説明

複合アーク溶解炉を用いた冷鉄源の溶解方法

【課題】 アーク溶解炉で冷鉄源を溶解して溶鋼を溶製するにあたり、溶解に伴って発生する排ガスの有する熱エネルギーを安定して冷鉄源に伝達させ、従来よりも更に電力使用量を低減する。
【解決手段】 溶解室2と、該溶解室の上部に直結するシャフト形の予熱室3と、を有する複合アーク溶解炉1を用い、前記予熱室に装入・充填された冷鉄源13を、該冷鉄源が予熱室内を徐々に降下する間に前記溶解室内で発生した排ガスで予熱するとともに、予熱された冷鉄源を溶解室に導いてアーク熱で溶解する冷鉄源の溶解方法において、前記溶解室内に巻き込まれる空気の量を調整し、これによって前記予熱室を通過する排ガスの流量を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶解室と該溶解室の上部に直結するシャフト形の予熱室とを有する複合アーク溶解炉における冷鉄源の溶解方法に関し、詳しくは、溶解室への空気の巻き込み量を調整することによって予熱室を通過する排ガス流量を制御し、流量の制御された排ガスによって冷鉄源を予熱室で効率的に予熱する方法に関する。
【背景技術】
【0002】
近年、アーク溶解炉(「アーク炉」、「電気炉」とも呼ぶ)を用いて鉄スクラップや直接還元鉄などの冷鉄源を溶解して溶鋼を製造するにあたり、新しいプロセスが開発・実施されている。このプロセスでは、電気エネルギーの一部を炭材などの安価な燃料に代替させるとともに、冷鉄源の溶解に伴って溶解室内で発生する高温の排ガスを利用して、溶解室の上部に直結させて配置したシャフト形の予熱室に装入される冷鉄源を予熱し、予熱した冷鉄源を溶解室に供給することによって、冷鉄源の溶解に要する電力使用量を従来に比較して大幅に低減させている。
【0003】
そのプロセスの代表的な形態として、特許文献1及び特許文献2に開示されている複合式のアーク溶解炉(以下、これを「複合アーク溶解炉」と称す)を挙げることができる。この複合アーク溶解炉は、冷鉄源を溶解する溶解室と、この溶解室の上部に直結し、溶解室内で発生する高温の排ガスを誘引して該排ガスで冷鉄源を予熱するシャフト形予熱室とを具備することを主たる特徴とする。即ち、この複合アーク溶解炉は、前記予熱室内に装入する冷鉄源を、予熱室と溶解室とに跨って内在させるとともに、その冷鉄源を、予熱室から溶解室内に移動させる間に該溶解室にて発生する高温の排ガスを利用して予熱し、更に、該溶解室に到達したものについては、アーク熱によって加熱して溶解し、該溶解室に少なくとも1ヒート分の溶鋼が溜まった時点で、溶鋼として出鋼する形式のアーク溶解炉である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特表平3−505625号公報
【特許文献2】特開平10−292990号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
前記複合アーク溶解炉の操業では、上述したように、溶解室で発生した高温の排ガスを利用して予熱室内の装入原料、つまり冷鉄源を予熱して昇温する点に特徴がある。しかしながら、予熱室を通過する排ガスの温度や体積(流量)の状態によっては、冷鉄源と排ガスとの伝熱効率が低下し、排ガスのエネルギーを有効に利用できない場合が発生する。即ち、発生する排ガスの顕熱分を冷鉄源に効率良く伝えて、電力使用量の少ない操業を目的とするが、この操業を安定的に実現するのは難しいのが実情である。
【0006】
このように、複合アーク溶解炉の操業においては、従来のアーク溶解炉に比較して大幅にエネルギー効率を改善しているものの、未だ改善の余地があり、より一層のエネルギー効率の向上並びにより一層の省力化が求められている。
【0007】
本発明は上記事情に鑑みてなされたもので、その目的とするところは、複合アーク溶解炉で冷鉄源を溶解して溶鋼を溶製するにあたり、溶解に伴って発生する排ガスの有する熱エネルギーを安定して冷鉄源に伝達させることができ、従来よりも更に電力使用量を低減することのできる、複合アーク溶解炉を用いた冷鉄源の溶解方法を提供することである。
【課題を解決するための手段】
【0008】
