説明

荷電粒子源およびシステムにおける電流増加

本発明は、チップ(504)と、ガス粒子をチップに供給するように構成された少なくとも1つのガス注入口(512a−f)と、非イオン化ガス粒子(182a−d)を吸着し、脱着するガス粒子を導いて前記チップに向けて伝播させるように配置された曲面(514)を有する素子(516)とを備える荷電粒子システムに関するものである。荷電粒子システムは、チップに接続され、チップの頂端部における電界を調整する構成された界磁分流器を備えることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、荷電粒子を生成することに関し、特に、顕微鏡システムにおいて荷電粒子を生成することに関する。
【背景技術】
【0002】
試料の結像をはじめとするさまざまな用途のため、試料を荷電粒子で露光することができる。ガス粒子をチャンバ内でイオン化することにより、荷電粒子を形成することができる。これら荷電粒子は、チャンバ内に導入したガス粒子のうちの比較的わずかな部分をイオン化することにより、形成することができる。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本開示は、概して、試料の結像をはじめとする試料特性の測定に使用するイオンビームを生成する荷電粒子システムに関する。この荷電粒子システムは、ガス粒子濃縮器を含むことができ、それにより、このシステム内に投入したガス粒子のイオン化効率を向上する。代案または追加として、荷電粒子システムは界磁分流器(field shunt)を含むことができ、界磁分流器を用いてシステム内のチップの頂端部における電界振幅を制御することができる。頂端部における電界振幅を制御することにより、イオンビーム内の平均イオンエネルギーを所望の値に調整することができる。
【課題を解決するための手段】
【0004】
概して、第1の態様において、本開示による荷電粒子源は、チップ、このチップにガス粒子を供給するように構成した少なくとも1つのガス注入口、および、非イオン化ガス粒子を吸着し、脱着するガス粒子を導いてチップに向けて伝播させるように位置決めした曲面を有する素子を備える。
【0005】
別の態様において、本開示による荷電粒子源は、チップ、このチップにガス粒子を供給するように構成した少なくとも1つのガス注入口、および、非イオン化ガス粒子を吸着し、脱着するガス粒子を導いてチップに向けて伝播させる手段を備える。
【0006】
さらなる態様において、本開示による荷電粒子源は、チップ、このチップにガス粒子を供給するように構成した少なくとも1つのガス注入口、および、チップの頂端部における電界を変更するように構成した界磁分流器を備え、界磁分流器が完全収縮位置にあるとき、電界は第1振幅を有し、界磁分流器が完全伸長位置にあるとき、電界は第1振幅よりも大きい第2振幅を有する。
【0007】
別の態様において、本開示による荷電粒子源は、(a)チップ、このチップを収容するハウジング、および、このハウジングの内部と流体連結しチップにガス粒子を供給するように構成した少なくとも1つのガス注入口、および(b)ハウジング内に配置され、チップの頂端部における電界振幅を変調するように構成した素子、を備える。この素子は、円筒部分およびこの円筒部分に取り付けた円錐部分を有することができる。円錐部分の最大内径は円筒部分の内径に相当し、円錐部分の最小内径は最大内径よりも小さい。最小内径に相当する素子の一端部は、前記チップに近接して配置することができる。
【0008】
さらなる態様において、本開示による荷電粒子源は、(a)チップ、(b)ガス粒子をチップに供給するように構成した少なくとも1つのガス注入口、および(c)非イオン化ガス粒子を吸着し、脱着するガス粒子を導いてチップに向けて伝播させるように位置決めした曲面を有する素子、を有する。
【0009】
別の態様において、本開示による荷電粒子源は、(a)チップ、およびガス粒子をチップに供給するように構成した少なくとも1つのガス注入口、(b)チップの頂端部における電界を変調するように構成した界磁分流器、および(c)界磁分流器に接続した電子制御装置、を備える。動作時、電子制御装置は、界磁分流器に電位を印加してチップの頂端部における電界を変調するように構成することができる。
【0010】
荷電粒子源の実施形態は、以下に示す特徴のうちの1つまたは複数を含むことができる。
【0011】
素子は、抽出器とすることができる。曲面は、抽出器のチップに対向する面とすることができる。代案または追加として、荷電粒子源は抽出器を含むことができ、素子はチップと抽出器との間に配置することができる。
【0012】
少なくとも1つのガス注入口は、2つまたはそれ以上のガス注入口(例えば、60またはそれ以上のガス注入口)を含むことができる。
【0013】
素子は、荷電粒子源からガス粒子を除去できるような位置に配置した複数の開口を備えることができる。
【0014】
曲面は、球面とすることができる。代案または追加として、曲面を放物面とすることができる。曲面は、180度より大きい角をなす角弧に対応する弧状面とすることができる。
【0015】
曲面は、曲面の表面法線の少なくとも50%またはそれ以上(すくなくとも90%またはそれ以上)がチップ位置で交差するように、形成する。
【0016】
動作時、チップ位置におけるガス粒子の濃度は、曲面が存在しない場合のチップ位置におけるガス粒子の濃度よりも、5%またはそれ以上(例えば、15%またはそれ以上)高い。
【0017】
動作時、ガス粒子の平均イオン化効率は、1010分の3またはそれ以上(例えば、10分の1またはそれ以上)とする。
【0018】
動作時、荷電粒子源の粒子電流は100pAまたはそれ以上とすることができ、荷電粒子源内のガス粒子の圧力は1×10−3トル以下(例えば、荷電粒子源の粒子電流を1nAまたはそれ以上、荷電粒子源内のガス粒子の圧力を5×10−5トル以下)とすることができる。
【0019】
荷電粒子源は、チップに接続されチップの頂端部における電界を調整するように構成した界磁分流器を含むことができる。界磁分流器は、荷電粒子源の軸線に平行な方向に沿って伸縮可能である。チップは第1電位とすることができ、界磁分流器を、第1電位とは異なる第2電位とする。第1電位と第2電位との差は0またはそれ以上(例えば、2kVまたはそれ以上、5kVまたはそれ以上、10kVまたはそれ以上、20kVまたはそれ以上)とすることができる。代案または追加として、第1電位と第2電位は、イオン電圧の0.25倍またはそれ以上(例えば、イオン電圧の0.5倍またはそれ以上、イオン電圧の0.75倍またはそれ以上、イオン電圧と同等またはそれ以上、イオン電圧の1.25倍またはそれ以上、イオン電圧の1.5倍またはそれ以上、イオン電圧の2倍またはそれ以上、イオン電圧の2.5倍またはそれ以上)とすることができる。
【0020】
ガス粒子は希ガス原子を含むことができる。この希ガス原子はヘリウムをふくむことができる。
【0021】
荷電粒子源は、ガス電界イオン源とすることができる。
【0022】
荷電粒子源は、チップおよび素子を収容するハウジングを備えることができる。
【0023】
界磁分流器は、完全収縮位置と完全伸長位置との間を移動するように構成した、機械的に伸縮可能な界磁分流器とすることができる。界磁分流器は、完全収縮位置に対して複数の異なる長さに伸長可能とすることができる。
【0024】
第1振幅と第2振幅との差は0V/Åまたはそれ以上(例えば、1V/Åまたはそれ以上、2V/Åまたはそれ以上、3V/Åまたはそれ以上、5V/Åまたはそれ以上、7V/Åまたはそれ以上、10V/Åまたはそれ以上)とすることができる。
【0025】
界磁分流器が完全収縮位置にあるときの第1平均イオンエネルギーと界磁分流器が完全伸長位置にあるときの第2平均イオンエネルギーとの差は、2keVまたはそれ以上(例えば、10keVまたはそれ以上)とすることができる。
【0026】
界磁分流器は、長さの異なる複数の相互交換可能な界磁分流器を含むことができ、各界磁分流器はチップのベースに連結するように構成される。
【0027】
荷電粒子源は、非イオン化ガス粒子を吸着し、脱着するガス粒子を導いてチップに向けて伝播させるように位置決めした曲面を有する素子を備えることができる。
