される芳香族アミン誘導体を提供するものである。
A−L−B (1)
[一般式(1)において、Lは、置換もしくは無置換の核原子数5〜50のアリーレン基からなる連結基、又は、複数の置換もしくは無置換の核原子数5〜50のアリーレン基を単結合、酸素原子、硫黄原子、窒素原子又は飽和もしくは不飽和の核炭素数1〜20の2価の脂肪族炭化水素基で結合した連結基である。
Aは、下記一般式(2)で表されるジアリールアミノ基であり、
【化1】

Bは、下記一般式(3)で表されるジアリールアミノ基である。ただし、AとBは同一ではない。
【化2】

(一般式(2)及び(3)において、Ar1〜Ar4は、それぞれ独立に、置換もしくは無置換の核原子数5〜50のアリール基である。ただし、Ar1〜Ar4のうち3つ以上は互いに異なるアリール基である。)]
本発明は、前記一般式(2)及び(3)において、Ar1〜Ar4の4つ全てが互いに異なるアリール基である前記一般式(1)の芳香族アミン誘導体を提供する。
【0009】
本発明は、前記一般式(3)において、Ar3及びAr4が、それぞれ独立に、下記一般式(4)で表される基である前記一般式(1)の芳香族アミン誘導体を提供する。
【化3】

(一般式(4)において、Ar5は、置換もしくは無置換の核原子数5〜50のアリール基である。mは1〜5の整数である。)
【0010】
本発明は、前記一般式(3)において、Ar3及びAr4が、それぞれ独立に、下記一般式(5)で表される基である前記一般式(1)の芳香族アミン誘導体を提供する。
【化4】

(一般式(5)において、Ar6は、置換もしくは無置換の核原子数5〜50のアリール基である。)
本発明は、Ar1が置換もしくは無置換のナフチル基であり、Ar3及びAr4が、それぞれ独立に、前記一般式(5)で表される基である前記一般式(1)の芳香族アミン誘導体を提供する。
【0011】
本発明は、前記一般式(2)のAr2及び前記一般式(3)のAr4が、それぞれ独立に、下記一般式(4)で表される基である前記一般式(1)の芳香族アミン誘導体を提供する。
【化5】

(一般式(4)において、Ar5は、置換もしくは無置換の核原子数5〜50のアリール基である。mは1〜5の整数である。)
【0012】
本発明は、前記一般式(2)のAr2及び前記一般式(3)のAr4が、それぞれ独立に、下記一般式(5)で表される基である前記一般式(1)の芳香族アミン誘導体を提供する。
【化6】

(一般式(5)において、Ar6は、置換もしくは無置換の核原子数5〜50のアリール基である。)
【0013】
本発明は、Ar1が置換もしくは無置換の核原子数11〜50の縮合環基であり、Ar3及びAr4あるいはAr2及びAr4が、それぞれ独立に、上記一般式(4)又は(5)で表される基である前記一般式(1)の芳香族アミン誘導体を提供する。
本発明は、Ar1及びAr3がそれぞれ独立に、置換もしくは無置換の核原子数10〜50の縮合環基である前記一般式(1)の芳香族アミン誘導体を提供する。
本発明は、Ar1及びAr2がそれぞれ独立に、置換もしくは無置換の核原子数10〜50の縮合環基である前記一般式(1)の芳香族アミン誘導体を提供する。
【0014】
本発明は、Ar3及びAr4が同一であって、Ar3とAr4又はAr2とAr4が、それぞれ独立に、上記一般式(4)又は(5)で表される基であるか、あるいはAr1単独、又はAr1とAr3が縮合環である前記一般式(1)の芳香族アミン誘導体を提供する。
本発明は、Ar2及びAr3が同一であって、Ar3とAr4又はAr2とAr4が、それぞれ独立に、上記一般式(4)又は(5)で表される基であるか、あるいはAr1単独、又はAr1とAr3が縮合環である前記一般式(1)の芳香族アミン誘導体を提供する。
【0015】
本発明は、Ar1〜Ar4の示すアリール基の核原子数の合計が41〜96である前記一般式(1)の芳香族アミン誘導体を提供する。
本発明は、Ar1〜Ar4の示すアリール基の核原子数の合計が45〜72である前記一般式(1)の芳香族アミン誘導体を提供する。
【0016】
本発明は、有機エレクトロルミネッセンス素子用材料である前記のいずれかの芳香族アミン誘導体を提供する。
本発明は、有機エレクトロルミネッセンス素子用正孔輸送材料である前記のいずれかの芳香族アミン誘導体を提供する。
【0017】
本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、前記のいずれかの芳香族アミン誘導体を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子を提供する。
本発明は、前記有機薄膜層が正孔輸送層を有し、該正孔輸送層が、前記のいずれかの芳香族アミン誘導体を単独もしくは混合物の成分として含有する上記の有機エレクトロルミネッセンス素子を提供する。
本発明は、前記発光層が、アリールアミン化合物及び/又はスチリルアミン化合物を含有する前記の有機エレクトロルミネッセンス素子を提供する。
また、本発明は、青色系発光する前記いずれかの有機エレクトロルミネッセンス素子を提供するものである。
【発明の効果】
【0018】
本発明の芳香族アミン誘導体及びそれを用いた有機EL素子は、分子が結晶化しにくく、有機EL素子を製造する際の歩留りが向上し、寿命が長いものである。
【発明を実施するための最良の形態】
【0019】
本発明の芳香族アミン誘導体は、下記一般式(1)で表されるものである。
A−L−B (1)
一般式(1)において、Lは、(I)置換もしくは無置換の核原子数5〜50のアリーレン基からなる連結基、又は(II)複数の置換もしくは無置換の核原子数5〜50のアリーレン基を(II-1)単結合,(II-2)酸素原子(−O−),(II-3)硫黄原子(−S−),(II-4)窒素原子(−NH−,−NR−[Rは置換基])又は(II-5)飽和もしくは不飽和の核炭素数1〜20の2価の脂肪族炭化水素基で結合した連結基である。
【0020】
前記(I)及び(II)における核原子数5〜50のアリーレン基としては、例えば、1,4−フェニレン基、1,2−フェニレン基、1,3−フェニレン基、1,4−ナフチレン基、2,6−ナフチレン基、1,5−ナフチレン基、9,10−アントラニレン基、9,10−フェナントレニレン基、3,6−フェナントレニレン基、1,6−ピレニレン基、2,7−ピレニレン基、6,12−クリセニレン基、1,1’−ビフェニレン基、4,4’−ビフェニレン基、3,3’−ビフェニレン基、2,2’−ビフェニレン基、2,7−フルオレニレン基、2,5−チオフェニレン基、2,5−シローリレン基、2,5−オキサジアゾーリレン基、テルフェニレン基等が挙げられる。これらの中で、好ましくは、1,4−フェニレン基、1,2−フェニレン基、1,3−フェニレン基、1,4−ナフチレン基、9,10−アントラニレン基、6,12−クリセニレン基、4,4’−ビフェニレン基、3,3’−ビフェニレン基、2,2’−ビフェニレン基、2,7−フルオレニレン基である。
【0021】
前記(II-5)における飽和もしくは不飽和の核炭素数1〜20の2価の脂肪族炭化水素基としては、直鎖,分岐,環状のいずれであってもよく、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、エチリデン基、シクロヘキシリデン基、アダマンチレン基等が挙げられる。
Lは、フェニレン基、ビフェニレン基、テルフェニレン基、フルオレニレン基であると好ましく、ビフェニレン基がさらに好ましく、1,1’−ビフェニレン基が特に好ましい。
【0022】
一般式(1)において、Aは、下記一般式(2)で表されるジアリールアミノ基である。
【化7】

【0023】
一般式(1)において、Bは、下記一般式(3)で表されるジアリールアミノ基である。
【化8】

【0024】
ただし、一般式(1)においてAとBは同一ではない。
一般式(2)及び(3)において、Ar1〜Ar4は、それぞれ独立に、置換もしくは無置換の核原子数5〜50のアリール基である。
【0025】
前記Ar1〜Ar4のアリール基としては、例えば、フェニル基、1−ナフチル基、2−ナフチル基、1−アントリル基、2−アントリル基、9−アントリル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、4−フェナントリル基、9−フェナントリル基、1−ナフタセニル基、2−ナフタセニル基、9−ナフタセニル基、1−ピレニル基、2−ピレニル基、4−ピレニル基、2−ビフェニルイル基、3−ビフェニルイル基、4−ビフェニルイル基、p−テルフェニル−4−イル基、p−テルフェニル−3−イル基、p−テルフェニル−2−イル基、m−テルフェニル−4−イル基、m−テルフェニル−3−イル基、m−テルフェニル−2−イル基、o−トリル基、m−トリル基、p−トリル基、p−t−ブチルフェニル基、p−(2−フェニルプロピル)フェニル基、3−メチル−2−ナフチル基、4−メチル−1−ナフチル基、4−メチル−1−アントリル基、4’−メチルビフェニルイル基、4”−t−ブチル−p−テルフェニル−4−イル基、フルオランテニル基、フルオレニル基、1−ピロリル基、2−ピロリル基、3−ピロリル基、ピラジニル基、2−ピリジニル基、3−ピリジニル基、4−ピリジニル基、1−インドリル基、2−インドリル基、3−インドリル基、4−インドリル基、5−インドリル基、6−インドリル基、7−インドリル基、1−イソインドリル基、2−イソインドリル基、3−イソインドリル基、4−イソインドリル基、5−イソインドリル基、6−イソインドリル基、7−イソインドリル基、2−フリル基、3−フリル基、2−ベンゾフラニル基、3−ベンゾフラニル基、4−ベンゾフラニル基、5−ベンゾフラニル基、6−ベンゾフラニル基、7−ベンゾフラニル基、1−イソベンゾフラニル基、3−イソベンゾフラニル基、4−イソベンゾフラニル基、5−イソベンゾフラニル基、6−イソベンゾフラニル基、7−イソベンゾフラニル基、キノリル基、3−キノリル基、4−キノリル基、5−キノリル基、6−キノリル基、7−キノリル基、8−キノリル基、1−イソキノリル基、3−イソキノリル基、4−イソキノリル基、5−イソキノリル基、6−イソキノリル基、7−イソキノリル基、8−イソキノリル基、2−キノキサリニル基、5−キノキサリニル基、6−キノキサリニル基、1−カルバゾリル基、2−カルバゾリル基、3−カルバゾリル基、4−カルバゾリル基、9−カルバゾリル基、1−フェナントリジニル基、2−フェナントリジニル基、3−フェナントリジニル基、4−フェナントリジニル基、6−フェナントリジニル基、7−フェナントリジニル基、8−フェナントリジニル基、9−フェナントリジニル基、10−フェナントリジニル基、1−アクリジニル基、2−アクリジニル基、3−アクリジニル基、4−アクリジニル基、9−アクリジニル基、1,7−フェナントロリン−2−イル基、1,7−フェナントロリン−3−イル基、1,7−フェナントロリン−4−イル基、1,7−フェナントロリン−5−イル基、1,7−フェナントロリン−6−イル基、1,7−フェナントロリン−8−イル基、1,7−フェナントロリン−9−イル基、1,7−フェナントロリン−10−イル基、1,8−フェナントロリン−2−イル基、1,8−フェナントロリン−3−イル基、1,8−フェナントロリン−4−イル基、1,8−フェナントロリン−5−イル基、1,8−フェナントロリン−6−イル基、1,8−フェナントロリン−7−イル基、1,8−フェナントロリン−9−イル基、1,8−フェナントロリン−10−イル基、1,9−フェナントロリン−2−イル基、1,9−フェナントロリン−3−イル基、1,9−フェナントロリン−4−イル基、1,9−フェナントロリン−5−イル基、1,9−フェナントロリン−6−イル基、1,9−フェナントロリン−7−イル基、1,9−フェナントロリン−8−イル基、1,9−フェナントロリン−10−イル基、1,10−フェナントロリン−2−イル基、1,10−フェナントロリン−3−イル基、1,10−フェナントロリン−4−イル基、1,10−フェナントロリン−5−イル基、2,9−フェナントロリン−1−イル基、2,9−フェナントロリン−3−イル基、2,9−フェナントロリン−4−イル基、2,9−フェナントロリン−5−イル基、2,9−フェナントロリン−6−イル基、2,9−フェナントロリン−7−イル基、2,9−フェナントロリン−8−イル基、2,9−フェナントロリン−10−イル基、2,8−フェナントロリン−1−イル基、2,8−フェナントロリン−3−イル基、2,8−フェナントロリン−4−イル基、2,8−フェナントロリン−5−イル基、2,8−フェナントロリン−6−イル基、2,8−フェナントロリン−7−イル基、2,8−フェナントロリン−9−イル基、2,8−フェナントロリン−10−イル基、2,7−フェナントロリン−1−イル基、2,7−フェナントロリン−3−イル基、2,7−フェナントロリン−4−イル基、2,7−フェナントロリン−5−イル基、2,7−フェナントロリン−6−イル基、2,7−フェナントロリン−8−イル基、2,7−フェナントロリン−9−イル基、2,7−フェナントロリン−10−イル基、1−フェナジニル基、2−フェナジニル基、1−フェノチアジニル基、2−フェノチアジニル基、3−フェノチアジニル基、4−フェノチアジニル基、10−フェノチアジニル基、1−フェノキサジニル基、2−フェノキサジニル基、3−フェノキサジニル基、4−フェノキサジニル基、10−フェノキサジニル基、2−オキサゾリル基、4−オキサゾリル基、5−オキサゾリル基、2−オキサジアゾリル基、5−オキサジアゾリル基、3−フラザニル基、2−チエニル基、3−チエニル基、2−メチルピロール−1−イル基、2−メチルピロール−3−イル基、2−メチルピロール−4−イル基、2−メチルピロール−5−イル基、3−メチルピロール−1−イル基、3−メチルピロール−2−イル基、3−メチルピロール−4−イル基、3−メチルピロール−5−イル基、2−t−ブチルピロール−4−イル基、3−(2−フェニルプロピル)ピロール−1−イル基、2−メチル−1−インドリル基、4−メチル−1−インドリル基、2−メチル−3−インドリル基、4−メチル−3−インドリル基、2−t−ブチル−1−インドリル基、4−t−ブチル−1−インドリル基、2−t−ブチル−3−インドリル基、4−t−ブチル−3−インドリル基等が挙げられる。
これらの中で、好ましくはフェニル基、ナフチル基、ビフェニル基、アントラニル基、フェナントリル基、ピレニル基、クリセニル基、フルオランテニル基、フルオレニル基である。
【0026】
本発明の芳香族アミン誘導体は、前記一般式(1)〜(3)において、Ar1〜Ar4のそれぞれが異なる基であると好ましい。
本発明の芳香族アミン誘導体は、前記一般式(1)〜(3)において、Ar2〜Ar4のうち少なくとも2つが下記一般式(4)で表されるアリール基であることが好ましく、下記一般式(5)で表されるアリール基であるとさらに好ましい。
【0027】
【化9】

