説明

荷電粒子線装置

【課題】
荷電粒子源の異常放電を正確に検出可能な荷電粒子線装置を提供する。
【解決手段】
荷電粒子源12と、該荷電粒子源12に加速電圧を印加する加速電圧源3と、
コアCにギャップGを有し前記加速電圧源3と荷電粒子源12間に1次側巻き線が接続されたトランス30と、
該トランスの2次側巻き線N2に流れる電流又は発生する電圧に基づいて1次側巻き線N1に流れる電流を検出する1次側電流検出回路と、
該1次電流検出回路の出力に基づいて放電を検出する放電検出回路を備えたことを特徴とする荷電粒子線装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は荷電粒子線装置に使用される放電検出回路に関する。
【背景技術】
【0002】
荷電粒子線装置は荷電粒子を熱電子放出させたり、電界放出させたりすることにより発生させ、その発生した荷電粒子を加速させ、被照射物に照射する。このような荷電粒子線装置は、電子顕微鏡、X線管、電子ビーム加熱装置、電子ビーム露光装置等多数あり、微少領域の観察、分析、加工、加熱、X線発生装置など幅広い分野で使われている。
【0003】
このような荷電粒子線装置の一つである電子線照射装置の構成例を図1に示す。
【0004】
図中1は熱電子を放出するフィラメントであり、2はフィラメント1に電流を流すフィラメント電源である。3は加速電圧電源でフィラメント1に加速電圧を印加する。50は荷電粒子線が照射される試料であり、試料50はグランドに電気的に接続されている。5はフィラメント1から放出される電子線である。
【0005】
フィラメント1から試料50まで、電子線の通る部分は真空チャンバ6の中にあり、真空チャンバ6は真空ポンプ(図示せず)により真空に引かれる。真空チャンバ6は電気的にグランドに接続されている。加速電圧上の電位にあるフィラメント1は絶縁碍子7で絶縁しチャンバ6に保持されている。また、絶縁碍子7にはウエネルト8がフィラメント1を取り囲むように取り付けられている。ウエネルト8とフィラメント1間にウエネルト電源4が接続してあり、フィラメント1に対し負(マイナス)の電位を印加している。10はカソードであり、ウエネルト8を取り囲むように取り付けられている。また、カソードは電気的にグランドに繋がっている。
【0006】
フィラメント1の先端から試料50へ電子線5が照射されるようにウエネルト8にはウエネルト穴9が開けられ、カソード10にはカソード穴11が開けられている。フィラメント1、ウエネルト8、カソード10で荷電粒子線源である電子銃12を構成している。
【0007】
20は加速電圧を2本の抵抗で分圧する分圧器である。21は比較器であり、加速電圧を分圧器20で分圧した電圧を、比較基準電圧源22が出力する基準電圧Vrefと比較し放電検出信号を出力する。23は保護回路で比較器21からの放電検出信号を受けて動作する。
【0008】
このような装置において、電流をフィラメント電源2からフィラメント1に流しフィラメント1を加熱する。加熱されたフィラメント1からは熱電子が放出される。しかし、フィラメント1の周囲にウエネルト8がウエネルト電源4によりフィラメント1に対し負(マイナス)の電位に印加されている。そのため、負の電荷を持つ熱電子はウエネルト8に対し反発する。そして熱電子はウエネルト8に開けられた穴9を通りカソード10に引き寄せられて加速し、電子線となってカソード10の穴11を通り試料4に照射される。
【0009】
電子を加速する加速電圧は低くても1kV程度で、時には1000kVに及ぶ事もあり、加速電圧とグランド間で不要な放電がしばしば発生する。これを不用放電と呼ぶ。不要放電が起こると加速電圧源3の出力はグランドに短絡されるのと同じ状態となり急激な放電電流が流れる。連続的な不要放電は加速電圧電源3の破壊を引き起こす事もある。また、荷電粒子線装置を電子ビーム蒸着装置として使った場合は不要放電による加速電圧の変動で均一な蒸着膜が出来ず不良品の原因になったりすることもある。この不用放電を検出し、不用放電が発生しても加速電圧が安定するように制御する方法、また不要放電が起きると加速電圧印加を停止し、保護する方法などが考案されている。
【0010】