【0028】
界磁分流器は円筒形状とすることができる。荷電粒子源は、チップを取り付けるベースを含み、ベースに取り付けた界磁分流器の第1端部における開口の最大直径は、チップの頂端部に近接する界磁分流器の第2端部における開口の最大直径よりも大きい。
【0029】
界磁分流器は、内径が一定の円筒部分および内径が変化する円錐部分を含むことができる。円錐部分は第1端部および第2端部を含み、第1端部の外径は第2端部の外径よりも大きく、第2端部は、界磁分流器のチップの頂端部に近接する端部を構成する。
【0030】
少なくとも1つのガス注入口は、素子内に形成した1つまたはそれ以上(例えば、2つまたはそれ以上、3つまたはそれ以上、4つまたはそれ以上、5つまたはそれ以上、6つまたはそれ以上、8つまたはそれ以上、10またはそれ以上、ひいてはそれ以上)のチャネルを含むことができる。
【0031】
荷電粒子源の実施形態は、以下に示す利点のうちの1つまたは複数を含むことができる。
【0032】
いくつかの実施形態において、粒子濃縮器を用いて荷電粒子源内の供給ガスのイオン化効率を向上することができる。例えば、粒子濃縮器を用いることにより、供給ガス粒子のより多くの部分を荷電粒子源内でイオン化することができる。その結果、荷電粒子源内のチップ周囲の領域における供給ガスの平均圧力を上昇させることなく、荷電粒子源の輝度を向上させることができる。さらに、粒子濃縮器を用いることで、結果として、供給ガスを導いてチップに向けて伝播させることができ、それにより、イオンビーム路上に存在する中性ガス粒子を減らすことができる。
【0033】
あるいくつかの実施形態において、供給ガス注入口の形状および配向は、コリメートされたガス流をチップに向かって配向できるように選択する。供給ガス粒子の発散は(例えば、直径に対する長さの比を約5:1またはそれ以上とした供給ガス注入口を設けることにより)調整可能であり、それにより、チップに到達する供給ガス粒子の流量を比較的多くする一方、チャンバ内のバックグラウンド圧力を比較的低く維持することが確実にできるように支援する。チップ近傍のイオン化されていない供給ガス粒子はポンピングによりチップ領域から除去することができ、これらの中性粒子がイオンビーム路に進入しないようにする。
【0034】
あるいくつかの実施形態において、粒子濃縮器および複数の供給ガス注入口を用いることにより、粒子濃縮器を設けずガス注入口が1つのみの場合に生ずる供給ガス粒子の空間分布よりも、供給ガス粒子のチップ近傍における空間分布がより均一となるようにすることができる。チップ近傍において供給ガス粒子の比較的均一な空間分布を生成することにより、例えば、チップ頂端部原子のうち、出射した1つの原子のみから抽出した荷電粒子ビームも同様の輝度を有することができる。
【0035】
いくつかの実施形態において、調節可能な界磁分流器を用いて、チップにおける特定の電界振幅を維持する一方、チップに印加される電位を調節することができる。通常、イオン源の動作時には、チップにおける電界は比較的狭い範囲に維持され、これは供給ガスの粒子がイオン化される電界振幅(例えば、3.5V/Åから4.5V/Åの範囲)に相当する。チップにおける電界振幅をこの範囲(または、通常、任意の所望の値)に維持する一方、分流器に印加する電位が変化する場合、および/または、分流器の調整可能な位置が変化する場合(例えば、分流器がチップに対して伸長または収縮する場合)は、チップに印加される電位も変化する。分流器および分流器に印加する電位のどちらか一方または両方を変更することにより、チップに印加された電位の変化は分流器を調整することにより相殺され、チップにおける電界振幅は変化しない。このような方法により、チップにおける電界振幅を調整することなく、また、電荷粒子カラム内に加速素子を追加的に設けることなく、イオン化したガス粒子のエネルギーを調整することができる。通常、加速素子は、大型で高価な絶縁体を備える。界磁分流器をこの方法で調整することにより、加速素子を不要とすることができる。
【0036】
いくつかの実施形態において、調整可能な界磁分流器の電位は、チップの電位とは異なるようにすることができる。界磁分流器に印加する電位を調整することにより、チップにおける電界をほぼ一定に維持する一方、電荷粒子カラムの素子をどれも機械的に移動させずにチップにより印加された加速電圧を調整することができる。電気的に調整可能な界磁分流器は、機械的に調整可能な界磁分流器よりも、通常、構成が簡略で、操作が容易である。
【0037】
1つまたはそれ以上の実施形態について、図面を参照して以下に詳述する。その他の特徴および利点は、発明の詳細な説明、図面、および特許請求の範囲により明らかになるであろう。
【図面の簡単な説明】
【0038】
【図1】顕微鏡システムの概略図である。
【図2】ガス電界イオン源の概略図である。
【図3】粒子濃縮器を備える荷電粒子源の概略断面図である。
【図4】表面に吸着したガス粒子の脱着の各確率を示す概略図である。
【図5】粒子濃縮器の実施形態の概略断面図である。
【図6】界磁分流器を備える荷電粒子源の概略図である。
【0039】
異なる図面における同一の参照符号は同一の要素を示す。
【発明を実施するための形態】
【0040】
一般的に、試料の検査に用いるガスイオンビーム等の荷電粒子ビームは多目的顕微鏡システムにおいて生成する。ガス電界イオン源を用いて、試料分析(例えば、画像化)に使用可能なイオンを生成する顕微鏡システムは、ガス電界イオン顕微鏡と呼ばれる。ガス電界イオン源は、チップ(チップは、一般的に、10またはそれ以下の原子を持つ頂端部を有する)を備える装置である。このチップを用いて、中性ガス種をチップ近傍(例えば、約4〜5オングストロームの距離範囲内)に引き寄せる一方、高い陽電位(例えば、抽出器(後述の記載を参照)に対して0kVまたはそれ以上)をチップの頂端部に印加する。いくつかの実施形態において、チップは導電性とすることができる。
【0041】
図1に、ガス電界イオン顕微鏡システム100を示す。ガス電界イオン顕微鏡システムは、ガス源110、ガス電界イオン源120、イオン光学系130、試料マニピュレータ140、正面検出器150、裏面検出器160、および電子制御システム170(例えば、コンピュータ等の電子プロセッサ)を備える。電子制御システムは、通信線172a〜172fを介してシステム100内の各コンポーネントに接続される。試料180は、イオン光学系130と検出器150,160との間の試料マニピュレータ140内または試料マニピュレータ上に載置する。使用時は、イオン光学系130を介してイオンビーム192を試料180の表面181に導き、このイオンビーム192が試料180と相互作用することにより発生する粒子194を検出器150および/または160により測定する。
【0042】
図2に示すように、ガス源110は、1種類またはそれ以上の種類のガス182をガス電界イオン源120に供給するように構成する。ガス源110は、(1種類またはそれ以上の種類の)ガス182を、さまざまな純度、流量、圧力、および温度で供給するように構成することもできる。一般に、ガス源110により供給するガスのうち少なくとも1種類は希ガス(ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、またはキセノン(Xe))であり、この希ガスのイオンをイオンビーム192の主要構成要素とすることが望ましい。
【0043】
選択肢として、ガス源110は、(1種類またはそれ以上の種類の)希ガスに加え、1種類またはそれ以上の種類のガスを付加的に供給することができる。そのようなガスとして、例えば、窒素が挙げられる。一般的に、この付加的な(1種類またはそれ以上の種類の)ガスは、(1種類またはそれ以上の種類の)希ガス中の不純物レベルを超えて存在することができるが、この付加的な(1種類またはそれ以上の種類の)ガスは、ガス源110から導入した混合ガス全体の少数成分を構成する。
【0044】
ガス電界イオン源120は、ガス源110からの1種類またはそれ以上の種類のガス182を受け入れ、これらの(1種類またはそれ以上の種類の)ガス182からガスイオンを生成するように構成する。ガス電界イオン源120は、チップ頂端部187を有するチップ186、抽出器190、および、任意選択の抑制器188を備える。