(一般式(4)において、Ar5は置換もしくは無置換の核原子数5〜50のアリール基であり、アリール基の例としては前記Ar1〜Ar4のアリール基で説明したものと同様の例が挙げられる。mは1〜5の整数である。)
【0028】
【化10】

(一般式(5)において、Ar6は、置換もしくは無置換の核原子数5〜50のアリール基である。)
【0029】
前記Ar1〜Ar6及びLの置換基としては、置換もしくは無置換の核原子数5〜50のアリール基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の炭素数1〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換の核原子数5〜50のアリール基で置換されたアミノ基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基、カルボキシル基等が挙げられる。
【0030】
Ar1〜Ar6及びLの置換基としての置換もしくは無置換の核原子数5〜50のアリール基としては前記Ar1〜Ar6で説明したものと同様の例が挙げられる。
Ar1〜Ar6及びLの置換基としての置換もしくは無置換の炭素数1〜50のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、ヒドロキシメチル基、1−ヒドロキシエチル基、2−ヒドロキシエチル基、2−ヒドロキシイソブチル基、1,2−ジヒドロキシエチル基、1,3−ジヒドロキシイソプロピル基、1,3−ジヒドロキシ−2−メチル−2−プロピル基、1,2,3−トリヒドロキシプロピル基、クロロメチル基、1−クロロエチル基、2−クロロエチル基、2−クロロイソブチル基、1,2−ジクロロエチル基、1,3−ジクロロイソプロピル基、1,3−ジクロロ−2−メチル−2−プロピル基、1,2,3−トリクロロプロピル基、ブロモメチル基、1−ブロモエチル基、2−ブロモエチル基、2−ブロモイソブチル基、1,2−ジブロモエチル基、1,3−ジブロモイソプロピル基、1,3−ジブロモ−2−メチル−2−プロピル基、1,2,3−トリブロモプロピル基、ヨードメチル基、1−ヨードエチル基、2−ヨードエチル基、2−ヨードイソブチル基、1,2−ジヨードエチル基、1,3−ジヨードイソプロピル基、1,3−ジヨード−2−メチル−2−プロピル基、1,2,3−トリヨードプロピル基、アミノメチル基、1−アミノエチル基、2−アミノエチル基、2−アミノイソブチル基、1,2−ジアミノエチル基、1,3−ジアミノイソプロピル基、1,3−ジアミノ−2−メチル−2−プロピル基、1,2,3−トリアミノプロピル基、シアノメチル基、1−シアノエチル基、2−シアノエチル基、2−シアノイソブチル基、1,2−ジシアノエチル基、1,3−ジシアノイソプロピル基、1,3−ジシアノ−2−メチル−2−プロピル基、1,2,3−トリシアノプロピル基、ニトロメチル基、1−ニトロエチル基、2−ニトロエチル基、2−ニトロイソブチル基、1,2−ジニトロエチル基、1,3−ジニトロイソプロピル基、1,3−ジニトロ−2−メチル−2−プロピル基、1,2,3−トリニトロプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4−メチルシクロヘキシル基、1−アダマンチル基、2−アダマンチル基、1−ノルボルニル基、2−ノルボルニル基等が挙げられる。
【0031】
Ar1〜Ar6及びLの置換基としての置換もしくは無置換の炭素数1〜50のアルコキシ基は−OYで表される基であり、Yの例としては、前記アルキル基で説明したものと同様の例が挙げられる。
Ar1〜Ar6及びLの置換基としての置換もしくは無置換の核原子数6〜50のアラルキル基の例としては、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−フェニルイソプロピル基、2−フェニルイソプロピル基、フェニル−t−ブチル基、α−ナフチルメチル基、1−α−ナフチルエチル基、2−α−ナフチルエチル基、1−α−ナフチルイソプロピル基、2−α−ナフチルイソプロピル基、β−ナフチルメチル基、1−β−ナフチルエチル基、2−β−ナフチルエチル基、1−β−ナフチルイソプロピル基、2−β−ナフチルイソプロピル基、1−ピロリルメチル基、2−(1−ピロリル)エチル基、p−メチルベンジル基、m−メチルベンジル基、o−メチルベンジル基、p−クロロベンジル基、m−クロロベンジル基、o−クロロベンジル基、p−ブロモベンジル基、m−ブロモベンジル基、o−ブロモベンジル基、p−ヨードベンジル基、m−ヨードベンジル基、o−ヨードベンジル基、p−ヒドロキシベンジル基、m−ヒドロキシベンジル基、o−ヒドロキシベンジル基、p−アミノベンジル基、m−アミノベンジル基、o−アミノベンジル基、p−ニトロベンジル基、m−ニトロベンジル基、o−ニトロベンジル基、p−シアノベンジル基、m−シアノベンジル基、o−シアノベンジル基、1−ヒドロキシ−2−フェニルイソプロピル基、1−クロロ−2−フェニルイソプロピル基等が挙げられる。
【0032】
Ar1〜Ar6及びLの置換基としての置換もしくは無置換の核原子数5〜50のアリールオキシ基は−OY’と表され、Y’の例としては前記Ar1〜Ar4のアリール基で説明したものと同様の例が挙げられる。
Ar1〜Ar6及びLの置換基としての置換もしくは無置換の核原子数5〜50のアリールチオ基は−SY’と表され、Y’の例としては前記Ar1〜Ar4のアリール基で説明したものと同様の例が挙げられる。
Ar1〜Ar6及びLの置換基としての置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基は−COOYで表される基であり、Yの例としては、前記アルキル基で説明したものと同様の例が挙げられる。
Ar1〜Ar6及びLの置換基としての置換もしくは無置換の核原子数5〜50のアリール基で置換されたアミノ基におけるアリール基の例としては前記Ar1〜Ar4のアリール基で説明したものと同様の例が挙げられる。
Ar1〜Ar6及びLの置換基としてのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
【0033】
本発明の芳香族アミン誘導体は、有機EL素子用材料であると好ましく、有機EL素子用正孔輸送材料であるとさらに好ましい。
本発明の一般式(1)で表される芳香族アミン誘導体の具体例を以下に示すが、これら例示化合物に限定されるものではない。
【0034】
【化11】

【0035】
【化12】

【0036】
【化13】

【0037】
【化14】

【0038】
【化15】

【0039】
【化16】

【0040】
【化17】

【0041】
【化18】

【0042】
【化19】

【0043】
【化20】

【0044】
【化21】

【0045】
【化22】

【0046】
【化23】

【0047】
【化24】

【0048】
【化25】


【0049】
次に、本発明の有機EL素子について説明する。
本発明の有機EL素子は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機EL素子において、該有機薄膜層の少なくとも1層が、前記芳香族アミン誘導体を単独もしくは混合物の成分として含有する。
本発明の有機EL素子は、前記有機薄膜層が正孔輸送層を有し、該正孔輸送層が、本発明の芳香族アミン誘導体を単独もしくは混合物の成分として含有すると好ましい。さらに、前記正孔輸送層が、主成分として本発明の芳香族アミン誘導体を含有すると好ましい。
本発明の芳香族アミン誘導体は、特に青色系発光する有機EL素子に用いると好ましい。
【0050】
また、本発明の有機EL素子は、発光層が、アリールアミン化合物及び/又はスチリルアミン化合物を含有すると好ましい。
スチリルアミン化合物としては下記一般式(A)で表される化合物などが挙げられ、アリールアミン化合物としては下記一般式(B)で表される化合物などが挙げられる。
【0051】
【化26】

[一般式(A)中、Ar8は、フェニル、ビフェニル、テルフェニル、スチルベン、ジスチリルアリールから選ばれる基であり、Ar9及びAr10は、それぞれ水素原子又は炭素数が6〜20の芳香族基であり、Ar9〜Ar10は置換されていてもよい。p’は、1〜4の整数である。さらに好ましくはAr9及び/又はAr10はスチリル基が置換されている。]
ここで、炭素数が6〜20の芳香族基としては、フェニル基、ナフチル基、アントラニル基、フェナントリル基、テルフェニル基等が好ましい。
【0052】
【化27】