不用放電の検出は、加速電圧が不用放電により変化するのを検出するのが一般的である。しかし加速電圧は高電圧のため直接加速電圧の変化を検出するのは困難である。そのため2本の抵抗で構成される分圧抵抗20を加速電圧電源3の出力とグランド間に接続し、加速電圧を10ボルト程度に分圧する。不用放電によって加速電圧がドロップすると分圧電圧もドロップする。予め比較基準電圧源22設定し基準電圧Vrefを決定しておき、分圧電圧が、その基準電圧Vrefよりもドロップした場合不用放電と判断し比較器21は不要放電検出信号を出力する。比較器21が不要放電と判定し、出力した信号を保護回路23が受け加速電圧を下げたり加速電圧印加を中止したりする。
【0011】
【特許文献1】特開平8−22797号公報
【発明の開示】
【発明が解決しようとする課題】
【0012】
さて、図1に示すように、加速電圧とグランド間に2本の抵抗を直列接続して構成した分圧抵抗20が加速電圧とグランド間に接続されている。
【0013】
電子線発生装置の場合、電子線を加速するには加速電圧電源3はマイナスの電圧を出力する。そのため、分圧器20にはグランドから加速電圧電源3に向かって電流が流れる。加速電圧電源3は高電圧電源であり、負荷電流を多く取れる様にするには、電源が大型になるだけでなく非常にコストもかかる。そのため、なるべく電流を分圧器20に流さないようにするために分圧器に数百MΩなどの大きな抵抗値のものを用いる。
【0014】
しかし、分圧抵抗20に流す電流を減らすと比較器21の入力端子に流れ込む電流も無視できなくなる。そのため、抵抗による分圧比だけで加速電圧の分圧電圧が得られなくなり、正確に不用放電を判定できなくなる。
【0015】
更に、加速電圧を変えて使用すると分圧器の電圧も変化するため、比較器21判定基準となる比較基準電圧源22を設定しなおし基準電圧Vrefを加速電圧に合わせその都度変更する必要があった。
【0016】
その他にも、分圧抵抗20が放電しても同じ不要放電であるので、分圧抵抗20が不要放電を起さないように絶縁油中に入れる、もしくはシリコン等で固体モールドするなどの放電防止策が必要である。それにより小型化できないだけでなくコストも上がる。
【0017】
また、図2に1つの加速電圧電源3で複数の荷電粒子源12,12bを使う場合の例を示す。この場合どの電子銃7,7bのどちらで不要放電が発生しても加速電圧は変動するため、不要放電を起した電子銃の断定はできなかった。
【課題を解決するための手段】
【0018】
荷電粒子源と、該荷電粒子源に加速電圧を印加する加速電圧源と、コアにギャップを有し前記加速電圧源と荷電粒子源間に1次側巻き線が接続されたトランスと、該トランスの2次側巻き線に流れる電流又は発生する電圧に基づいて1次側巻き線に流れる電流を検出する1次電流検出回路と、該1次電流検出回路の出力に基づいて放電を検出する放電検出回路を備えたことを特徴とする荷電粒子線装置。
【発明の効果】
【0019】
本発明によれば、荷電粒子源の異常放電を正確に検出可能な荷電粒子線装置を提供することができる。
【発明を実施するための最良の形態】
【0020】
以下、図面を参照して本発明の実施するための最良の形態を説明する。図3に本発明による荷電粒子線装置の一概略例を示す。また、図1で使用した記号と同一の記号としたものは同一構成要素である。
【0021】
フィラメント1、フィラメント電源2、加速電圧電源3、試料50、電子線5、真空チャンバ6、絶縁碍子7、ウエネルト8、ウエネルト電源4、カソード10、ウエネルト穴9、カソード穴11は従来技術と同様である。30はカレントトランスである。カレントトランス30はギャップGがあるコアCに1次側巻き線N1と2次側巻き線N2を巻いた構造になっている。カレントトランス30の1次側には加速電圧電源3とフィラメント1間のケーブルが巻かれ、2次側巻き線の両端には検出抵抗31が取り付けられている。検出抵抗31の片側はグランドに接続され、逆端は比較器21に接続されている。比較器21は比較基準電圧源22の出力である基準電圧Vrefと検出抵抗31の電圧を比較するために接続されている。
【0022】
このような装置において従来技術と同様にフィラメント1に電流を流して加熱し、加速電圧をフィラメント1に印加して電子線5を試料50に照射させる。
【0023】