【0045】
チップ186は導電性とすることができ、種々の材料で形成することができる。いくつかの実施形態において、チップ186を金属(例えば、タングステン(W)、タンタル(Ta)、イリジウム(Ir)、レニウム (Rh)、ニオブ(Nb)、白金(Pt)、モリブデン(Mo))で形成する。いくつかの実施形態において、導電性のチップ186を合金で形成することもでき、いくつかの実施形態においては、導電性のチップ186を別の材料(例えば、炭素(C))で形成することもできる。
【0046】
使用時は、チップ186を抽出器190に対して正に(例えば、約20kV)バイアスし、抽出器190を外部接地に対して正または負に(例えば、−20kV〜+50kV)バイアスし、任意選択の抑制器188をチップ186に対して正または負に(例えば、−5kV〜+5kV)バイアスする。チップ186を導電性材料で形成した場合、チップ186のチップ頂端部187における電界は、チップ頂端部187の表面から外側に向かう。チップ186の形状により、チップ頂端部187近傍において電界は最も強くなる。チップ186の電界強度は、例えば、チップ186に印加する正電圧を変化させることにより調整可能である。このような構成により、ガス源110からの供給ガス182の非イオン化ガス原子がイオン化され、チップ頂端部187近傍において正電荷を持つイオンとなる。この正電荷を持つイオンは、同時に、正に帯電したチップ186からはじかれて、負に帯電した抽出器190に引き寄せられ、正電荷を持つイオンがイオンビーム192としてチップ186からイオン光学系130に導かれる。抑制器188の支援の下、チップ186と抽出器190との間の電界全体を制御し、および、その結果、チップ186からイオン光学系130に至る、正電荷を持つイオンの軌道を制御する。一般に、チップ186と抽出器190との間の電界全体を調整することにより、チップ頂端部187における正電荷を持つイオンの生成速度および、正電荷を持つイオンがチップ186からイオン光学系130まで移動する際の効率を制御することができる。
【0047】
通常、イオン光学系130は、イオンビーム192を試料180の表面181に導くように構成する。イオン光学系130は、例えば、ビーム192内のイオンを集束、コリメート、偏向、加速、および/または減速することができる。イオン光学系130は、また、イオンビーム192内の一部のイオンのみをイオン光学系130に通過させることもできる。通常、イオン光学系130は、所望に応じて構成した種々の静電イオン光学素子およびその他のイオン光学素子を備える。イオン光学系130内の1つまたはそれ以上のコンポーネント(例えば、静電偏向器)の電界強度を操作することにより、試料180の表面181を横切ってイオンビーム192を走査することができる。例えば、イオン光学系130には、イオンビーム192を2つの直交する方向に偏向する2つの偏向器を備えることができる。これらの偏向器はさまざまな電界強度を有することができ、イオンビーム192を表面181の領域の端から端までラスタ走査(raster)する。
【0048】
イオンビーム192を試料180上に作用させて、さまざまな異なる種類の粒子194を生成することができる。これらの粒子は、例えば、二次電子、オージェ電子、二次イオン、二次中性粒子、一次中性粒子、散乱イオンおよび光子(例えば、X線光子、赤外(IR)光子、可視光子、紫外(UV)光子)等を含む。検出器150および160を配置して、それぞれ、イオンビーム192と試料180の相互作用により発生する1種類またはそれ以上の種類の粒子を測定するように構成する。図1に示すように、検出器150は、試料180の表面181から主に発生する粒子194を検出する位置に配置し、検出器160は、試料180の表面183から主に出現する粒子194(例えば、通過粒子)を検出する位置に配置する。一般に、本明細書に開示する顕微鏡システムにおいて用いることのできる検出器の数および構成は任意である。いくつかの実施形態において、複数の検出器を用い、その複数の検出器のうちのいくつかは、異なる種類の粒子を測定するように構成される。あるいくつかの実施形態において、検出器は、同じ種類の粒子について異なる情報(例えば、粒子のエネルギー、所与の粒子の角度分布、所与の粒子の全存在量)を提供するように構成される。任意で、そのような検出器の構成を組み合わせて利用することもできる。
【0049】
一般に、検出器により測定した情報を用いて、試料180に関する情報を決定する。通常、この情報は、試料180の1つまたはそれ以上の画像を取得することにより決定する。イオンビーム192で表面181を横断的にラスタ走査することにより、試料180に関する画素ごとの情報を別個の各ステップにおいて得ることができる。検出器150および/または160は、各画素において、1つまたはそれ以上の異なる種類の粒子194を検出するように構成することができる。
【0050】
顕微鏡システム100の動作は、通常、電子制御システム170により制御する。例えば、ガス源110から供給された(1種類または複数の種類の)ガス、チップ186の温度、チップ186の電位、抽出器190の電位、抑制器188の電位、イオン光学系130のコンポーネントの設置、試料マニピュレータ140の位置、および/または検出器150ならびに160の位置と設定を制御するように、電子制御システム170を構成することができる。選択肢として、1つまたはそれ以上のこれらのパラメータを手作業で(例えば、電子制御システム170と一体化したユーザインターフェースを介して)制御することができる。追加または代案として、電子制御システム170を(例えば、コンピュータ等の電子プロセッサを介して)用いて、検出器150および160により収集した情報を分析し、試料180に関する情報(例えば、トポグラフィ情報、材料構成情報、結晶情報、電圧コントラスト情報、光学特性情報、磁気情報)を提供することができる。これらの情報は、選択肢として、画像、グラフ、表、集計表(スプレッドシート)等として提供されうる。通常、電子制御システム170は、ディスプレイまたはその他の種類の出力装置、入力装置、記憶媒体として構成した、ユーザインターフェースを含む。
【0051】
あるいくつかの実施形態において、電子制御システム170は、イオンビーム192のさまざまな特性を制御するように構成される。例えば、制御システム170は、ガス電界イオン源120に流入するガスの流れを規制することにより、イオンビーム192の組成を制御することができる。イオン源120およびイオン光学系130内のさまざまな電位を調整することにより、制御システム170は、イオンビーム192のその他の特性、例えば、イオンビームの試料180上における位置および入射イオンの平均エネルギー等を制御することができる。
【0052】
図1に検出器150および160を概略的に示す。検出器150は、試料180の表面181(イオンビームが作用する表面)からの粒子を検出する位置に配置され、検出器160は、試料180の表面183からの粒子を検出する位置に配置される。一般に、顕微鏡システム200において、多種多様のさまざまな検出器を用いて、異なる粒子を検出し、顕微鏡システム200は、通常、所望する任意の数の検出器を備えることができる。これらさまざまな検出器の構成は、測定対象粒子および測定条件に応じて選択可能である。いくつかの実施形態において、スペクトル分解検出器を用いることができる。そのような検出器は、異なるエネルギーおよび/または波長の粒子を検出すること、および、各検出粒子のエネルギーおよび/または波長に基づいてこの粒子を分解することができる。
【0053】
イオンビームシステムおよび方法は、概して、例えば、米国特許出願公開第2007/0158558号明細書に開示されており、その開示は参照により本明細書に完全に援用される。
【0054】
ある荷電粒子システムにおいては、供給ガス182のイオン化効率が比較的低いことがある。例えば、いくつかの実施形態において、約1010に1つのガス粒子がイオン化されてイオンビーム192を形成する。このようなイオン化効率により、荷電粒子システムにおいて利用可能なイオンビーム電流および輝度が制限されてしまうことがある。