【0053】
[一般式(B)中、Ar11〜Ar13は、置換されていてもよい核炭素数5〜40のアリール基である。q’は、1〜4の整数である。]
ここで、核原子数が5〜40のアリール基としては、フェニル、ナフチル、アントラニル、フェナントリル、ピレニル、コロニル、ビフェニル、テルフェニル、ピローリル、フラニル、チオフェニル、ベンゾチオフェニル、オキサジアゾリル、ジフェニルアントラニル、インドリル、カルバゾリル、ピリジル、ベンゾキノリル、フルオランテニル、アセナフトフルオランテニル、スチルベン等が好ましい。なお、核原子数が5〜40のアリール基は、さらに置換基により置換されていてもよく、好ましい置換基としては、炭素数1〜6のアルキル基(エチル基、メチル基、イソプロピル基、n−プロピル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等)、炭素数1〜6のアルコキシ基(エトキシ基、メトキシ基、イソプロポキシ基、n−プロポキシ基、s−ブトキシ基、t−ブトキシ基、ペントキシ基、ヘキシルオキシ基、シクロペントキシ基、シクロヘキシルオキシ基等)、核原子数5〜40のアリール基、核原子数5〜40のアリール基で置換されたアミノ基、核原子数5〜40のアリール基を有するエステル基、炭素数1〜6のアルキル基を有するエステル基、シアノ基、ニトロ基、ハロゲン原子(塩素、臭素、ヨウ素等)が挙げられる。
【0054】
以下、本発明の有機EL素子の素子構成について説明する。
(1)有機EL素子の構成
本発明の有機EL素子の代表的な素子構成としては、
(1) 陽極/発光層/陰極
(2) 陽極/正孔注入層/発光層/陰極
(3) 陽極/発光層/電子注入層/陰極
(4) 陽極/正孔注入層/発光層/電子注入層/陰極
(5) 陽極/有機半導体層/発光層/陰極
(6) 陽極/有機半導体層/電子障壁層/発光層/陰極
(7) 陽極/有機半導体層/発光層/付着改善層/陰極
(8) 陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(9) 陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
などの構造を挙げることができる。
これらの中で通常(8) の構成が好ましく用いられるが、これらに限定されるものではない。
本発明の芳香族アミン誘導体は、有機EL素子のどの有機薄膜層に用いてもよいが、発光帯域又は正孔輸送帯域に用いることができ、好ましくは正孔輸送帯域、特に好ましくは正孔輸送層に用いることにより、分子が結晶化しにくく、有機EL素子を製造する際の歩留りが向上する。
本発明の芳香族アミン誘導体を、有機薄膜層に含有させる量としては、30〜100モル%が好ましい。
【0055】
(2)透光性基板
本発明の有機EL素子は、透光性の基板上に作製する。ここでいう透光性基板は有機EL素子を支持する基板であり、400〜700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
【0056】
(3)陽極
本発明の有機EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する機能を有するものであり、4.5eV以上の仕事関数を有することが効果的である。本発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、インジウム−亜鉛酸化物(IZO)、金、銀、白金、銅等が挙げられる。
陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10〜200nmの範囲で選択される。
【0057】
(4)発光層
有機EL素子の発光層は以下(1) 〜(3) の機能を併せ持つものである。
(1) 注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、
陰極又は電子注入層より電子を注入することができる機能
(2) 輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能
(3) 発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能
ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよく、また、正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電荷を移動することが好ましい。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭57−51781号公報に開示されているように、樹脂等の結着剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化することによっても、発光層を形成することができる。
本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に本発明の芳香族アミン誘導体からなる発光材料以外の他の公知の発光材料を含有させてもよく、また、本発明の芳香族アミン誘導体からなる発光材料を含む発光層に、他の公知の発光材料を含む発光層を積層してもよい。
【0058】
本発明の芳香族アミン誘導体と共に発光層に使用できる発光材料又はドーピング材料としては、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキレート化オキシノイド化合物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるものではない。
【0059】
本発明の芳香族アミン誘導体と共に発光層に使用できるホスト材料としては、下記(i)〜(ix)で表される化合物が好ましい。
下記一般式(i)で表される非対称アントラセン。
【化28】

(式中、Arは置換もしくは無置換の核炭素数10〜50の縮合芳香族基である。
Ar’は置換もしくは無置換の核炭素数6〜50の芳香族基である。
Xは、置換もしくは無置換の核炭素数6〜50の芳香族基、置換もしくは無置換の核原子数5〜50の芳香族複素環基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の炭素数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基である。
a、b及びcは、それぞれ0〜4の整数である。
nは1〜3の整数である。また、nが2以上の場合は、[ ]内は、同じでも異なっていてもよい。)
【0060】
下記一般式(ii)で表される非対称モノアントラセン誘導体。
【化29】

(式中、Ar1及びAr2は、それぞれ独立に、置換もしくは無置換の核炭素数6〜50の芳香族環基であり、m及びnは、それぞれ1〜4の整数である。ただし、m=n=1でかつAr1とAr2のベンゼン環への結合位置が左右対称型の場合には、Ar1とAr2は同一ではなく、m又はnが2〜4の整数の場合にはmとnは異なる整数である。
1〜R10は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6〜50の芳香族環基、置換もしくは無置換の核原子数5〜50の芳香族複素環基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の炭素数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシル基である。)
【0061】
下記一般式(iii) で表される非対称ピレン誘導体。
【化30】

[式中、Ar及びAr’は、それぞれ置換もしくは無置換の核炭素数6〜50の芳香族基である。
L及びL’は、それぞれ置換もしくは無置換のフェニレン基、置換もしくは無置換のナフタレニレン基、置換もしくは無置換のフルオレニレン基又は置換もしくは無置換のジベンゾシロリレン基である。
mは0〜2の整数、nは1〜4の整数、sは0〜2の整数、tは0〜4の整数である。
また、L又はArは、ピレンの1〜5位のいずれかに結合し、L’又はAr’は、ピレンの6〜10位のいずれかに結合する。
ただし、n+tが偶数の時、Ar,Ar’,L,L’は下記(1) 又は(2) を満たす。
(1) Ar≠Ar’及び/又はL≠L’(ここで≠は、異なる構造の基であることを示す。)
(2) Ar=Ar’かつL=L’の時
(2-1) m≠s及び/又はn≠t、又は
(2-2) m=sかつn=tの時、
(2-2-1) L及びL’、又はピレンが、それぞれAr及びAr’上の異なる結合位置に結合しているか、(2-2-2) L及びL’、又はピレンが、Ar及びAr’上の同じ結合位置で結合している場合、L及びL’又はAr及びAr’のピレンにおける置換位置が1位と6位、又は2位と7位である場合はない。]
【0062】
下記一般式(iv)で表される非対称アントラセン誘導体。
【化31】

(式中、A1及びA2は、それぞれ独立に、置換もしくは無置換の核炭素数10〜20の縮合芳香族環基である。
Ar1及びAr2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数6〜50の芳香族環基である。
【0063】
1〜R10は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6〜50の芳香族環基、置換もしくは無置換の核原子数5〜50の芳香族複素環基、置換もしくは無置換の炭素数1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換の炭素数1〜50のアルコキシ基、置換もしくは無置換の炭素数6〜50のアラルキル基、置換もしくは無置換の核原子数5〜50のアリールオキシ基、置換もしくは無置換の核原子数5〜50のアリールチオ基、置換もしくは無置換の炭素数1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシル基、ハロゲン原子、シアノ基、ニトロ基又はヒドロキシル基である。
【0064】
Ar1、Ar2、R9及びR10は、それぞれ複数であってもよく、隣接するもの同士で飽和もしくは不飽和の環状構造を形成していてもよい。
ただし、一般式(iv)において、中心のアントラセンの9位及び10位に、該アントラセン上に示すX−Y軸に対して対称型となる基が結合する場合はない。)
【0065】
下記一般式(v)で表されるアントラセン誘導体。
【化32】

(式中、R1〜R10は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換しても良いアリール基,アルコキシル基,アリーロキシ基,アルキルアミノ基,アルケニル基,アリールアミノ基又は置換しても良い複素環式基を示し、a及びbは、それぞれ1〜5の整数を示し、それらが2以上の場合、R1同士又はR2同士は、それぞれにおいて、同一でも異なっていてもよく、またR1同士またはR2同士が結合して環を形成していてもよいし、R3とR4,R5とR6,R7とR8,R9とR10がたがいに結合して環を形成していてもよい。L1は単結合、−O−,−S−,−N(R)−(Rはアルキル基又は置換しても良いアリール基である)、アルキレン基又はアリーレン基を示す。)
【0066】
下記一般式(vi)で表されるアントラセン誘導体。
【化33】

(式中、R11〜R20は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,アリール基,アルコキシル基,アリーロキシ基,アルキルアミノ基,アリールアミノ基又は置換しても良い複素環式基を示し、c,d,e及びfは、それぞれ1〜5の整数を示し、それらが2以上の場合、R11同士,R12同士,R16同士又はR17同士は、それぞれにおいて、同一でも異なっていてもよく、またR11同士,R12同士,R16同士又はR17同士が結合して環を形成していてもよいし、R13とR14,R18とR19がたがいに結合して環を形成していてもよい。L2は単結合、−O−,−S−,−N(R)−(Rはアルキル基又は置換しても良いアリール基である)、アルキレン基又はアリーレン基を示す。)
【0067】
下記一般式(vii) で表されるスピロフルオレン誘導体。
【化34】

(式中、A5〜A8は、それぞれ独立に、置換もしくは無置換のビフェニル基又は置換もしくは無置換のナフチル基である。)
【0068】
下記一般式(viii)で表される縮合環含有化合物。
【化35】

(式中、A9〜A14は前記と同じ、R21〜R23は、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、炭素数1〜6のアルコキシル基、炭素数5〜18のアリールオキシ基、炭素数7〜18のアラルキルオキシ基、炭素数5〜16のアリールアミノ基、ニトロ基、シアノ基、炭素数1〜6のエステル基又はハロゲン原子を示し、A9〜A14のうち少なくとも1つは3環以上の縮合芳香族環を有する基である。)
【0069】
下記一般式(ix)で表されるフルオレン化合物。
【化36】

(式中、R1およびR2は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。異なるフルオレン基に結合するR1同士、R2同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR1およびR2は、同じであっても異なっていてもよい。R3およびR4は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、異なるフルオレン基に結合するR3同士、R4同士は、同じであっても異なっていてもよく、同じフルオレン基に結合するR3およびR4は、同じであっても異なっていてもよい。Ar1およびAr2は、ベンゼン環の合計が3個以上の置換あるいは無置換の縮合多環芳香族基またはベンゼン環と複素環の合計が3個以上の置換あるいは無置換の炭素でフルオレン基に結合する縮合多環複素環基を表わし、Ar1およびAr2は、同じであっても異なっていてもよい。nは、1乃至10の整数を表す。)
【0070】
以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノアントラセン誘導体、特に好ましくは非対称アントラセンである。
また、ドーパントの発光材料としては、りん光発光性の化合物を用いることもできる。りん光発光性の化合物としては、ホスト材料にカルバゾール環を含む化合物が好ましい。ドーパントとしては三重項励起子から発光することのできる化合物であり、三重項励起子から発光する限り特に限定されないが、Ir、Ru、Pd、Pt、Os及びReからなる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。
カルバゾール環を含む化合物からなるりん光発光に好適なホストは、その励起状態からりん光発光性化合物へエネルギー移動が起こる結果、りん光発光性化合物を発光させる機能を有する化合物である。ホスト化合物としては励起子エネルギーをりん光発光性化合物にエネルギー移動できる化合物ならば特に制限はなく、目的に応じて適宜選択することができる。カルバゾール環以外に任意の複素環などを有していても良い。
【0071】
このようなホスト化合物の具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。ホスト化合物は単独で使用しても良いし、2種以上を併用しても良い。
具体例としては、以下のような化合物が挙げられる。
【0072】
【化37】