電子線5を試料50に照射中に加速電圧とグランド間で不要放電が起こるとグランドから加速電圧電源3に放電電流が流れる。カレントトランス30の1次側巻き線N1をフィラメント1と加速電源3間に接続する。すると、放電電流はグランドからカレントトランス30の1次側巻き線N1を経由して加速電源30に流れる。そしてカレントトランス30の2次側巻き線N2には1次側巻き線に流れる一次電流に比例した電流が発生する。カレントトランス30の2次側巻き線の両端に検出抵抗31を接続しておくと、検出抵抗31に2次側巻き線発生した電流が流れ、検出抵抗31の両端は電圧降下により電圧Vsが発生する。検出抵抗31の両端の電圧は不要放電が無ければ0Vであり、放電が起これば電圧Vsをする発生するため1次電流検出回路として動作する。これにより検出抵抗31の両端に発生する電圧Vsを観測すれば不要放電を検出できる。
【0024】
検出抵抗31の両端に発生した電圧Vsは比較器21に入力され、比較基準電圧源22の出力である基準電圧Vrefと比較する。そして比較器21が不要放電と判定した場合は比較器21から不要放電検出信号を出力する。比較器21が出力した不要放電検出信号は保護回路23に入力され、不要放電検出信号を受けた保護回路23は加速電圧を下げ加速電圧印加を中止する。
【0025】
しかし、微少な放電では装置の保護回路を動作は行わず、大放電時のみ保護を行いたい場合も多い。その場合は比較器21に接続されている比較基準電圧源22の設定を変え基準電圧Vrefをあげ、放電電流の大きい放電のみを検出すればよい。
【0026】
さて、図4にカレントトランス30を示す。カレントトランス30はフェライトなどの強磁性体のコアに1次側巻き線N1と2次側巻き線N2を巻いて作られている。
【0027】
図5にカレントトランス30の外部磁束(1次巻き線N1により発生する磁束)に対するコアCの磁束密度のグラフを示す。
【0028】
カレントトランス31の1次側巻き線N1に電流Iを流し、強磁性体でできたコアCに1次巻き線N1から磁界を加えて行く。外部磁界Hがゼロの場合は磁束密度Bもゼロであり、外部磁界Hの強さを増やしていくと比例してコアCの磁束密度Bも増え飽和磁束密度Bmに達すると外部磁界の強さHをそれ以上げても磁束密度Bは増えない。これはコアCが飽和したからである。
【0029】
カレントトランス31の1次側巻き線N1から2次側巻き線N2へのエネルギーの伝達は、1次側巻き線N1によって発生した磁界がコアCの磁束密度Bを変化させ、その磁束密度Bの変化によって2次側巻き線N2に電流を発生させる。コアCが飽和した場合、磁束密度Bの変化は無くなるため2次側巻き線N2にエネルギー伝達はされなくなってしまう。
【0030】
コアCに加える磁界の強さは1次側のターン数と流す電流によって決まる。加速電圧の放電は、高電圧である加速電源3をグランドに短絡した事とほぼ等しく、その放電電流は大変大きい。1次側巻き線のターン数を減らしても放電電流が大きくコアが飽和してしまう場合がある。コアを飽和させないためにはコアの断面積を増やす、もしくはコアの透磁率を低くする事が必要となる。
【0031】
コアの断面積を増やし飽和を避けた場合は、コア自体を大きくすることになりカレントトランス30が大型になり現実的ではない。また、コアの透磁率を変えるにはコアの材質を変えればよいが最適な透磁率の材質を選択するのは困難である。
【0032】
そこで、カレントトランス30のコアにギャップを設ける。図4(b)にカレントトランス30のコアCにギャップGを設けた状態を示す。
【0033】
図5に戻り、カレントトランス30のコアにギャップがある場合の外部磁束に対する磁束密度の変化を説明する。
【0034】
外部磁界Hがゼロの場合は磁束密度Bもゼロであり、外部磁界Hの強さを増やしていくと比例して磁束密度Bも増える。そして、飽和磁束密度Bmに達すると外部磁界の強さHをそれ以上げても磁束密度Bは増えない。しかし、コアギャップ無しの場合は外部磁界の強さがA点で飽和磁束密度Bmに達するのに対し、コアギャップがある場合は外部磁界の強さがA点より大きいB点で飽和する。ここで、コアのギャップGを大きくする(広げる)と飽和磁束密度Bmに達する外部磁界の強さはより大きくなり、コアのギャップGを小さくする(狭める)と飽和磁束密度Bmに達する外部磁界の強さはA点に近づく。これは、カレントトランス31のコアCの透磁率を変えた事と同じである。さらにカレントトランス31のコアCのギャップを調整する事により最適な透磁率を得る事ができる。