【0055】
荷電粒子システムにより生成したイオンビームで試料を露光し、その試料の1つまたはそれ以上の特性を測定するとき、その測定時間の一部は、利用可能なイオンビーム電流に応じて決まる。イオンビーム電流が増加すると、通常、荷電粒子源の輝度が高くなり、測定回数(例えば、画像取得回数)が減少し、イオンビームをより広い用途に利用することができるようになる。一般的に、輝度がより高い荷電粒子源を用いると、解像度がより高い画像を得ることができる。
【0056】
イオンビーム電流(および荷電粒子源の輝度)を増加させるには、荷電粒子システム内の供給ガス182の圧力を(例えば、追加的なガス粒子を供給することにより)上昇することができる。しかしながら、荷電粒子源内でガスの圧力を上昇すると、望ましくない結果をもたらすことがある。すなわち、非イオン化ガス粒子からイオンビームが散乱してしまう、非イオン化ガス粒子が試料表面に吸着してしまう、またより多くの場合には、所望の供給ガスに関連するガス状の不純物が多量に導入されてしまう、といった結果をもたらすことがある。
【0057】
イオンビーム電流および源の輝度を増加するための別の手法としては、粒子濃縮器を介して供給ガスのイオン化効率を向上することができる。図3は、粒子濃縮器を備えた荷電粒子源500の概略断面図である。源500は、頂端部を含むチップ504を支持するベース502を備える。抽出器506をチップ504に近接して配置し、このチップは矢印510で示す方向に沿って伝播するイオンビームを生成する。レンズ508を、伝播方向に沿って抽出器506の後に配置する。
【0058】
源500は、供給ガス182をチップ504近傍に導入する複数のガス注入口512a〜512fを備える。供給ガスの粒子がチップ504の頂端部周囲のイオン化領域に進入すると、ガス粒子はイオン化され、チップ504に印加した高い正電位により加速されてチップ504から離れ、ここで加速されたイオンはイオンビーム192の一部を構成する。源500は、また、非イオン化ガス粒子を源500から除去するのに使用するガス排気口507(図3において、抽出器506に形成した開口として実装される)を備える。
【0059】
複数のガス注入口512a〜512fを用いることにより、チップ504の頂端部付近において供給ガス182を比較的均一に分散することができる。通常、チップ504の頂端部は1〜20の原子を含み、このチップ原子のうちいずれか1つの原子近傍において発生したイオンによってのみイオンビーム192を生成することができる。その他のチップ原子から発生したイオンは、源500内のフィルタ素子(図3には図示せず)および/またはイオン光学系130の1つまたはそれ以上の素子を用いて遮断することができる。チップ504の頂端部付近において供給ガス182を比較的均一に分散することにより、各チップ原子から発生したイオンビームは同様のイオンビーム電流(および/または輝度)を有することができる。
【0060】
図3には、供給ガス182をチップ504近傍に導入する6つのガス注入口512a〜512fを示す。しかしながら、一般に、供給ガス182の供給に用いるガス注入口の数は任意とすることができる。いくつかの実施形態において、ガス注入口の数は、1つまたはそれ以上(例えば、2つまたはそれ以上、4つまたはそれ以上、6つまたはそれ以上、8つまたはそれ以上、10またはそれ以上、15またはそれ以上、20またはそれ以上、30またはそれ以上、40またはそれ以上、50またはそれ以上、60またはそれ以上、70またはそれ以上、80またはそれ以上、90またはそれ以上)とすることができる。先に述べたように、複数のガス注入口を用いることで、チップ504の頂端部付近においてガス粒子を比較的均一に分散することができる。
【0061】
あるいくつかの実施形態において、チップ頂端部原子のうちの1つから発生した最大電流と、その他のチップ頂端部原子のうちの別の1つから発生した最小電流との差は、10nAまたはそれ以下(例えば、1nAまたはそれ以下、100pAまたはそれ以下、1pAまたはそれ以下、1fAまたはそれ以下)である。
【0062】
いくつかの実施形態において、チップ頂端部原子のうちの1つにおけるガス粒子をイオン化することにより発生したイオンビームの最大輝度と、その他のチップ頂端部原子のうちの別の1つにおけるガス粒子をイオン化することにより発生したイオンビームの最小輝度との差は、1011A/cm−srまたはそれ以下(例えば、1010A/cm−srまたはそれ以下、10A/cm−srまたはそれ以下、10A/cm−srまたはそれ以下、10A/cm−srまたはそれ以下、10A/cm−srまたはそれ以下)である。
【0063】
先に述べたように、荷電粒子源500の動作時には、供給ガス182粒子の大部分は、イオン化できるほどチップ504の近くを通過しないため、無駄になってしまう。供給ガス182のイオン化効率を向上するため、源500は粒子濃縮器を備える。図3において、粒子濃縮器は、抽出器506の、チップ504に対向する曲面514として実装される。
【0064】
曲面514は、荷電粒子源500内の供給ガス182のイオン化効率を向上するような形状とする。粒子濃縮器を持たない源500に供給ガス182を導入した場合、チップ504の頂端部周囲のイオン化領域を通過しないガス粒子はチップ504から離れて伝播し、最終的にはポンピングにより源500から除去されてしまう。
【0065】
一方、粒子濃縮器存在下では、源500を最初に通過するときにチップ504の頂端部周囲のイオン化領域を通過しないガス粒子のうちのいくつかは面514に吸着する。図3に、曲面514に吸着したガス粒子182a〜182dを示す。各吸着粒子182a〜182dは、その後、面514から脱着し、チップ504の方向へ伝播することができ、源500をもう一度通過する。源500を2回目に通過する際は、脱着したガス粒子のごく一部がチップ504のイオン化領域を通過してイオン化され、イオンビーム192の一部を構成する。
【0066】
非イオン化ガス粒子を、面514において繰り返し吸着および脱着することができる。このプロセスの結果、供給ガス182のイオン化効率が向上し、粒子濃縮器を持たない類似システムと比べ、イオンビーム192のビーム電流全体(および/またはイオンビーム192の輝度)が増加する。
【0067】
面514は、通常、チップ504の頂端部方向へのガス粒子の脱着を促進するような形状とする。図4に、面514に吸着したガス粒子182aの脱着の各確率516a〜516hを例示的に示す。同図において、各矢印の長さは、その矢印で示す方向への粒子182aの脱着確率に相当する。図4に示すように、あるいくつかの実施形態においては、脱着は順方向(例えば、面514の法線方向)に向かって起こる確率が一番高い。
【0068】
いくつかの実施形態において、面514は、面514上の各点における表面法線がチップ504の頂端部の位置で略交差するような形状とする。より一般的には、面514は、面514の表面法線の少なくとも20%またはそれ以上(例えば、30%またはそれ以上、40%またはそれ以上、50%またはそれ以上、60%またはそれ以上、70%またはそれ以上、80%またはそれ以上、90%またはそれ以上)がチップ504の頂端部の位置で略交差するような形状とする。
【0069】
あるいくつかの実施形態において、面514を球面とする。いくつかの実施形態において、面514を放物面とする。より一般的には、面514は、規則的形状および不規則形状の両方を含むさまざまな形状とすることができ、チップ504の頂端部近傍におけるガス粒子182の濃度を上昇させる。さらに、面514は、源500を1回またはそれ以上(例えば、2回またはそれ以上、3回またはそれ以上、4回またはそれ以上、5回またはそれ以上)通過する供給ガス182粒子を吸着するような形状とすることができ、各通過ごとに粒子が面514に吸着して、その後脱着し、チップ504の方向へと伝播することができるようにする。
【0070】
いくつかの実施形態において、表面514を弧状面とし、30度またはそれ以上(例えば、60度またはそれ以上、90度またはそれ以上、120度またはそれ以上、150度またはそれ以上、180度またはそれ以上、210度またはそれ以上、240度またはそれ以上、270度またはそれ以上)の角弧に対応するものとすることができる。