【0073】
りん光発光性のドーパントは三重項励起子から発光することのできる化合物である。三重項励起子から発光する限り特に限定されないが、Ir、Ru、Pd、Pt、Os及びReからなる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。ポルフィリン金属錯体としては、ポルフィリン白金錯体が好ましい。りん光発光性化合物は単独で使用しても良いし、2種以上を併用しても良い。
オルトメタル化金属錯体を形成する配位子としては種々のものがあるが、好ましい配位子としては、2‐フェニルピリジン誘導体、7、8−ベンゾキノリン誘導体、2‐(2‐チエニル)ピリジン誘導体、2‐(1−ナフチル) ピリジン誘導体、2‐フェニルキノリン誘導体等が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特に、フッ素化物、トリフルオロメチル基を導入したものが、青色系ドーパントとしては好ましい。さらに補助配位子としてアセチルアセトナート、ピクリン酸等の上記配位子以外の配位子を有していても良い。
りん光発光性のドーパントの発光層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.1〜70質量%であり、1〜30質量%が好ましい。りん光発光性化合物の含有量が0.1質量%未満では発光が微弱でありその含有効果が十分に発揮されず、70質量%を超える場合は、濃度消光と言われる現象が顕著になり素子性能が低下する。
また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含有しても良い。
さらに、発光層の膜厚は、好ましくは5〜50nm、より好ましくは7〜50nm、最も好ましくは10〜50nmである。5nm未満では発光層形成が困難となり、色度の調整が困難となる恐れがあり、50nmを超えると駆動電圧が上昇する恐れがある。
【0074】
(5)正孔注入・輸送層(正孔輸送帯域)
正孔注入・輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常5.5eV以下と小さい。このような正孔注入・輸送層としては、より低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば104〜106V/cmの電界印加時に、少なくとも10-42/V・秒であれば好ましい。
本発明の芳香族アミン誘導体を正孔輸送帯域に用いる場合、本発明の芳香族アミン誘導体単独で正孔注入、輸送層を形成してもよく、他の材料と混合して用いてもよい。
本発明の芳香族アミン誘導体と混合して正孔注入・輸送層を形成する材料としては、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、有機EL素子の正孔注入・輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
【0075】
具体例としては、トリアゾール誘導体(米国特許3,112,197号明細書等参照)、オキサジアゾール誘導体(米国特許3,189,447号明細書等参照)、イミダゾール誘導体(特公昭37−16096号公報等参照)、ポリアリールアルカン誘導体(米国特許3,615,402号明細書、同第3,820,989号明細書、同第3,542,544号明細書、特公昭45−555号公報、同51−10983号公報、特開昭51−93224号公報、同55−17105号公報、同56−4148号公報、同55−108667号公報、同55−156953号公報、同 56−36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体(米国特許第3,180,729号明細書、同第4,278,746号明細書、特開昭55−88064号公報、同55−88065号公報、同49−105537号公報、同55−51086号公報、同56−80051号公報、同56−88141号公報、同57−45545号公報、同54−112637号公報、同55−74546号公報等参照)、フェニレンジアミン誘導体(米国特許第3,615,404号明細書、特公昭51−10105号公報、同46−3712号公報、同47−25336号公報、特開昭54−53435号公報、同54−110536号公報、同54−119925号公報等参照)、アリールアミン誘導体(米国特許第3,567,450号明細書、同第3,180,703号明細書、同第3,240,597号明細書、同第3,658,520号明細書、同第4,232,103号明細書、同第4,175,961号明細書、同第4,012,376号明細書、特公昭49−35702号公報、同39−27577号公報、特開昭55−144250号公報、同56−119132号公報、同56−22437号公報、西独特許第1,110,518号明細書等参照)、アミノ置換カルコン誘導体(米国特許第3,526,501号明細書等参照)、オキサゾール誘導体(米国特許第3,257,203号明細書等に開示のもの)、スチリルアントラセン誘導体(特開昭56−46234号公報等参照)、フルオレノン誘導体(特開昭54−110837号公報等参照)、ヒドラゾン誘導体(米国特許第3,717,462号明細書、特開昭54−59143号公報、同55−52063号公報、同55−52064号公報、同55−46760号公報、同55−85495号公報、同57−11350号公報、同57−148749号公報、特開平2−311591号公報等参照)、スチルベン誘導体(特開昭61−210363号公報、同第61−228451号公報、同61−14642号公報、同61−72255号公報、同62−47646号公報、同62−36674号公報、同62−10652号公報、同62−30255号公報、同60−93455号公報、同60−94462号公報、同60−174749号公報、同60−175052号公報等参照)、シラザン誘導体(米国特許第4,950,950号明細書)、ポリシラン系(特開平2−204996号公報)、アニリン系共重合体(特開平2−282263号公報)、特開平1−211399号公報に開示されている導電性高分子オリゴマー(特にチオフェンオリゴマー)等を挙げることができる。
【0076】
正孔注入・輸送層の材料としては上記のものを使用することができるが、ポルフィリン化合物(特開昭63−2956965号公報等に開示のもの)、芳香族第三級アミン化合物及びスチリルアミン化合物(米国特許第4,127,412号明細書、特開昭53−27033号公報、同54−58445号公報、同54−149634号公報、同54−64299号公報、同55−79450号公報、同55−144250号公報、同56−119132号公報、同61−295558号公報、同61−98353号公報、同63−295695号公報等参照)、特に芳香族第三級アミン化合物を用いることが好ましい。
また、米国特許第5,061,569号に記載されている2個の縮合芳香族環を分子内に有する、例えば、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル(以下NPDと略記する)、また特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”−トリス(N−(3−メチルフェニル)−N−フェニルアミノ)トリフェニルアミン(以下MTDATAと略記する)等を挙げることができる。
さらに、発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、p型Si、p型SiC等の無機化合物も正孔注入・輸送層の材料として使用することができる。
【0077】
正孔注入・輸送層は本発明の芳香族アミン誘導体を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化することにより形成することができる。正孔注入・輸送層としての膜厚は特に制限はないが、通常は5nm〜5μmである。この正孔注入・輸送層は、正孔輸送帯域に本発明の芳香族アミン誘導体を含有していれば、上述した材料の一種又は二種以上からなる一層で構成されてもよく、前記正孔注入・輸送層とは別種の化合物からなる正孔注入・輸送層を積層したものであってもよい。
また、発光層への正孔注入又は電子注入を助ける層として有機半導体層を設けてもよく、10-10S/cm以上の導電率を有するものが好適である。このような有機半導体層の材料としては、含チオフェンオリゴマーや特開平8−193191号公報に開示してある含アリールアミンオリゴマー等の導電性オリゴマー、含アリールアミンデンドリマー等の導電性デンドリマー等を用いることができる。
【0078】
(6)電子注入・輸送層
次に、電子注入層・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きく、また付着改善層は、この電子注入層の中で特に陰極との付着が良い材料からなる層である。
また、有機EL素子は発光した光が電極(この場合は陰極)により反射するため、直接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干渉することが知られている。この干渉効果を効率的に利用するため、電子輸送層は数nm〜数μmの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避けるために、104〜106V/cmの電界印加時に電子移動度が少なくとも10-52/Vs以上であることが好ましい。
電子注入層に用いられる材料としては、8−ヒドロキシキノリンまたはその誘導体の金属錯体やオキサジアゾール誘導体が好適である。上記8−ヒドロキシキノリンまたはその誘導体の金属錯体の具体例としては、オキシン(一般に8−キノリノール又は8−ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8−キノリノラト)アルミニウムを電子注入材料として用いることができる。
【0079】
一方、オキサジアゾール誘導体としては、以下の一般式で表される電子伝達化合物が挙げられる。
【化38】

(式中、Ar1,Ar2,Ar3,Ar5,Ar6,Ar9はそれぞれ置換または無置換のアリール基を示し、それぞれ互いに同一であっても異なっていてもよい。またAr4,Ar7,Ar8は置換または無置換のアリーレン基を示し、それぞれ同一であっても異なっていてもよい)
ここでアリール基としてはフェニル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基が挙げられる。また、アリーレン基としてはフェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。また、置換基としては炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基またはシアノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましい。
【0080】
上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
【化39】

さらに、電子注入層及び電子輸送層に用いられる材料として、下記一般式(A)〜(E)で表されるものも用いることができる。
【化40】

【0081】
(一般式(A)及び(B)中、A1〜A3は、それぞれ独立に、窒素原子又は炭素原子である。
Ar1は、置換もしくは無置換の核炭素数6〜60のアリール基、又は置換もしくは無置換の核炭素数3〜60のヘテロアリール基であり、Ar2は、水素原子、置換もしくは無置換の核炭素数6〜60のアリール基、置換もしくは無置換の核炭素数3〜60のヘテロアリール基、置換もしくは無置換の炭素数1〜20のアルキル基、又は置換もしくは無置換の炭素数1〜20のアルコキシ基、あるいはこれらの2価の基である。ただし、Ar1及びAr2のいずれか一方は、置換もしくは無置換の核炭素数10〜60の縮合環基、又は置換もしくは無置換の核炭素数3〜60のモノヘテロ縮合環基である。
1、L2及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6〜60のアリーレン基、置換もしくは無置換の核炭素数3〜60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数6〜60のアリール基、置換もしくは無置換の核炭素数3〜60のヘテロアリール基、置換もしくは無置換の炭素数1〜20のアルキル基、又は置換もしくは無置換の炭素数1〜20のアルコキシ基であり、nは0〜5の整数であり、nが2以上の場合、複数のRは同一でも異なっていてもよく、また、隣接する複数のR基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環を形成していてもよい。)で表される含窒素複素環誘導体。
【0082】
HAr−L−Ar1−Ar2 (C)
(式中、HArは、置換基を有していてもよい炭素数3〜40の含窒素複素環であり、Lは、単結合、置換基を有していてもよい炭素数6〜60のアリーレン基、置換基を有していてもよい炭素数3〜60のヘテロアリーレン基又は置換基を有していてもよいフルオレニレン基であり、Ar1は、置換基を有していてもよい炭素数6〜60の2価の芳香族炭化水素基であり、Ar2は、置換基を有していてもよい炭素数6〜60のアリール基又は置換基を有していてもよい炭素数3〜60のヘテロアリール基である。)で表される含窒素複素環誘導体。
【0083】
【化41】

【0084】
(式中、X及びYは、それぞれ独立に炭素数1〜6の飽和若しくは不飽和の炭化水素基、アルコキシ基、アルケニルオキシ基、アルキニルオキシ基、ヒドロキシ基、置換若しくは無置換のアリール基、置換若しくは無置換のヘテロ環又はXとYが結合して飽和又は不飽和の環を形成した構造であり、R1〜R4は、それぞれ独立に水素、ハロゲン原子、置換もしくは無置換の炭素数1から6までのアルキル基、アルコキシ基、アリールオキシ基、パーフルオロアルキル基、パーフルオロアルコキシ基、アミノ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、アゾ基、アルキルカルボニルオキシ基、アリールカルボニルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、スルフィニル基、スルフォニル基、スルファニル基、シリル基、カルバモイル基、アリール基、ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミル基、ニトロソ基、ホルミルオキシ基、イソシアノ基、シアネート基、イソシアネート基、チオシアネート基、イソチオシアネート基もしくはシアノ基又は隣接した場合には置換若しくは無置換の環が縮合した構造である。)で表されるシラシクロペンタジエン誘導体。
【0085】
【化42】