本発明者らは、前記課題を解決すべく鋭意検討を重ねた。その結果、複合アーク溶解炉の場合、この炉の予熱室内に充填された冷鉄源を効率的に予熱するためには、充填された冷鉄源と排ガスとの熱交換を適正に保つことが重要であり、特に、溶解室内に巻き込まれ、その後は予熱室を経由して系外に排出される空気(大気)の量を適正範囲に調整することが有効であることを突き止めた。複合アーク溶解炉を含めてアーク溶解炉の場合は、鉄スクラップに付着する油脂や合成樹脂などの物質が蒸発して生成するガス・ダストなどを周辺大気に放散させないようにするために、強力な集塵機で排ガスを吸引しており、溶解室内へ巻き込まれる空気の量は多い。複合アーク溶解炉の場合、この巻き込まれた空気は予熱室を経由し排ガスとして排出される。
【0009】
例えば、空気の巻き込み量が多い場合は、添加した炭材の燃焼によって発生するCOガスやCO2ガスなどの発生ガスと巻き込まれた空気とが混合することで、予熱室へ導入される排ガスの体積は増大し、その温度は巻き込まれた空気で希釈されて低くなる。排ガスの体積が多いので、予熱室での通過速度が速くなり、冷鉄源へ十分に着熱する時間が確保できず、予熱室を迅速に通過してしまうことから、排ガスの顕熱を冷鉄源の予熱に有効に使うことができない。
【0010】
逆に、空気の巻き込み量が少ない場合には、予熱室へ導入される排ガスの体積は少ないが、その温度は高温であるので、予熱室内の冷鉄源の一部が溶解して冷鉄源同士の融着を招き、冷鉄源の溶解室内への供給が不安定になり、溶解室での溶解効率が低下する。更に、排ガスが高温であることから、予熱室下部での耐火物の溶損速度も大きくなり、これらにより溶解コストは増加する。
【0011】
本発明は上記知見に基づきなされたものであり、その要旨は以下のとおりである。
(1)溶解室と、該溶解室の上部に直結するシャフト形の予熱室と、を有する複合アーク溶解炉を用い、前記予熱室に装入・充填された冷鉄源を、該冷鉄源が予熱室内を徐々に降下する間に前記溶解室内で発生した排ガスで予熱するとともに、予熱された冷鉄源を溶解室に導いてアーク熱で溶解する冷鉄源の溶解方法において、前記溶解室内に巻き込まれる空気の量を調整し、これによって前記予熱室を通過する排ガスの流量を制御することを特徴とする、複合アーク溶解炉を用いた冷鉄源の溶解方法。
(2)前記溶解室内に巻き込まれる空気の量を、溶解室で溶解される冷鉄源1トンあたり40〜120Nm3の範囲内に調整することを特徴とする、上記(1)に記載の複合アーク溶解炉を用いた冷鉄源の溶解方法。
【発明の効果】
【0012】
本発明によれば、溶解室に巻き込まれる空気量を調整することで、予熱室を通過する排ガスの流量が適正化され、その結果、排ガスの有する熱エネルギーを効率高く冷鉄源に着熱させることが安定して実現され、従来よりも更に電力使用量を低減することが達成される。
【図面の簡単な説明】
【0013】
【図1】本発明を実施する際に用いた複合アーク溶解炉の概略断面図である。
【図2】空気の巻き込み量を変更したときの電力原単位の調査結果を示す図である。
【発明を実施するための形態】
【0014】
以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明を実施する際に用いた複合アーク溶解炉の一例を示す概略断面図である。
【0015】
図1に示すように、本発明で用いる複合アーク溶解炉1は、溶解室2と、溶解室2の上部の一部から上方に立設した、溶解室2と直結するシャフト形の予熱室3とを有しており、溶解室2の内部は耐火物でライニングされている。溶解室2は、その底部に炉底電極6を備え、その上部には、溶解室2と連通する前記予熱室3及び水冷構造の炉壁4とを有し、予熱室3で覆われない炉壁4の上部の開口部を覆うように、開閉可能な水冷構造の炉蓋5が設けられている。この炉蓋5を貫通して、溶解室2の内部空間で上下移動する黒鉛製上部電極7が設置されている。この上部電極7と前記炉底電極6とが、炉内に装入される冷鉄源13或いは冷鉄源13の溶解によって生成する溶鋼16を介して直流電源(図示せず)によって通電されることで、上部電極7と冷鉄源13或いは溶鋼16との間でアーク(図示せず)を発生させることができるようになっている。
【0016】