【0071】
あるいくつかの実施形態において、面514は、複数の平面セグメントにより形成することができる。例えば、面514は、結合して階段状の面を形成する複数の面セグメントを含む。隣接する面セグメントは互いに直交させることができ、階段状の面514を形成する。代案または追加として、面514の段差のいくつかまたは全部を、互いに直交しない隣接する面セグメントで構成することができる。例えば、面514を、角度をなす複数の面セグメントにより形成し、各面セグメントを平面とする。この場合、複数の部分のうち隣接する面セグメントはいずれも直交せず、角度をなす複数の面セグメントが組み合わさって、曲面(例えば、球面および/または放物面)の湾曲に近似した、それぞれが平坦であり次第に傾斜する一連のセグメントを有する面514を形成することもできる。面514は、より一般には、任意の数の表面セグメント(例えば、2つの表面セグメント、3つの表面セグメント、5つの表面セグメント、8つの表面セグメント、12の表面セグメント、16の表面セグメント、20の表面セグメント、ひいては、20またはそれ以上の表面セグメント)を含むことができる。表面セグメントは、一般に、任意の所望の規則的な形状または不規則形状および/または湾曲を有する曲面を近似するような方向に配向することができる。
【0072】
いくつかの実施形態において、面514を、チップ504の頂端部方向へガス粒子の脱着を促進するように配向した単独の平面とすることができる。さらに、一般に、面514は非平坦な部分および平坦な部分の両方を含むことができ、通常、チップ504の頂端部方向へのガス粒子の脱着を促進するような任意の位置に配置する。
【0073】
ガス注入口512a〜512fは、図3において、抽出器506の上方に配置する。いくつかの実施形態において、ガス注入口は、抽出器506内のチャネルとして形成することができ、このチャネルにより供給ガス182をチップ504に供給する。図5に、複数のチャネル513a〜513fを備える抽出器506の実施形態を示す。複数のチャネルは抽出器内に形成され、供給ガス182をチップに向けて導くように配向される。図5には、6つのチャネルを示すが、一般に、抽出器506が備えるガス導入用のチャネルの数は任意とすることができる。チャネル513a〜513fを抽出器506内に配置することにより、ガス注入口をそれ以外の配置とした場合と比べ、供給ガスをより効率的にチップ504に導くことができる。特に、シャドウイング効果、すなわち、供給ガス182の導入軌道がチップ504の表面の略接線となるときに生ずる効果であって、供給ガスのイオン化効率を低下させることがある効果を低減および/または排除することができる。
【0074】
いくつかの実施形態において、このシャドウイング効果を回避し、供給ガスの効率的なイオン化効率を向上するため、ガスチャネル(例えば、チャネル513a〜513fのうちのいずれか1つ)の軸線とイオンビーム伝播方向(例えば、矢印510で示す)との間の角度αを60度またはそれ以下(例えば、50度またはそれ以下、40度またはそれ以下、30度またはそれ以下、20度またはそれ以下、10度またはそれ以下)とする。
【0075】
粒子濃縮器(例えば、曲面514)は、チップ504の頂端部近傍におけるガス粒子182の濃度を上昇させることにより、源500内の供給ガス182のイオン化効率を向上させる。いくつかの実施形態において、粒子濃縮器により、チップ504の頂端部近傍における供給ガス182の濃度を上昇させ、粒子濃縮器が存在しない場合にチップ504の頂端部近傍に生じうる供給ガス182の濃度に対し、1%またはそれ以上(例えば、2%またはそれ以上、3%またはそれ以上、5%またはそれ以上、10%またはそれ以上、15%またはそれ以上、20%またはそれ以上、25%またはそれ以上、30%またはそれ以上、40%またはそれ以上、50%またはそれ以上、75%またはそれ以上、ひいてはそれ以上)上昇させるようにする。
【0076】
あるいくつかの実施形態において、粒子濃縮器を用いることにより、源500における供給ガスイオン化の平均効率は、1010分の2またはそれ以上(例えば、1010分の3またはそれ以上、1010分の4またはそれ以上、1010分の5またはそれ以上、1010分の6またはそれ以上、1010分の8またはそれ以上、10分の1またはそれ以上、10分の5またはそれ以上、10分の1またはそれ以上、ひいてはそれ以上)となる。供給ガスのイオン化効率を向上させることにより、源500に供給するガス粒子を増加しなくとも、イオンビーム192のイオン電流および/または輝度をさらに増加させることができる。
【0077】
いくつかの実施形態において、イオンビーム192中のイオンビーム電流は、1fAまたはそれ以上(例えば、100fAまたはそれ以上、1pAまたはそれ以上、100pAまたはそれ以上、1nAまたはそれ以上、100nAまたはそれ以上)である。イオンビームの平均電流が増加するにつれ、その他のイオンビーム特性(例えば、スポットサイズ)が比較的一定であれば、通常、イオン源の輝度も上昇する。
【0078】
あるいくつかの実施形態において、源500内における供給ガス182の圧力は、1×10−7トルまたはそれ以上(例えば、5×10−7トルまたはそれ以上、1×10−6トルまたはそれ以上、5×10−6トルまたはそれ以上、1×10−5トルまたはそれ以上)および/または5×10−3トルまたはそれ以下(例えば、1×10−3トルまたはそれ以下、5×10−4トルまたはそれ以下、1×10−4トルまたはそれ以下、5×10−5トルまたはそれ以下)である。
【0079】
いくつかの実施形態において、粒子濃縮器を、抽出器506の曲面として実装する以外の別の方法で実装することができる。例えば、あるいくつかの実施形態において、粒子濃縮器を、源500内におけるチップ504と抽出器506との間に配置した付加的な素子の曲面として実装することができる。いくつかの実施形態において、この付加的な素子には電位が印加され、付加的な素子は、レンズ、偏向器、またはその他のタイプの荷電粒子光学素子として機能する。
【0080】
あるいくつかの実施形態において、源500は、チップ504により生成され電界を調整して粒子182を加速する素子を備えることができる。チップ電界を制御することにより、イオンビーム192内のイオンの平均エネルギーを調整することができる。
【0081】
図6に、調整可能な界磁分流器を備える荷電粒子源600の一部を示す。界磁分流器は、源のチップにおける電界振幅を制御する。源600は、ベース502およびチップ504を備え、チップは高圧フィードスルー503を介してベース502上に搭載される。抽出器506はチップに近接して配置する。調整可能な界磁分流器602もベース502上に配置し、界磁分流器は、収縮位置(図6において実線で示す)と伸長位置(点線で示す)との間で伸縮可能である。
【0082】
図6に示すように、いくつかの実施形態においては、界磁分流器602は円筒形状とすることができる。ベース502に取り付けた界磁分流器602の端部には、開口を設ける。この開口の最大直径は、界磁分流器602の他端部(この他端部は、例えば、チップ504の頂端部に近接する)における開口の最大直径よりも大きい。界磁分流器602は、内径が一定の円筒部分、および、この円筒部分に取り付けた、内径が変化する円錐部分を含む。円錐部分の内径は先細り(テーパ)して、界磁分流器のチップ504に近接する端部に、最大直径が小さい開口を形成する。図6に示すように、界磁分流器602のチップ504に最も近接する端部の外径は、界磁分流器602の円筒部分の外径よりも小さい。
【0083】
あるいくつかの実施形態において、界磁分流器602は、円筒以外の形状とすることができる。例えば、分流器602を円錐形状とすることができる。いくつかの実施形態において、分流器602は、分流器表面に形成した複数の段部を含むことができる。段部は、互いに直交または非直交となるように配向した隣接する平面セグメントで形成することができる。これら平面セグメントの集合により、例えば、連続面を近似する分流器面を形成することができる。
【0084】