【0086】
(式中、R1〜R8及びZ2は、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はアリールオキシ基を示し、X、Y及びZ1は、それぞれ独立に、飽和もしくは不飽和の炭化水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基またはアリールオキシ基を示し、Z1とZ2の置換基は相互に結合して縮合環を形成してもよく、nは1〜3の整数を示し、nが2以上の場合、Z1は異なってもよい。但し、nが1、X、Y及びR2がメチル基であって、R8が、水素原子又は置換ボリル基の場合、及びnが3でZ1がメチル基の場合を含まない。)で表されるボラン誘導体。
【0087】
【化43】

【0088】
[式中、Q1及びQ2は、それぞれ独立に、下記一般式(G)で示される配位子を表し、Lは、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基、−OR1(R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアルキル基、置換もしくは無置換のアリール基、置換もしくは無置換の複素環基である。)または−O−Ga−Q3(Q4)(Q3及びQ4は、Q1及びQ2と同じ)で示される配位子を表す。]
【0089】
【化44】

[式中、環A1およびA2は、置換基を有してよい互いに縮合した6員アリール環構造である。]
【0090】
この金属錯体は、n型半導体としての性質が強く、電子注入能力が大きい。さらには、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子との結合性も強固になり、発光材料としての蛍光量子効率も大きくなっている。
一般式(G)の配位子を形成する環A1及びA2の置換基の具体的な例を挙げると、塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、エチル基、プロピル基、ブチル基、s‐ブチル基、t‐ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フェニル基、ナフチル基、3−メチルフェニル基、3−メトキシフェニル基、3−フルオロフェニル基、3−トリクロロメチルフェニル基、3−トリフルオロメチルフェニル基、3−ニトロフェニル基等の置換もしくは無置換のアリール基、メトキシ基、n−ブトキシ基、t‐ブトキシ基、トリクロロメトキシ基、トリフルオロエトキシ基、ペンタフルオロプロポキシ基、2,2,3,3−テトラフルオロプロポキシ基、1,1,1,3,3,3−ヘキサフルオロ−2−プロポキシ基、6−(パーフルオロエチル)ヘキシルオキシ基等の置換もしくは無置換のアルコキシ基、フェノキシ基、p−ニトロフェノキシ基、p−t‐ブチルフェノキシ基、3−フルオロフェノキシ基、ペンタフルオロフェニル基、3−トリフルオロメチルフェノキシ基等の置換もしくは無置換のアリールオキシ基、メチルチオ基、エチルチオ基、t‐ブチルチオ基、ヘキシルチオ基、オクチルチオ基、トリフルオロメチルチオ基等の置換もしくは無置換のアルキルチオ基、フェニルチオ基、p−ニトロフェニルチオ基、p‐t‐ブチルフェニルチオ基、3−フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3−トリフルオロメチルフェニルチオ基等の置換もしくは無置換のアリールチオ基、シアノ基、ニトロ基、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基等のモノまたはジ置換アミノ基、ビス(アセトキシメチル)アミノ基、ビス(アセトキシエチル)アミノ基、ビス(アセトキシプロピル)アミノ基、ビス(アセトキシブチル)アミノ基等のアシルアミノ基、水酸基、シロキシ基、アシル基、メチルカルバモイル基、ジメチルカルバモイル基、エチルカルバモイル基、ジエチルカルバモイル基、プロイピルカルバモイル基、ブチルカルバモイル基、フェニルカルバモイル基等のカルバモイル基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロヘキシル基等のシクロアルキル基、フェニル基、ナフチル基、ビフェニル基、アントラニル基、フェナントリル基、フルオレニル基、ピレニル基等のアリール基、ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基、トリアジニル基、インドリニル基、キノリニル基、アクリジニル基、ピロリジニル基、ジオキサニル基、ピペリジニル基、モルフォリジニル基、ピペラジニル基、トリアチニル基、カルバゾリル基、フラニル基、チオフェニル基、オキサゾリル基、オキサジアゾリル基、ベンゾオキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリル基、トリアゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラニル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる6員アリール環もしくは複素環を形成しても良い。
【0091】
本発明の有機EL素子の好ましい形態に、電子を輸送する領域または陰極と有機層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパントとは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物または希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)およびCs(仕事関数:1.95eV)からなる群から選択される少なくとも一つのアルカリ金属や、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0〜2.5eV)、およびBa(仕事関数:2.52eV)からなる群から選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、K、RbおよびCsからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、RbまたはCsであり、最も好ましくは、Csである。これらのアルカリ金属は、特に還元能力が高く、電子注入域への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性ドーパントとして、これら2種以上のアルカリ金属の組合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRbあるいはCsとNaとKとの組み合わせであることが好ましい。Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電子注入域への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
【0092】
本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上させることができる。このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Li2O、K2O、Na2S、Na2SeおよびNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS、およびCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KClおよびNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2およびBeF2といったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
また、電子輸送層を構成する半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、SbおよびZnの少なくとも一つの元素を含む酸化物、窒化物または酸化窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、電子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であることが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、上述したアルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物等が挙げられる。
【0093】
(7)陰極
陰極としては、電子注入・輸送層又は発光層に電子を注入するため、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム・カリウム合金、マグネシウム、リチウム、マグネシウム・銀合金、アルミニウム/酸化アルミニウム、アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。
ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。
また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm、好ましくは50〜200nmである。
【0094】
(8)絶縁層
有機EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することが好ましい。
絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セ シウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられ、これらの混合物や積層物を用いてもよい。
【0095】
(9)有機EL素子の製造方法
以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入・輸送層、及び必要に応じて電子注入・輸送層を形成し、さらに陰極を形成することにより有機EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有機EL素子を作製することもできる。
以下、透光性基板上に陽極/正孔注入層/発光層/電子注入層/陰極が順次設けられた構成の有機EL素子の作製例を記載する。
まず、適当な透光性基板上に陽極材料からなる薄膜を1μm以下、好ましくは10〜200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述したように真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、その蒸着条件は使用する化合物(正孔注入層の材料)、目的とする正孔注入層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度50〜450℃、真空度10-7〜10-3Torr、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚5nm〜5μmの範囲で適宜選択することが好ましい。
【0096】
次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発光材料を薄膜化することにより形成できるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一般的に正孔注入層と同じような条件範囲の中から選択することができる。
次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔注入層、発光層と同様の条件範囲から選択することができる。
本発明の芳香族アミン誘導体は、発光帯域や正孔輸送帯域のいずれの層に含有させるかによって異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をすることができる。また、スピンコート法を用いる場合は、他の材料と混合することによって含有させることができる。
最後に陰極を積層して有機EL素子を得ることができる。
陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。しかし下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。
この有機EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製することが好ましい。
【0097】
本発明の有機EL素子の各層の形成方法は特に限定されない。従来公知の真空蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有機EL素子に用いる、前記一般式(1)で示される化合物を含有する有機薄膜層は、真空蒸着法、分子線蒸着法(MBE法)あるいは溶媒に解かした溶液のディッピング法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布法による公知の方法で形成することができる。
本発明の有機EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄すぎるとピンホール等の欠陥が生じやすく、逆に厚すぎると高い印加電圧が必要となり効率が悪くなるため、通常は数nmから1μmの範囲が好ましい。
なお、有機EL素子に直流電圧を印加する場合、陽極を+、陰極を−の極性にして、5〜40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が+、陰極が−の極性になった時のみ均一な発光が観測される。印加する交流の波形は任意でよい。
【実施例】
【0098】
以下、本発明を合成例及び実施例に基づいてさらに詳細に説明する。
【0099】
合成例1(中間体1の合成)
200mLの三つ口フラスコに、4−ブロモビフェニル20.0g(東京化成社品)、ナトリウムt−ブトキシド8.64g(和光純薬社製)、酢酸パラジウム84mg(和光純薬社製)を入れた。さらに撹拌子を入れ、フラスコの両側にラバーキャップをセットし、中央の口に還流用蛇管、その上に三方コックとアルゴンガスを封入した風船をセットし、系内を真空ポンプを用いて3回、風船内のアルゴンガスで置換した。
次に、脱水トルエン120mL(広島和光社製)、ベンジルアミン4.08mL(東京化成社製)、トリ−t−ブチルホスフィン338μL(アルドリッチ社製、2.22mol/Lトルエン溶液)、をシリンジでラバーセプタムを通して加え、5分間室温で攪拌した。
次に、フラスコをオイルバスにセットし、溶液を撹拌しながら徐々に120℃まで昇温した。7時間後、オイルバスからフラスコを外して反応を終了させ、アルゴン雰囲気下、12時間放置した。
【0100】
反応溶液を分液ロートに移し、ジクロロメタン600mLを加えて沈殿物を溶解させ、飽和食塩水120mLで洗浄後、有機層を無水炭酸カリウムで乾燥した。炭酸カリウムを濾別して得られた有機層の溶媒を留去し、得られた残渣にトルエン400mL、エタノール80mLを加え、乾燥管を付けて80℃に加熱し、残渣を完全に溶解した。その後、12時間放置し、室温まで除冷することにより再結晶化させた。
析出した結晶を濾別し、60℃で真空乾燥することにより13.5gのN,N−ジ−(4−ビフェニリル)ベンジルアミンを得た。
300mLの一口フラスコに、1.35gのN,N−ジ−(4−ビフェニリル)ベンジルアミン、パラジウム−活性炭素135mg(広島和光社製、パラジウム含有量10重量%)を入れ、クロロホルム100mL 、エタノール20mLを加えて溶解した。
次に、フラスコに撹拌子を入れた後、水素ガス2Lが充填された風船を装着した三方コックをフラスコに取り付け、真空ポンプを用いてフラスコ系内を水素ガスで10回置換した。減った水素ガスを新たに充填し、水素ガスの容積を再び2Lにした後、室温で激しく溶液を撹拌した。30時間撹拌後、ジクロロメタン100mLを加え、触媒を濾別した。
次に、得られた溶液を分液ロートに移し、炭酸水素ナトリウム飽和水溶液50mLで洗浄後、有機層を分別し、無水炭酸カリウムで乾燥した。濾過後、溶媒を留去し、得られた残渣にトルエン50mLを加え、再結晶化させた。析出した結晶を濾別し、50℃で真空乾燥することにより0.99gの下記ジ−4−ビフェニリルアミン(中間体1)を得た。
【化45】

【0101】
合成例2(中間体2の合成)
アルゴン気流下、ジ−4−ビフェニリルアミン10g、4,4’−ジブロモビフェニル9.7g(東京化成社製)、ナトリウムt−ブトキシド3g(広島和光社製)、ビス(トリフェニルホスフィン)塩化パラジウム(II)0.5g(東京化成社製)及びキシレン500mLを入れ、130℃にて24時間反応した。
冷却後、水1000mLを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、4.6gの下記4’−ブロモ−N,N−ジビフェニリル−4−アミノ−1,1’−ビフェニル(中間体2)を得た。
【化46】

【0102】
合成例3(中間体3の合成)
アルゴン気流下、N−フェニル−1−ナフチルアミン6.8g(東京化成)、4,4’−ジブロモビフェニル9.7g(東京化成社製)、t−ブトキシナトリウム3g(広島和光社製)、ビス(トリフェニルホスフィン)塩化パラジウム(II)0.5g(東京化成社製)及びキシレン500mLを入れ、130℃にて24時間反応した。
冷却後、水1000mLを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、4.1gの下記4’−ブロモ−N−フェニル−N−1−ナフチル−4−アミノ−1,1’−ビフェニル(中間体3)を得た。
【化47】