【0035】
このようにコアCの透磁率を最適にしたため、カレントトランス31のコアCを小型化してもカレントトランス31のコアCは飽和せずに正確に放電検出ができる。
【0036】
また、加速電圧の変化を検出しているのではなく、放電電流を検出しているため加速電圧を変化させても比較器21が参照する比較基準電圧Vrefを比較基準電源22で設定しなおす必要が無くなる。
【0037】
その他にも高圧部分は加速電源3とフィラメント1間の絶縁ケーブルをコアに巻く(1ターンの場合はコアに通す)だけのため、検出抵抗31やカレントトランス30を絶縁油中に浸す、もしくは固体モールド等の特別な絶縁は必要が無い。
【0038】
次に図6に1個の加速電圧電源3を複数の電子銃に接続し使用する場合の例を示す。図3の構成で構成する電子線照射装置を、加速電圧電源3以外全て2式構成している。これにより高価な加速電圧電源3を2つの荷電粒子銃で共用してコストを抑えている。
【0039】
ここで、第一電子銃12で不要放電があった場合の放電電流はカレントトランス30だけに流れ、カレントトランス30bには流れない。また、第二電子銃12bに不要放電があった場合はカレントトランス30bにだけ放電電流が流れ、カレントトランス30には放電電流が流れない。よって加速電圧電源を複数の電子銃に繋いで使えばどの電子銃で不要放電があったか認識する事ができる。
【0040】
尚、不要放電を検出して保護回路23を動作させ加速電圧を下げ加速電圧印加を中止して保護する場合について説明したが、比較回路21の出力にレコーダーを接続し、不要放電の頻度をモニタし、荷電粒子銃のメンテナンスの目安にしても良い。
【0041】
尚、前記最良の形態は電子線照射装置に実施した場合について説明したが、イオン発生装置にも実施可能なことは言うまでもない。
【図面の簡単な説明】
【0042】
【図1】従来の電子線照射装置の放電検出器の概略を示す。
【図2】従来の加速電圧電源を複数の電子線照射装置で使用した場合の概略を示す。
【図3】本発明の電子線照射装置の放電検出器の概略を示す。
【図4】カレントトランスの概略を示す。
【図5】外部磁界の強さと磁束密度との関係を示すグラフである。
【図6】本発明の加速電圧電源を複数の電子線照射装置で使用した場合の概略を示す。
【符号の説明】
【0043】
1,1b…フィラメント、2,2b…フィラメント電源、3,…加速電圧電源、4,4b…ウエネルト電源、5,5b…電子線、6,6b…真空チャンバ、7,7b…絶縁碍子、8,8b…ウエネルト、9,9b…ウエネルトの穴、10,10b…カソード、11,11b…カソードの穴、12,12b…電子銃、20…分圧抵抗、21,21b…比較器、22,22b…比較基準電圧源、23…保護回路、30,30b…カレントトランス、N1…カレントトランスの1次側巻き線、N2…カレントトランスの2次側巻き線、C…カレントトランスのコア、G…カレントトランスのコアのギャップ、検出電圧…Vs,Vs2、基準電圧…Vref,Vref2

【特許請求の範囲】
【請求項1】
荷電粒子源と、
該荷電粒子源に加速電圧を印加する加速電圧源と、
コアにギャップを有し前記加速電圧源と荷電粒子源間に1次側巻き線が接続されたトランスと、
該トランスの2次側巻き線に流れる電流又は発生する電圧に基づいて1次側巻き線に流れる電流を検出する1次電流検出回路と、
該1次電流検出回路の出力に基づいて放電を検出する放電検出回路を備えたことを特徴とする荷電粒子線装置。
【請求項2】
荷電粒子源を複数有し、
1つの前記加速電圧源から複数個の荷電粒子源に加速電圧を印加するように構成されると共に、
前記各荷電粒子源と前記加速電圧源間に前記トランスを配置するようにしたことを特徴とする請求項1記載の荷電粒子線装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2010−232129(P2010−232129A)
【公開日】平成22年10月14日(2010.10.14)
【国際特許分類】
【出願番号】特願2009−81076(P2009−81076)
【出願日】平成21年3月30日(2009.3.30)
【出願人】(000004271)日本電子株式会社 (811)
【Fターム(参考)】