いくつかの実施形態においては、界磁分流器602をベース502に取り付けない。例えば、界磁分流器602を荷電粒子源内の別の面に取り付けることができる。分流器を取り付ける面は、導電面または非導電面とすることができる。電荷を、直接または分流器602を連結した面を介して、分流器602に印加し、チップ504の電界振幅を調整することができる。
【0085】
動作時には、電子制御システム170により、比較的大きい正電位(例えば、約30kV)をチップ504に印加する。いくつかの実施形態において、界磁分流器602はチップ504と電気的に接続され、したがって、チップ504と同電位に維持される。チップ504の頂端部における電界振幅を調整するため、分流器602をチップ504に対し機械的に伸長または収縮させる。例えば、電界振幅を減少するには、分流器602を収縮してチップ504に近づけて配置することができる。逆に、電界振幅を増加するには、分流器602を伸長してチップ504から遠ざけて配置することができる。
【0086】
いくつかの実施形態において、分流器602の、完全収縮位置から完全伸長位置までの荷電粒子源の軸線に沿って測定される最大延伸域は、0.5mmまたはそれ以上(例えば、1.0mmまたはそれ以上、2.0mmまたはそれ以上、3.0mmまたはそれ以上、5.0mmまたはそれ以上、7.0mmまたはそれ以上、10mmまたはそれ以上、25mmまたはそれ以上)である。
【0087】
一般的に、動作時には、チップ504の頂端部において特定の最小電界振幅を維持してガス粒子をイオン化し、界磁分流器602を調整して(この調整は例えば、システムオペレータからの指示を受けることのできる電子制御システム170により行う)、チップ504の頂端部における電磁振幅を維持する。最小電界振幅は、粒子のイオン化に不可欠な臨界電界振幅(例えば、約4.4V/オングストローム)に相当するものとすることができ、界磁分流器602を用いて電界振幅を選択的にわずかずつ増加または減少することができる。一般に、動作時には、チップ504において生じたイオンは、チップ504と抽出器506との間の電位差により加速する。この加速したイオンのエネルギーを調整するため、チップ504に印加する電位を変化させて、チップ504と抽出器506との間の電位差を変更する。しかしながら、チップ504に印加する電位を変化すると、チップ504の頂端部における電界振幅も変化する。チップ504の頂端部における電界振幅の選択値を維持するため、この電界振幅の変化を相殺するように界磁分流器602を調整することができる。すなわち、分流器602を適切に調整することにより、イオンエネルギーを制御するためチップ504に印加する電位を変化させたときにも、チップ504の頂端部における電界振幅の選択値を維持することができる。このようにして、源600において1つまたはそれ以上の加速段を用いなくても、荷電粒子エネルギーを制御することができる。特に、分流器602を用いることにより、荷電粒子源は、イオンをさらに高エネルギーに加速することができるとともに、チップ504の頂端部における選択した電界振幅を維持することができる。
【0088】
界磁分流器を用いることにより、荷電粒子源600の電気的サブシステムを安定させることができる。例えば、界磁分流器を含まない粒子源においては、チップ504および抽出器506はどちらも、2つの高圧電源が組み合わされることにより、大きい正電荷に維持される。抽出器506の電位を維持するため、この2つの高圧電源は相互に接続される。このような構成においては、これら高圧電源のどちらか一方により供給される電圧のわずかな変化(例えば、リップル)であっても、荷電粒子源600の全体的な安定性(例えば、イオンビーム192電流の変動)に著しく影響する。一方、界磁分流器602を用いることにより、第2高圧電源が省略され、供給電圧のばらつきを抑制し、源600の構成および動作を簡略化することができる。
【0089】
いくつかの実施形態においては、界磁分流器602を機械的に伸縮可能としない。代わりに、荷電粒子源600には、長さがそれぞれ異なる複数の界磁分流器を設けることができる(その長さは、例えば、チップ504に対する界磁分流器の種々の伸縮長さにそれぞれ相当する長さとする)。チップ504の頂端部近傍における電界振幅を選択するには、適切な長さの界磁分流器を選択して用い、支持体(例えば、ベース502、または荷電粒子源内の別の支持体)にクランプして、チップ504と電気的に接続する。チップ504における電界振幅は、異なる長さの界磁分流器を選択することにより、調整することができる。
【0090】
あるいくつかの実施形態において、界磁分流器(例えば、伸縮可能な界磁分流器602または固定長の界磁分流器のどちらか一方)の電位を、チップ504の電位とは異なるものとすることができる。界磁分流器に印加する電位を電子制御システム170によって変化させ、特に、チップ504と抽出器506との間の電位差が変化したときに、チップ504の頂端部近傍の電界振幅をさらに制御および/または維持することができる。いくつかの実施形態において、分流器の電位を変化させることにより、分流器を機械的に調整する(例えば、分流器602を伸長または収縮する、または異なる長さの分流器を選択する)ことなしに、チップ504の頂端部における電界振幅を調整または維持することができる。
【0091】
いくつかの実施形態において、チップ504に印加した電位と、界磁分流器に印加した電位との差は、0Vまたはそれ以上(例えば、100Vまたはそれ以上、500Vまたはそれ以上、1kVまたはそれ以上、2kVまたはそれ以上、)および/または7kVまたはそれ以下(例えば、6kVまたはそれ以下、5kVまたはそれ以下、4kVまたはそれ以下、3kVまたはそれ以下)である。
【0092】
いくつかの実施形態において、チップ504に印加した電位と、界磁分流器に印加した電位との差は、イオン電圧の0.25倍以上(例えば、イオン電圧の0.5倍以上、イオン電圧の0.75倍以上、イオン電圧と同等またはそれ以上、イオン電圧の1.25倍以上、イオン電圧の1.5倍以上、イオン電圧の2倍以上、イオン電圧の2.5倍以上)とすることができる。
【0093】
いくつかの実施形態において、分流器602に第1電位を印加することによりチップ504の頂端部に印加された電位と、分流器602に第2電位を印加することによりチップ504の頂端部に印加された電位との差は、0V/Åまたはそれ以上(例えば、1V/Åまたはそれ以上、2V/Åまたはそれ以上、3V/Åまたはそれ以上、4V/Åまたはそれ以上、5V/Åまたはそれ以上、6V/Åまたはそれ以上、8V/Åまたはそれ以上、10V/Åまたはそれ以上)および/または20V/Åまたはそれ以下(例えば、18V/Åまたはそれ以下、16V/Åまたはそれ以下、14V/Åまたはそれ以下、12V/Åまたはそれ以下)とすることができる。いくつかの実施形態において、分流器602に第1電位を印加したときのチップ504の頂端部における電界振幅と、分流器602に第2電位を印加したときのチップ504の頂端部における電界振幅にとの比は、1.0またはそれ以上(例えば、1.2またはそれ以上、1.5またはそれ以上、2.0またはそれ以上、3.0またはそれ以上、5.0またはそれ以上、10.0またはそれ以上)である。
【0094】
いくつかの実施形態において、分流器602が完全収縮位置にあるときのチップ504の頂端部における電界振幅と、分流器602に完全伸長位置にあるときのチップ504の頂端部における電界振幅との差は、0V/Åまたはそれ以上(例えば、1V/Åまたはそれ以上、2V/Åまたはそれ以上、3V/Åまたはそれ以上、4V/Åまたはそれ以上、5V/Åまたはそれ以上、6V/Åまたはそれ以上、8V/Åまたはそれ以上、10V/Åまたはそれ以上)および/または20V/Åまたはそれ以下(例えば、18V/Åまたはそれ以下、16V/Åまたはそれ以下、14V/Åまたはそれ以下、12V/AÅまたはそれ以下)である。いくつかの実施形態において、分流器602が完全伸長位置にあるときのチップ504の頂端部における電界振幅の、分流器602が完全収縮位置にあるときのチップ504の頂端部における電界振幅に対する比は、1.0またはそれ以上(例えば、1.2またはそれ以上、1.5またはそれ以上、2.0またはそれ以上、3.0またはそれ以上、5.0またはそれ以上、10.0またはそれ以上)である。