【0103】
合成例4(中間体4、中間体5の合成)
m−テルフェニル250g(アルドリッチ社製)とヨウ化水素酸・二水和物50gとヨウ素75gと酢酸750mLと濃硫酸25mLを三口フラスコにいれ、70℃で3時間反応した。反応後、メタノール5Lに注入し、その後1時間撹拌した。これを濾取し、得られた結晶をカラムクロマトグラフィーを用いて精製し、アセトニトリルで再結晶し、下記5−フェニル−3−ヨードビフェニル64g(中間体4)及び下記3’−フェニル−4−ヨードビフェニル17g(中間体5)を得た。
【化48】

【0104】
合成例5(中間体6の合成)
アルゴン雰囲気下、1000mLの三つ口フラスコに2−ブロモフルオレン50g(東京化成社製)、ジメチルスルフォキシド(DMSO)100mL、塩化ベンジルトリエチルアンモニウム0.95g(広島和光社製)及び50重量%の水酸化ナトリウム水溶液65gを入れた。
この反応容器を水浴中に入れ、撹拌しながら1,5−ジブロモペンタン44g(広島和光社製)を加えた。
5時間反応後1000mLの水を加え、トルエン500mLで抽出した。有機層を硫酸マグネシウムで乾燥し、ロータリーエバポレーターで溶媒留去し、56gのオイルとして下記中間体6を得た。
【化49】

【0105】
合成例6(中間体7の合成)
合成例5において、1,5−ジブロモペンタンの代わりに、1,6−ジブロモヘキサン47g(広島和光社製)を用いた以外は同様にして反応を行ったところ、49gのオイルとして下記中間体7を得た。
【化50】

【0106】
合成例7(中間体8の合成)
アルゴン気流下、200mLの三つ口フラスコにベンズアミド(東京化成社製)5.7g、4−ブロモビフェニル(東京化成社製)10g、ヨウ化銅(I)(広島和光社製)0.82g、N,N‘−ジメチルエチレンジアミン(アルドリッチ社製)0.76g、炭酸カリウム(広島和光社製)11.8g及びキシレン60mLを入れ、130℃にて36時間反応した。
冷却後、ろ過しトルエンで洗浄した。さらに水とメタノールで洗浄した後、乾燥したところ、10.5gの淡黄色粉末として下記中間体8を得た。
【化51】

【0107】
合成例8(中間体9の合成)
アルゴン気流下、300mLの三つ口フラスコに1−アセトアミドナフタレン(東京化成社製)11.1g、4−ブロモビフェニル(東京化成社製)15.4g、ヨウ化銅(I)(広島和光社製)1.14g、N,N‘−ジメチルエチレンジアミン(アルドリッチ社製)1.06g、炭酸カリウム(広島和光社製)20.0g及びキシレン100mLを入れ、130℃にて36時間反応した。
冷却後、ろ過しトルエンで洗浄した。さらに水とメタノールで洗浄した後、乾燥したところ、15.0gの淡黄色粉末を得た。
300mLの三つ口フラスコに上記粉末15.0g、水酸化カリウム(広島和光社製)17.6g、イオン交換水15mL、キシレン(広島和光社製)20mL、エタノール(広島和光社製)10mLを入れ、36時間還流した。反応終了後、トルエンで抽出し、硫酸マグネシウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製した。トルエンで再結晶し、それを濾取した後、乾燥したところ、11.2gの白色粉末として下記中間体9を得た。
【化52】

【0108】
合成例9(中間体10の合成)
合成例8において、4−ブロモビフェニル(東京化成社製)15.4gの代わりに中間体4を25.6g用いた以外は同様に反応を行ったところ、11.3gの白色粉末として下記中間体10を得た。
【化53】

【0109】
合成例10(中間体11の合成)
合成例8において、4−ブロモビフェニル(東京化成社製)15.4gの代わりに中間体5を25.6g用いた以外は同様に反応を行ったところ、10.6gの白色粉末として下記中間体11を得た。
【化54】

【0110】
合成例11(中間体12の合成)
合成例8において、4−ブロモビフェニル(東京化成社製)15.4gの代わりに中間体7を20.6g用いた以外は同様に反応を行ったところ、11.9gの白色粉末として下記中間体12を得た。
【化55】

【0111】
合成例12(中間体13の合成)
アルゴン気流下、300mLの三つ口フラスコに中間体8を16.4g、9 −ブロモフェナントレン(東京化成社製)17.0g、ヨウ化銅(I)(広島和光社製)1.14g、N,N‘−ジメチルエチレンジアミン(アルドリッチ社製)1.06g、炭酸カリウム(広島和光社製)20.0g及びキシレン100mLを入れ、130℃にて36時間反応した。
冷却後、ろ過しトルエンで洗浄した。さらに水とメタノールで洗浄した後、乾燥したところ、14.0gの淡黄色粉末を得た。
300mLの三つ口フラスコに上記粉末14.0g、水酸化カリウム(広島和光社製)15.1g、イオン交換水13mL、キシレン(広島和光社製)17mL、エタノール(広島和光社製)9mLを入れ、36時間還流した。反応終了後、トルエンで抽出し、硫酸マグネシウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製した。トルエンで再結晶し、それを濾取した後、乾燥したところ、9.3gの白色粉末として下記中間体13を得た。
【化56】

【0112】
合成例13(中間体14の合成)
合成例12において、9−ブロモフェナントレン(東京化成社製)17.0gの代わりに中間体4を20.7g用いた以外は同様に反応を行ったところ、15.1gの白色粉末として下記中間体14を得た。
【化57】

【0113】
合成例14(中間体15の合成)
合成例12において、9−ブロモフェナントレン(東京化成社製)17.0gの代わりに中間体5を20.7g用いた以外は同様に反応を行ったところ、14.3gの白色粉末として下記中間体15を得た。
【化58】

【0114】
合成例15(中間体16の合成)
合成例12において、9−ブロモフェナントレン(東京化成社製)17.0gの代わりに中間体7を20.6g用いた以外は同様に反応を行ったところ、11.5gの白色粉末として下記中間体16を得た。
【化59】

【0115】
合成例16(中間体17の合成)
合成例12において、9−ブロモフェナントレン(東京化成社製)17.0gの代わりに中間体6を19.7g用いた以外は同様に反応を行ったところ、10.5gの白色粉末として下記中間体17を得た。
【化60】

【0116】
合成例17(中間体18の合成)
合成例12において、9−ブロモフェナントレン(東京化成社製)17.0gの代わりに2−ブロモ−9,9−ジメチルフルオレンを18.0g用いた以外は同様に反応を行ったところ、10.6gの白色粉末として下記中間体18を得た。
【化61】

【0117】
合成例18(中間体19の合成)
アルゴン気流下、200mlの三つ口フラスコにベンズアミド(東京化成社製)7.2g、中間体5を40.8g、ヨウ化銅(I)(広島和光社製)2.3g、N,N‘−ジメチルエチレンジアミン(アルドリッチ社製)2.1g、炭酸カリウム(広島和光社製)33.1g及びキシレン100mLを入れ、130℃にて36時間反応した。
冷却後、ろ過しトルエンで洗浄した。さらに水とメタノールで洗浄した後、乾燥したところ、27.0gの淡黄色粉末を得た。
300mLの三つ口フラスコに上記粉末27.0g、水酸化カリウム(広島和光社製)19.0g、イオン交換水17mL、キシレン(広島和光社製)25mL、エタノール(広島和光社製)12mLを入れ、36時間還流した。反応終了後、トルエンで抽出し、硫酸マグネシウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製した。トルエンで再結晶し、それを濾取した後、乾燥したところ、18.1gの白色粉末として下記中間体19を得た。
【化62】

【0118】
合成例19(中間体20の合成)
合成例18において、中間体5を40.8gの代わりに2−ブロモ−9,9−ジメチルフルオレンを41.3g用いた以外は同様に反応を行ったところ、15.3gの白色粉末として下記中間体20を得た。
【化63】

【0119】
合成例20(中間体21の合成)
アルゴン気流下、500mLの三つ口フラスコに1−ブロモナフタレンを28.6g、脱水エーテル80mL及び脱水トルエン80mLを入れた。−30℃にてn−ブチルリチウム/ヘキサン溶液を110mmol投入し、0℃にて1h反応した。−70℃に冷却し、70mLのホウ酸トリイソプロピルを投入し、ゆっくり室温まで昇温して1h撹拌した。10%塩酸を80mL加えたものを酢酸エチル/水で抽出した後、無水硫酸ナトリウムで乾燥した。溶液を濃縮し、ヘキサンで洗浄することでボロン酸化合物を17.5g得た。
アルゴン気流下、500mLの三つ口フラスコに上記得られたボロン酸化合物を17.5g、ブロムベンゼンを11.0g、テトラキス(トリフェニルホスフィン)パラジウム(0)を3.8g、2MのNa2CO3溶液を100mL、ジメトキシエタンを160mL入れた後、8h還流した。反応液をトルエン/水で抽出し、無水硫酸ナトリウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製することで17.6gの白色粉末として下記中間体21を得た。FD−MSの分析により、C1611Br=283に対しm/z=282、284 に1:1のピークが得られたので、下記中間体21と同定した。
【化64】

【0120】
合成例21(中間体22の合成)
合成例20において、ブロモベンゼンを20.7gの代わりに4−ブロモビフェニルを20.7g用いた以外は同様に反応を行ったところ、7.4gの白色粉末として下記中間体22を得た。FD−MSの分析により、C2215Br=359に対し、m/z=358、360 に1:1のピークが得られたので、下記中間体22と同定した。
【化65】

【0121】
合成例22(中間体23の合成)
アルゴン気流下、500mLの三つ口フラスコに1−ブロモナフタレンを20.7g、脱水エーテル80mL及び脱水トルエン80mLを入れた。−30℃にてn−ブチルリチウム/ヘキサン溶液を120mmol投入し、0℃にて1h反応した。−70℃に冷却し、70mLのホウ酸トリイソプロピルを投入し、ゆっくり室温まで昇温して1h撹拌した。10%塩酸を80mL加えたものを酢酸エチル/水で抽出した後、無水硫酸ナトリウムで乾燥した。溶液を濃縮し、ヘキサンで洗浄することでボロン酸化合物を9.7g得た。
アルゴン気流下、500mLの三つ口フラスコに上記得られたボロン酸化合物を9.7g、4−ヨードブロムベンゼンを13.3g、テトラキス(トリフェニルホスフィン)パラジウム(0)を1.9g、2Mの炭酸ナトリウム溶液を50mL、ジメトキシエタンを80mL入れた後、8h還流した。反応液をトルエン/水で抽出し、無水硫酸ナトリウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製することで8.8gの白色粉末として下記中間体23を得た。FD−MSの分析により、C1611Br=283 に対し、m/z=282、284 に1:1のピークが得られたので、下記中間体23と同定した。
【化66】

【0122】
合成例23(中間体24の合成)
合成例22において、1−ブロモナフタレンを20.7gの代わりに2−ブロモナフタレンを20.7g用いた以外は同様に反応を行ったところ、7.6gの白色粉末として下記中間体24を得た。FD−MSの分析により、C1611Br=283 に対し、m/z=282、284 に1:1のピークが得られたので、下記中間体24と同定した。
【化67】

【0123】
合成例24(中間体25の合成)
合成例22において、4−ヨードブロムベンゼンを26.5gの代わりに4'−ヨードブロムビフェニルを34.0g用いた以外は同様に反応を行ったところ10.1gの白色粉末として下記中間体25を得た。FD−MSの分析により、C2215Br=359に対し、m/z=358、360に1:1のピークが得られたので、下記中間体25と同定した。
【化68】