【0095】
コンピュータハードウエアおよびソフトウエア
概して、上記の方法、すなわち、供給ガスの荷電粒子源への供給の調整、界磁分流器の機械的調整、および、チップ、界磁分流器、および抽出器等の素子に印加する電位の調整を含む上記の方法はいずれも、コンピュータハードウエアまたはソフトウエア、またはその両方の組み合わせにおける電子制御システム170として実装することができる。これらの方法は、本明細書に記載の方法および図面に沿った標準的なプログラム技術を用いるコンピュータプログラムとして実装することができる。プログラムコードを用いてデータを入力し、本明細書に記載の機能を実行し出力情報を生成する。この出力情報を、ディスプレイモニター等の1つまたはそれ以上の出力装置に適用する。各プログラムは、コンピュータシステムと通信するための高水準手続き型プログラミング言語またはオブジェクト指向プログラミング言語により実装することができる。しかしながら、これらのプログラムは、必要に応じて、アセンブリ言語または機械語により実装することもできる。いずれの場合も、この言語は、コンパイラ型言語またはインタープリタ型言語とすることができる。さらに、プログラムは、その用途に応じてプログラムされた専用の集積回路上で実行することができる。
【0096】
そのようなコンピュータプログラムのそれぞれを、好ましくは、プログラム可能な汎用または専用コンピュータで読み取り可能な記憶媒体または記憶装置(例えば、ROMまたは磁気ディスケット)に格納し、コンピュータは、その記憶媒体または記憶装置を読み取ることにより、本明細書に記載の手順を実行するように構成または運用される。コンピュータプログラムは、プログラム実行時は、キャッシュメモリまたはメインメモリにあってもよい。分析方法も、コンピュータプログラムで構成した、コンピュータにより読み取り可能な記憶媒体として実装することができ、この場合、このように構成した記録媒体によりコンピュータを特定の方法またはあらかじめ決められた方法で動作させ、本明細書に記載の機能を実行させる。
【0097】
[その他の実施形態]
先に述べた荷電粒子源は、一般的には、ガス電界イオン源である。しかしながら、概して、本明細書に開示する界磁分流器は、液状金属イオン源(liquid metal ion sources:LMIS)、電子ビーム源、およびその他のタイプのイオン源を含む荷電粒子源に用いることができる。
【0098】
上記には、ヘリウムおよびその他の希ガスの粒子を用いて荷電粒子ビームを生成することについて述べたが、希ガス原子、金属原子、さまざまな二原子のガス粒子、三原子のガス粒子、および、より一般には、多原子のガス粒子、および種々のヘテロ核のガス粒子を含む、多種多様のさまざまなガス粒子を用いることができる。
【0099】
その他の実施例は、特許請求の範囲に含まれる。

【特許請求の範囲】
【請求項1】
荷電粒子源であって、
頂端部を有するチップ、
ガス粒子を前記チップに供給するように構成した少なくとも1つのガス注入口、および
非イオン化ガス粒子を吸着し、脱着するガス粒子を導いて前記チップに向けて伝播させるように位置決めした曲面を有する素子、を備える荷電粒子源において、
前記曲面が、該曲面の表面法線の少なくとも50%またはそれ以上が前記チップの前記頂端部の位置で交差するように形成されてなる、
荷電粒子源。
【請求項2】
請求項1に記載の荷電粒子源において、
前記素子は抽出器である、
荷電粒子源。
【請求項3】
請求項2に記載の荷電粒子源において、
前記曲面は前記抽出器の前記チップに対向する面である、
荷電粒子源。
【請求項4】
請求項1に記載の荷電粒子源は、さらに、抽出器を備え、
前記素子は、前記チップと前記抽出器との間に配置されたことを特徴とする、
荷電粒子源。
【請求項5】
請求項1に記載の荷電粒子源において、
前記少なくとも1つのガス注入口は2つまたはそれ以上のガス注入口を含む、
荷電粒子源。
【請求項6】
請求項1に記載の荷電粒子源において、
前記少なくとも1つのガス注入口は60またはそれ以上のガス注入口を含む、
荷電粒子源。
【請求項7】
請求項1に記載の荷電粒子源において、
前記素子は前記荷電粒子源からガス粒子を除去できるような位置に配置した複数の開口を含む、
荷電粒子源。
【請求項8】
請求項1に記載の荷電粒子源において、
前記曲面は球面である、
荷電粒子源。
【請求項9】
請求項1に記載の荷電粒子源において、
前記曲面は放物面である、
荷電粒子源。
【請求項10】
請求項1に記載の荷電粒子源において、
前記曲面は、180度より大きい角をなす角弧に対応する弧状面である、
荷電粒子源。
【請求項11】
請求項1に記載の荷電粒子源において、
前記曲面は、該曲面の表面法線の少なくとも90%またはそれ以上が前記チップの前記頂端部の位置で交差するように、形成された、
荷電粒子源。
【請求項12】
請求項1に記載の荷電粒子源において、
動作時、前記チップの前記頂端部の位置におけるガス粒子の濃度は、前記曲面が存在しない場合の前記チップの前記頂端部の位置におけるガス粒子の濃度よりも、5%またはそれ以上高い、
荷電粒子源。
【請求項13】
請求項1に記載の荷電粒子源において、
動作時、前記チップの前記頂端部の位置におけるガス粒子の濃度は、前記曲面が存在しない場合の前記チップの前記頂端部の位置におけるガス粒子の濃度よりも、15%またはそれ以上高い、
荷電粒子源。
【請求項14】
請求項1に記載の荷電粒子源において、
動作時、前記ガス粒子の平均イオン化効率は、1010分の3またはそれ以上である、
荷電粒子源。
【請求項15】
請求項1に記載の荷電粒子源において、
動作時、前記ガス粒子の平均イオン化効率は、10分の1またはそれ以上である、
荷電粒子源。
【請求項16】
請求項1に記載の荷電粒子源において、
動作時、該荷電粒子源のビーム電流は100pAまたはそれ以上であり、該荷電粒子源内のガス粒子の圧力は1×10−3トルまたはそれ以下である、
荷電粒子源。
【請求項17】
請求項1に記載の荷電粒子源において、
動作時、該荷電粒子源のビーム電流は1nAまたはそれ以上であり、該荷電粒子源内のガス粒子の圧力は5×10−5トルまたはそれ以下である、
荷電粒子源。
【請求項18】
請求項1に記載の荷電粒子源は、さらに、
前記チップに接続され、前記チップの前記頂端部における電界を調整するように構成した界磁分流器、
を備える荷電粒子源。
【請求項19】
請求項18に記載の荷電粒子源は、さらに、
前記界磁分流器に接続され、該界磁分流器を前記チップに対して移動させることにより前記チップの前記頂端部における電界を調整するように構成した電子制御装置、
を備える荷電粒子源。
【請求項20】
請求項18に記載の荷電粒子源は、さらに、
前記界磁分流器に接続され、該界磁分流器に印加する電位を調整することにより前記チップの前記頂端部における電界を調整するように構成した電子制御装置、
を備える荷電粒子源。
【請求項21】
請求項18に記載の荷電粒子源において、
前記界磁分流器は、該荷電粒子源の軸線に平行な方向に沿って伸縮可能である、
荷電粒子源。
【請求項22】
請求項18に記載の荷電粒子源において、
前記チップは第1電位にあり、
前記界磁分流器は、前記第1電位とは異なる第2電位にある、
荷電粒子源。
【請求項23】
請求項1に記載の荷電粒子源において、
前記ガス粒子は希ガス原子を含む、
荷電粒子源。
【請求項24】
請求項23に記載の荷電粒子源において、
前記希ガス原子はヘリウムを含む、
荷電粒子源。
【請求項25】
請求項1に記載の荷電粒子源において、
該荷電粒子源はガス電界イオン源である、
荷電粒子源。
【請求項26】
請求項1に記載の荷電粒子源は、さらに、
前記チップおよび前記素子を収容するハウジング、
を備える荷電粒子源。
【請求項27】
荷電粒子源であって、
チップ、およびガス粒子を該チップに供給するように構成した少なくとも1つのガス注入口、
前記チップの頂端部における電界を変調するように構成した界磁分流器、および
前記界磁分流器に接続した電子制御装置、を備える荷電粒子源において、
前記界磁分流器が完全収縮位置にあるとき、前記電界は第1振幅を有し、
前記界磁分流器が完全伸長位置にあるとき、前記電界は前記第1振幅よりも大きい第2振幅を有し、
前記電子制御装置は、前記完全伸長位置と前記完全収縮位置との間に前記界磁分流器を配置するように構成される、
荷電粒子源。
【請求項28】
請求項27に記載の荷電粒子源において、
前記界磁分流器は、前記完全収縮位置と前記完全伸長位置との間を移動するように構成した、機械的に伸縮可能な界磁分流器である、
荷電粒子源。
【請求項29】
請求項28に記載の荷電粒子源において、
界磁分流器は、前記完全収縮位置に対して複数の異なる長さに伸縮可能である、
荷電粒子源。
【請求項30】
請求項27に記載の荷電粒子源において、
前記第1振幅と前記第2振幅との差は5V/Åまたはそれ以上である、
荷電粒子源。
【請求項31】
請求項27に記載の荷電粒子源において、
前記第2振幅の前記第1振幅に対する比は2.0またはそれ以上である、
荷電粒子源。
【請求項32】
請求項27に記載の荷電粒子源において、
前記チップは第1電位にあり、
前記界磁分流器は、前記第1電位とは異なる第2電位にある、
荷電粒子源。
【請求項33】
請求項32に記載の荷電粒子源において、
前記第1電位と前記第2電位との差は、100Vまたはそれ以上である、
荷電粒子源。
【請求項34】
請求項32に記載の荷電粒子源において、
前記第1電位と前記第2電位との差は、2kVまたはそれ以上である、
荷電粒子源。
【請求項35】
請求項27に記載の荷電粒子源において、
前記界磁分流器は、長さの異なる複数の相互交換可能な界磁分流器を含み、該界磁分流器はそれぞれ前記チップのベースに連結するように構成した、
荷電粒子源。
【請求項36】
請求項27に記載の荷電粒子源は、さらに、
非イオン化ガス粒子を吸着し、脱着するガス粒子を導いて前記チップに向けて伝播させるように位置決めした曲面を有する素子、
を備える荷電粒子源。
【請求項37】
請求項36に記載の荷電粒子源において、
前記素子は抽出器である、
荷電粒子源。
【請求項38】
請求項36に記載の荷電粒子源において、
前記曲面は球面である、
荷電粒子源。
【請求項39】
請求項36に記載の荷電粒子源において、
前記曲面は放物面である、
荷電粒子源。
【請求項40】
請求項36に記載の荷電粒子源において、
前記曲面は、180度より大きい角をなす角弧に対応する弧状面である
荷電粒子源。
【請求項41】
請求項36に記載の荷電粒子源において、
該荷電粒子源のビーム電流は100pAまたはそれ以上であり、該荷電粒子源内のガス粒子の圧力は1×10−3トルまたはそれ以下である、
荷電粒子源。
【請求項42】
請求項27に記載の荷電粒子源において、
前記ガス粒子は希ガス原子を含む、
荷電粒子源。
【請求項43】
請求項42に記載の荷電粒子源において、
前記希ガス原子はヘリウムを含む、
荷電粒子源。
【請求項44】
請求項27に記載の荷電粒子源において、
前記界磁分流器の一部分は円筒形状である、
荷電粒子源。
【請求項45】
請求項44に記載の荷電粒子源は、さらに、
前記チップを取り付ける支持体を備え、
前記界磁分流器の該支持体に取り付けた第1端部における開口の最大直径は、前記界磁分流器の前記チップの前記頂端部に近接する第2端部における開口の最大直径よりも大きいことを特徴とする、
荷電粒子源。
【請求項46】
請求項44に記載の荷電粒子源において、
前記界磁分流器は、内径が一定の円筒部分および内径が変化する円錐部分を含む、
荷電粒子源。
【請求項47】
請求項46に記載の荷電粒子源において、
前記円錐部分は第1端部および第2端部を含み、該第1端部の外径は該第2端部の外径よりも大きく、
該第2端部は、前記界磁分流器の前記チップの前記頂端部に近接する端部を構成する、
荷電粒子源。
【請求項48】
荷電粒子源であって、
チップ、該チップを収容するハウジング、および、該ハウジングの内部と流体連結し該チップにガス粒子を供給するように構成した少なくとも1つのガス注入口、
前記ハウジング内に配置され、前記チップの頂端部における電界振幅を変調するように構成した素子、を備える荷電粒子源において、
前記素子は、円筒部分および該円筒部分に取り付けた円錐部分を有し、
前記円錐部分の最大内径は前記円筒部分の内径に相当し、該円錐部分の最小内径は該最大内径よりも小さく、前記素子の一端部は、前記チップに近接して配置した前記最小内径に相当し、
前記素子は、収縮位置と伸長位置との間で移動可能である、
荷電粒子源。
【請求項49】
請求項1に記載の荷電粒子源において、
前記素子の前記曲面は互いに非法線方向に配向された隣接する複数の平面セグメントを含む、
荷電粒子源。
【請求項50】
請求項1に記載の荷電粒子源において、
前記素子の前記曲面は、曲面形状を近似するように配置した複数の平面セグメントを含む、
荷電粒子源。
【請求項51】
請求項50に記載の荷電粒子源において、
動作時、前記チップの前記頂端部の位置におけるガス粒子の濃度は、前記チップの前記頂端部の位置における、平面を用いたときに生成されることになるガス粒子の濃度よりも、5%またはそれ以上高い、
荷電粒子源。
【請求項52】
請求項50に記載の荷電粒子源において、
動作時、前記チップの前記頂端部の位置におけるガス粒子の濃度は、前記チップの前記頂端部の位置における、平面を用いたときに生成されることになるガス粒子の濃度よりも、15%またはそれ以上高い、
荷電粒子源。
【請求項53】
荷電粒子源であって、
チップおよび該チップにガス粒子を供給するように構成した少なくとも1つのガス注入口、
前記チップの頂端部における電界を変調するように構成した界磁分流器、および
前記界磁分流器に接続した電子制御装置、を備える荷電粒子源において、
動作時、前記電子制御装置は前記界磁分流器に電位を印加して前記チップの前記頂端部における前記電界を変調するように構成され、該界磁分流器は収縮位置と伸長位置との間で移動可能である、
荷電粒子源
【請求項54】
請求項53に記載の荷電粒子源において、
動作時、電子制御装置は前記界磁分流器に第1電位を印加し、前記界磁分流器に第2電位を印加するように構成され、
前記界磁分流器に第1電位を印加したときの前記チップの前記頂端部における電界振幅と、前記界磁分流器に第2電位を印加したときの前記チップの前記頂端部における電界振幅との差は、5V/Åまたはそれ以上である、
荷電粒子源。
【請求項55】
請求項53に記載の荷電粒子源において、
動作時、電子制御装置は前記界磁分流器に第1電位を印加し、前記界磁分流器に第2電位を印加するように構成され、
前記界磁分流器に第1電位を印加したときの前記チップの前記頂端部における電界振幅と、前記界磁分流器に第2電位を印加したときの前記チップの前記頂端部における電界振幅との比は、2.0またはそれ以上である、
荷電粒子源。
【請求項56】
請求項1に記載の荷電粒子源において、
前記少なくとも1つのガス注入口は、前記素子内のチャネルである、
荷電粒子源。
【請求項57】
荷電粒子源請求項36に記載の荷電粒子源において、
前記少なくとも1つのガス注入口は、前記素子内のチャネルである、
荷電粒子源。
【請求項58】
請求項48に記載の荷電粒子源において、
前記少なくとも1つのガス注入口は、前記素子内のチャネルである、
荷電粒子源。
【請求項59】
請求項53に記載の荷電粒子源は、さらに、
非イオン化ガス粒子を吸着し、脱着するガス粒子を導いて前記チップに向けて伝播させるように位置決めした曲面を有する素子、
を備える荷電粒子源。
【請求項60】
請求項58に記載の荷電粒子源において、
前記少なくとも1つのガス注入口は前記素子内に形成される、
荷電粒子源。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2011−528489(P2011−528489A)
【公表日】平成23年11月17日(2011.11.17)
【国際特許分類】
【出願番号】特願2011−518777(P2011−518777)
【出願日】平成21年6月29日(2009.6.29)
【国際出願番号】PCT/US2009/049011
【国際公開番号】WO2010/008924
【国際公開日】平成22年1月21日(2010.1.21)
【出願人】(510237435)カール ツァイス エヌティーエス エルエルシー (14)
【Fターム(参考)】