【0124】
合成例25(中間体26の合成)
合成例7において、4−ブロモビフェニルを10gの代わりに2−ブロモナフタレンを21.4g用いた以外は同様に反応を行った後、合成例8記載の加水分解を行ったところ、8.1gの白色粉末として下記中間体26を得た。
【化69】

【0125】
合成例26(中間体27の合成)
合成例7において、4−ブロモビフェニルを10gの代わりに中間体23を26.1g用いた以外は同様に反応を行った後、合成例8記載の加水分解を行ったところ、8.1gの白色粉末として下記中間体27を得た。
【化70】

【0126】
合成例27(中間体28の合成)
合成例2において、ジ−4−ビフェニリルアミン10gの代わりに4−アミノ−p−テルフェニルを7.6g、4,4’−ジブロモビフェニル9.7gの代わりに4−ブロモ−p−テルフェニルを9.6g用いた以外は同様に反応を行ったところ、6.2gの白色粉末として下記中間体28を得た。FD−MSの分析により、C3627N=473に対し、m/z=473の主ピークが得られたので、下記中間体28と同定した。
【化71】

【0127】
合成例28(中間体29の合成)
合成例2において、ジ−4−ビフェニリルアミン10gの代わりにアニリンを2.9g、4,4’−ジブロモビフェニル9.7gの代わりに中間体21を8.8g用いた以外は同様に反応を行ったところ、4.2gの白色粉末として下記中間体29を得た。FD−MSの分析により、C2217N=295に対し、m/z=295の主ピークが得られたので、下記中間体29と同定した。
【化72】

【0128】
合成例29(中間体30の合成)
合成例28において、中間体21を8.8gの代わりに中間体22を11.1g用いた以外は同様に反応を行ったところ、5.7gの白色粉末として下記中間体30を得た。FD−MSの分析により、C2821N=371に対し、m/z=371の主ピークが得られたので、下記中間体30と同定した。
【化73】

【0129】
合成例30(中間体31の合成)
合成例28において、中間体21を8.8gの代わりに中間体23を8.8g用いた以外は同様に反応を行ったところ、4.0gの白色粉末として下記中間体31を得た。FD−MSの分析により、C2217N=295に対し、m/z=295の主ピークが得られたので、下記中間体31と同定した。
【化74】

【0130】
合成例31(中間体32の合成)
合成例28において、中間体21を8.8gの代わりに中間体24を8.8g用いた以外は同様に反応を行ったところ、3.6gの白色粉末として下記中間体32を得た。FD−MSの分析により、C2217N=295に対し、m/z=295の主ピークが得られたので、下記中間体32と同定した。
【化75】

【0131】
合成例32(中間体33の合成)
合成例28において、中間体21を8.8gの代わりに中間体22を11.1g用いた以外は同様に反応を行ったところ、6.2gの白色粉末として下記中間体33を得た。FD−MSの分析により、C2821N=371に対し、m/z=371の主ピークが得られたので、下記中間体33と同定した。
【化76】

【0132】
合成例33(中間体34の合成)
合成例27において、4−ブロモ−p−テルフェニルを9.6gの代わりにブロモベンゼンを4.9g用いた以外は同様に反応を行ったところ、3.9gの白色粉末として下記中間体34を得た。FD−MSの分析により、C2419N=321に対し、m/z=321の主ピークが得られたので、下記中間体34と同定した。
【化77】

【0133】
合成例34(中間体35の合成)
合成例27において、4−ブロモ−p−テルフェニルを9.6gの代わりに1−ブロモナフタレンを6.4g用いた以外は同様に反応を行ったところ、3.8gの白色粉末として下記中間体35を得た。FD−MSの分析により、C2821N=371に対し、m/z=371の主ピークが得られたので、下記中間体35と同定した。
【化78】

【0134】
合成例35(中間体36の合成)
アルゴン気流下、300mLの三つ口フラスコにN−フェニル−1−ナフチルアミンを11.1g、4−ヨードブロモビフェニルを15.6g、ヨウ化銅(I)(和光純薬社製)1.9g、N,N‘−ジメチルエチレンジアミン(アルドリッチ社製)2.0g、t−ブトキシナトリウム(東京化成社製)8.6g及び脱水トルエン100mLを入れ、110℃にて8時間反応した。反応終了後、トルエンで抽出し、硫酸マグネシウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製した。トルエンで再結晶し、それを濾取した後、乾燥したところ、16.8gの白色粉末を得た。
アルゴン気流下、300mLの三つ口フラスコに上記白色粉末16.8g、脱水キシレン100mLを加え、−30℃に冷却した。n−ブチルリチウム(1.6Mヘキサン溶液)を30mL入れ1時間反応した。−70℃に冷却した後、ホウ酸トリイソプロピル(東京化成社製)を28mL入れた。ゆっくり昇温し、室温で1時間撹拌した。10%塩酸溶液32mLを加え撹拌した。酢酸エチルと水で抽出し、有機層を水で洗浄した。無水硫酸ナトリウムで乾燥し、溶媒を留去した。ヘキサンで洗浄することにより白色粉末を7.5g得た。
【化79】

【0135】
合成実施例1(化合物H1の合成)
アルゴン気流下、中間体1を3.1g、中間体3を3.6g、t−ブトキシナトリウム2.0g(広島和光社製)、ビス(トリフェニルホスフィン)塩化パラジウム(II)0.33g(東京化成社製)及びキシレン300mLを入れ、130℃にて24時間反応した。
冷却後、水500mLを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、4.1gの淡黄色粉末を得た。FD−MS(フィールドディソープションマススペクトル)の分析により、C52382=690に対し、m/z=690の主ピークが得られたので、下記化合物H1と同定した。
【化80】

【0136】
合成実施例2(化合物H2の合成)
合成実施例1において、中間体1の代わりに中間体9を3.7g用いた以外は同様に反応を行ったところ、3.1gの淡黄色粉末を得た。FD−MSの分析により、C50362=664に対し、m/z=664の主ピークが得られたので、下記化合物H2と同定した。
【化81】

【0137】
合成実施例3(化合物H3の合成)
合成実施例1において、中間体1の代わりに中間体13を4.3g用いた以外は同様に反応を行ったところ、4.1gの淡黄色粉末を得た。FD−MSの分析により、C54382=714 に対し、m/z=714 の主ピークが得られたので、下記化合物H3と同定した。
【化82】

【0138】
合成実施例4(化合物H4の合成)
合成実施例1において、中間体1の代わりに中間体10を3.6g用いた以外は同様に反応を行ったところ、3.9gの淡黄色粉末を得た。FD−MSの分析により、C56402=740 に対し、m/z=740 の主ピークが得られたので、下記化合物H4と同定した。
【化83】

【0139】
合成実施例5(化合物H5の合成)
合成実施例1において、中間体1の代わりに中間体10を3.6g、中間体3の代わりに中間体2を4.4g用いた以外は同様に反応を行ったところ、4.1gの淡黄色粉末を得た。FD−MSの分析により、C64462=842 に対し、m/z=842 の主ピークが得られたので、下記化合物H5と同定した。
【化84】

【0140】
合成実施例6(化合物H6の合成)
合成実施例1において、中間体1の代わりに中間体14を3.8g用いた以外は同様に反応を行ったところ、3.7gの淡黄色粉末を得た。FD−MSの分析により、C58422=766に対し、m/z=766の主ピークが得られたので、下記化合物H6と同定した。
【化85】

【0141】
合成実施例7(化合物H7の合成)
合成実施例1において、中間体1の代わりに中間体11を3.6g、中間体3の代わりに中間体2を4.4g用いた以外は同様に反応を行ったところ、4.8gの淡黄色粉末を得た。FD−MSの分析により、C64462=842に対し、m/z=842の主ピークが得られたので、下記化合物H7と同定した。
【化86】

【0142】
合成実施例8(化合物H8の合成)
合成実施例1において、中間体1の代わりに中間体15を3.8g用いた以外は同様に反応を行ったところ、4.8gの淡黄色粉末を得た。FD−MSの分析により、C58422=766に対し、m/z=766の主ピークが得られたので、下記化合物H8と同定した。
【化87】

【0143】
合成実施例9(化合物H9の合成)
合成実施例1において、中間体1の代わりに中間体19を4.5g用いた以外は同様に反応を行ったところ、4.2gの淡黄色粉末を得た。FD−MSの分析により、C64462=842に対し、m/z=842の主ピークが得られたので、下記化合物H9と同定した。
【化88】

【0144】
合成実施例10(化合物H10の合成)
合成実施例1において、中間体1の代わりに中間体12を3.6g用いた以外は同様に反応を行ったところ、4.2gの淡黄色粉末を得た。FD−MSの分析により、C56442=744に対し、m/z=744の主ピークが得られたので、下記化合物H10と同定した。
【化89】

【0145】
合成実施例11(化合物H11の合成)
合成実施例1において、中間体1の代わりに中間体12を3.6g、中間体3の代わりに中間体2を4.4g用いた以外は同様に反応を行ったところ、4.1gの淡黄色粉末を得た。FD−MSの分析により、C64502=846に対し、m/z=846の主ピークが得られたので、下記化合物H11と同定した。
【化90】

【0146】
合成実施例12(化合物H12の合成)
合成実施例1において、中間体1の代わりに中間体16を3.8g用いた以外は同様に反応を行ったところ、4.5gの淡黄色粉末を得た。FD−MSの分析により、C58462=770に対し、m/z=770の主ピークが得られたので、下記化合物H12と同定した。
【化91】

【0147】
合成実施例13(化合物H13の合成)
合成実施例1において、中間体1の代わりに中間体20を4.6g用いた以外は同様に反応を行ったところ、4.2gの淡黄色粉末を得た。FD−MSの分析により、C64542=850に対し、m/z=850の主ピークが得られたので、下記化合物H13と同定した。
【化92】

【0148】
合成実施例14(化合物H14の合成)
合成実施例1において、中間体1の代わりに中間体17を3.7g用いた以外は同様に反応を行ったところ、4.2gの淡黄色粉末を得た。FD−MSの分析により、C57442=756に対し、m/z=756の主ピークが得られたので、下記化合物H14と同定した。
【化93】

【0149】
合成実施例15(化合物H15の合成)
合成実施例1において、中間体1の代わりに中間体18を3.5g用いた以外は同様に反応を行ったところ、3.9gの淡黄色粉末を得た。FD−MSの分析により、C55422=730に対し、m/z=730の主ピークが得られたので、下記化合物H15と同定した。
【化94】

【0150】
合成実施例16(化合物H16の合成)
合成実施例1において、中間体1の代わりに中間体26を2.7g用いた以外は同様に反応を行ったところ、3.1gの淡黄色粉末を得た。FD−MSの分析により、C48342=638に対し、m/z=638の主ピークが得られたので、上記化合物H16と同定した。
【化95】

【0151】
合成実施例17(化合物H17の合成)
合成実施例1において、中間体1の代わりに中間体27を4.2g用いた以外は同様に反応を行ったところ、4.1gの淡黄色粉末を得た。FD−MSの分析により、C60422=790に対し、m/z=790の主ピークが得られたので、上記化合物H17と同定した。
【化96】

【0152】
合成実施例18(化合物H18の合成)
合成実施例1において、中間体1の代わりに中間体28を4.7g用いた以外は同様に反応を行ったところ、3.9gの淡黄色粉末を得た。FD−MSの分析により、C64462=842に対し、m/z=842の主ピークが得られたので、上記化合物H18と同定した。
【化97】

【0153】
合成実施例19(化合物H19の合成)
合成実施例5において、中間体10の代わりに中間体29を3.0g用いた以外は同様に反応を行ったところ、3.0gの淡黄色粉末を得た。FD−MSの分析により、C58422=766に対し、m/z=766の主ピークが得られたので、上記化合物H19と同定した。
【化98】

【0154】
合成実施例20(化合物H20の合成)
合成実施例5において、中間体10の代わりに中間体30を3.7g用いた以外は同様に反応を行ったところ、2.8gの淡黄色粉末を得た。FD−MSの分析により、C64462=843に対し、m/z=843の主ピークが得られたので、上記化合物H20と同定した。
【化99】

【0155】
合成実施例21(化合物H21の合成)
合成実施例5において、中間体10の代わりに中間体31を3.0g用いた以外は同様に反応を行ったところ、2.9gの淡黄色粉末を得た。FD−MSの分析により、C58422=766に対し、m/z=766の主ピークが得られたので、上記化合物H21と同定した。
【化100】

【0156】
合成実施例22(化合物H22の合成)
合成実施例5において、中間体10の代わりに中間体32を3.0g用いた以外は同様に反応を行ったところ、3.2gの淡黄色粉末を得た。FD−MSの分析により、C58422=766に対し、m/z=766の主ピークが得られたので、上記化合物H22と同定した。
【化101】

【0157】
合成実施例23(化合物H23の合成)
合成実施例5において、中間体10の代わりに中間体33を3.7g用いた以外は同様に反応を行ったところ、3.1gの淡黄色粉末を得た。FD−MSの分析により、C64462=843に対し、m/z=843の主ピークが得られたので、上記化合物H23と同定した。
【化102】

【0158】
合成実施例24(化合物H24の合成)
合成実施例5において、中間体10の代わりに中間体34を3.2g用いた以外は同様に反応を行ったところ、3.6gの淡黄色粉末を得た。FD−MSの分析により、C60442=793に対し、m/z=793の主ピークが得られたので、上記化合物H24と同定した。
【化103】

【0159】
合成実施例25(化合物H25の合成)
合成実施例5において、中間体10の代わりに中間体35を3.7g用いた以外は同様に反応を行ったところ、3.5gの淡黄色粉末を得た。FD−MSの分析により、C64462=843に対し、m/z=843の主ピークが得られたので、上記化合物H25と同定した。
【化104】

【0160】
合成実施例26(化合物H26の合成)
アルゴン気流下、300mLの三つ口フラスコに中間体36を3.4g、中間体2を5.4、テトラキス(トリフェニルホスフィン)パラジウム(0)を0.26g、炭酸ナトリウムを3.18g、1,2−ジメトキシエタンを50mL、水を30mLを加え8時間還流した。トルエンで抽出し、有機層を水で洗浄した。無水硫酸ナトリウムで乾燥し、溶媒を留去した。トルエン/ヘキサンで再結晶したところ3.6gの淡黄色粉末を得た。FD−MSの分析により、C58422=766に対し、m/z=766の主ピークが得られたので、上記化合物H26と同定した。
【化105】

【0161】
実施例1(有機EL素子の製造)
25mm×75mm×1.1mm厚のITO透明電極付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜厚60nmの下記化合物H232を成膜した。このH232膜は、正孔注入層として機能する。このH232膜上に正孔輸送材料として膜厚20nmの上記化合物H1層を成膜した。この膜は正孔輸送層として機能する。さらに膜厚40nmの下記化合物EM1を蒸着し成膜した。同時に発光分子として、下記のスチリル基を有するアミン化合物D1を、EM1とD1の重量比が40:2になるように蒸着した。この膜は、発光層として機能する。
この膜上に膜厚10nmの下記Alq膜を成膜した。これは、電子注入層として機能する。この後、還元性ドーパントであるLi(Li源:サエスゲッター社製)とAlqを二元蒸着させ、電子注入層(陰極)としてAlq:Li膜(膜厚10nm)を形成した。このAlq:Li膜上に金属Alを蒸着させ金属陰極を形成し有機EL素子を形成した。
また、得られた有機EL素子について、発光効率を測定し、発光色を観察した。発光効率はミノルタ製CS1000を用いて輝度を測定し、10mA/cm2における発光効率を算出した。さらに、初期輝度5000cd/m2、室温、DC定電流駆動での発光の半減寿命を測定した結果を表1に示す。
【0162】
【化106】

【0163】
実施例2〜26(有機EL素子の製造)
実施例1において、正孔輸送材料として化合物H1の代わりに表1に記載の化合物を用いた以外は同様にして有機EL素子を作製した。
【0164】
比較例1
実施例1において、正孔輸送材料として化合物H1の代わりに比較化合物1を用いた以外は同様にして有機EL素子を作製した。
【化107】

【0165】
得られた有機EL素子について、発光効率を測定し、発光色を観察し、さらに、初期輝度5000cd/m2、室温、DC定電流駆動での発光の半減寿命を測定した結果を表1に示す。
【0166】
【表1】

【0167】
実施例27(有機EL素子の製造)
実施例1において、スチリル基を有するアミン化合物D1の代わりに下記アリールアミン化合物D2を用いた以外は同様にして有機EL素子を作製した。Meはメチル基。
得られた有機EL素子について、発光効率を測定したところ5.2cd/Aであり、発光色は青色であった。さらに、初期輝度5000cd/m2、室温、DC定電流駆動での発光の半減寿命を測定したところ400時間であった。
【化108】

比較例2
実施例27において、正孔輸送材料として化合物H1の代わりに上記比較化合物1を用いた以外は同様にして有機EL素子を作製した。
得られた有機EL素子について、発光効率を測定したところ4.9cd/Aであり、発光色は青色であった。さらに、初期輝度5000cd/m2、室温、DC定電流駆動での発光の半減寿命を測定したところ230時間であった。
【0168】
以上の結果から判るように、本発明の芳香族アミン誘導体を有機EL素子の正孔輸送材料に用いた場合、公知の材料と同等の発光効率で発光させることが可能な上、長寿命化に対してきわめて有効であった。
【産業上の利用可能性】
【0169】
本発明の芳香族アミン誘導体及びそれを用いた有機EL素子は、分子が結晶化しにくく、有機EL素子を製造する際の歩留りが向上し、寿命が長い有機EL素子を提供することが可能になる。

【特許請求の範囲】
【請求項1】
下記一般式(1)で表される芳香族アミン誘導体。
A−L−B (1)
[一般式(1)において、Lは、置換もしくは無置換の核原子数5〜50のアリーレン基からなる連結基、又は、複数の置換もしくは無置換の核原子数5〜50のアリーレン基を単結合、酸素原子、硫黄原子、窒素原子又は飽和もしくは不飽和の核炭素数1〜20の2価の脂肪族炭化水素基で結合した連結基である。
Aは、下記一般式(2)で表されるジアリールアミノ基であり、
【化1】

Bは、下記一般式(3)で表されるジアリールアミノ基である。ただし、AとBは同一ではない。
【化2】

(一般式(2)及び(3)において、Ar1〜Ar4は、それぞれ独立に、置換もしくは無置換の核原子数5〜50のアリール基である。
ただし、Ar1〜Ar4のうち3つ以上は互いに異なるアリール基である。)]
【請求項2】
前記一般式(2)及び(3)において、Ar1〜Ar4の4つ全てが互いに異なるアリール基である請求項1に記載の芳香族アミン誘導体。
【請求項3】
前記一般式(3)において、Ar3及びAr4が、それぞれ独立に、下記一般式(4)で表される基である請求項1に記載の芳香族アミン誘導体。
【化3】

(一般式(4)において、Ar5は、置換もしくは無置換の核原子数5〜50のアリール基である。
mは1〜5の整数である。)
【請求項4】
前記一般式(3)において、Ar3及びAr4が、それぞれ独立に、下記一般式(5)で表される基である請求項1に記載の芳香族アミン誘導体。
【化4】

(一般式(5)において、Ar6は、置換もしくは無置換の核原子数5〜50のアリール基である。)
【請求項5】
前記一般式(2)において、Ar1が置換もしくは無置換のナフチル基である請求項4に記載の芳香族アミン誘導体。
【請求項6】
前記一般式(2)のAr2及び前記一般式(3)のAr4が、それぞれ独立に、下記一般式(4)で表される基である請求項1に記載の芳香族アミン誘導体。
【化5】

(一般式(4)において、Ar5は、置換もしくは無置換の核原子数5〜50のアリール基である。
mは1〜5の整数である。)
【請求項7】
前記一般式(2)のAr2及び前記一般式(3)のAr4が、それぞれ独立に、下記一般式(5)で表される基である請求項1に記載の芳香族アミン誘導体。
【化6】

(一般式(5)において、Ar6は、置換もしくは無置換の核原子数5〜50のアリール基である。)
【請求項8】
前記一般式(2)において、Ar1が置換もしくは無置換の核原子数10〜50の縮合環基である請求項3、4、6及び7のいずれかに記載の芳香族アミン誘導体。
【請求項9】
前記一般式(2)のAr1及び前記一般式(3)のAr3が、それぞれ独立に、置換もしくは無置換の核原子数10〜50の縮合環基である請求項1に記載の芳香族アミン誘導体。
【請求項10】
前記一般式(2)において、Ar1及びAr2が、それぞれ独立に、置換もしくは無置換の核原子数10〜50の縮合環基である請求項1に記載の芳香族アミン誘導体。
【請求項11】
前記一般式(3)において、Ar3及びAr4が同一である請求項3、4、6、7、8及び9のいずれかに記載の芳香族アミン誘導体。
【請求項12】
前記一般式(2)のAr2及び前記一般式(3)のAr4が同一である請求項3、4、6、7、8及び9のいずれかに記載の芳香族アミン誘導体。
【請求項13】
前記一般式(2)及び(3)において、Ar1〜Ar4の示すアリール基の核原子数の合計が41〜96である請求項1に記載の芳香族アミン誘導体。
【請求項14】
前記一般式(2)及び(3)において、Ar1〜Ar4の示すアリール基の核原子数の合計が45〜72である請求項1に記載の芳香族アミン誘導体。
【請求項15】
有機エレクトロルミネッセンス素子用材料である請求項1〜14のいずれかに記載の芳香族アミン誘導体。
【請求項16】
有機エレクトロルミネッセンス素子用正孔輸送材料である請求項1〜14のいずれかに記載の芳香族アミン誘導体。
【請求項17】
陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、請求項1〜14のいずれかに記載の芳香族アミン誘導体を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子。
【請求項18】
前記有機薄膜層が正孔輸送層を有し、該正孔輸送層が、請求項1〜14のいずれかに記載の芳香族アミン誘導体を単独もしくは混合物の成分として含有する請求項17に記載の有機エレクトロルミネッセンス素子。
【請求項19】
前記発光層が、アリールアミン化合物及び/又はスチリルアミン化合物を含有する請求項17に記載の有機エレクトロルミネッセンス素子。
【請求項20】
青色系発光する請求項17〜19のいずれかに記載の有機エレクトロルミネッセンス素子。

【公開番号】特開2009−24016(P2009−24016A)
【公開日】平成21年2月5日(2009.2.5)
【国際特許分類】
【出願番号】特願2008−193490(P2008−193490)
【出願日】平成20年7月28日(2008.7.28)
【分割の表示】特願2006−550693(P2006−550693)の分割
【原出願日】平成17年12月20日(2005.12.20)
【出願人】(000183646)出光興産株式会社 (2,069)
【Fターム(参考)】