前記炉蓋5には、更に、酸素吹き込みランス8及び炭材吹き込みランス9が貫通して取付けられており、酸素吹き込みランス8からは、冷鉄源13の溶解を補助するための酸素ガスが供給され、炭材吹き込みランス9からは、空気や窒素ガスを搬送用ガスとして、コークスやチャー、石炭、木炭、黒鉛、バイオマス炭などの粉体、若しくはこれらの混合物からなる粉体が補助熱源として吹き込まれるようになっている。酸素ガス及び炭材の吹き込みにより、炉内で発生する排ガス中には、常に、未燃焼成分(COガス)及び二酸化炭素(CO2ガス)、並びに、その他成分が含まれることになる。尚、炭材吹き込みランス9から吹き込む炭材として、バイオマス原料を用いた場合には、バイオマスはカーボンニュートラルであることから、地球温暖化の原因の一つである二酸化炭素の排出量を低減することができるという効果が発現する。
【0017】
予熱室3の上方には、冷鉄源13を搬送するための、移動式の底開き型の供給用バケット11が設けられており、この供給用バケット11から、予熱室3の上部に設けた開閉可能な供給口を介して冷鉄源13が予熱室3に装入される。また、溶解室2の側壁には排滓口14が設置されており、炉内で生成した溶融スラグ17が排滓口14から系外に排出される。
【0018】
予熱室3の上部には、ダクト12が設けられ、このダクト12はブロアー(図示せず)及び集塵機(図示せず)に連結している。このブロアーを作動させることで、溶解室2で発生する排ガスは、予熱室3を経由して集塵機に導入され、集塵機で排ガス中のダストが除去された後に、大気中に放散されるように構成されている。この排ガスの経路には、集塵機に至る前に、必要に応じて、排ガス中の未燃焼ガスを燃焼するための燃焼室、燃焼させた排ガスを冷却するための冷却室などが配置されている。
【0019】
この構成の複合アーク溶解炉1においては、予熱室3に装入・充填された冷鉄源13は、溶解室2での冷鉄源13の溶解に伴って時間とともに徐々に降下し、時間とともに徐々に降下する間に溶解室2で発生する排ガスによって予熱され、やがて溶解室2に達した後、上部電極7により発生するアークの熱によって溶解される。この冷鉄源13の溶解時に、溶解室2で高温の排ガスが発生する。この排ガスは、前述したように、予熱室3の上部に設けられたダクト12を経由して排出される際に、予熱室3に充填された冷鉄源13を予熱する。尚、予熱室3に充填された冷鉄源13は、溶解室内での冷鉄源13の溶解速度に応じて、溶解室内に連続的または間欠的に移動する。
【0020】
本発明では、溶解室2において冷鉄源13をアーク熱によって溶解する際に、溶解室内に炭材吹き込みランス9を介して炭材を供給し、この炭材を酸素吹き込みランス8から供給する酸素ガスで燃焼させて発熱させることにより、溶解室2での冷鉄源13の溶解を促進させる。酸素ガス及び炭材を溶解室2に供給することで、発生する排ガスの体積が増大すると同時にその温度が上昇し、これにより予熱室3での予熱が促進される。
【0021】
以下、このようにして構成される直流式複合アーク溶解炉1における冷鉄源13の溶解手順について説明する。
【0022】
先ず、供給用バケット11から予熱室3に冷鉄源13を装入する。装入された冷鉄源13が、予熱室3を経由して溶解室2の内部に達するまで装入し、その後、順次、予熱室3の内部に充填する。尚、溶解室2の内部へ冷鉄源13を均一に装入するために、炉蓋5を開けた状態で、予熱室3が直結した側とは反対側の溶解室2の内部に冷鉄源13を装入することもできる。また、その冷鉄源13の装入の際に、鉄源として溶銑を溶解室2に装入してもよい。溶銑を利用することで、溶銑の有する熱により電力使用量を大幅に削減することができる。使用する冷鉄源13としては、日本鉄源協会の「鉄スクラップ検収統一規格」に規定されている鉄スクラップの他、直接還元鉄、冷鉄などの鉄を主成分とするものでもよい。尚、酸化鉄分を多く含むものは、酸化鉄を還元する分のエネルギーが余分に必要であるが、操業コストとの兼ね合いで使用してもよい。
【0023】
次いで、溶解室2の炉底電極6と上部電極7との間に直流電流を給電しつつ、上部電極7を昇降させ、装入された冷鉄源13と上部電極7との間、或いは、炉底電極6と上部電極7との間でアークを発生させ、そのアークの熱によって冷鉄源13を溶解する。このとき、溶解室2に媒溶剤(フラックス)を装入して溶解させ、溶解室内に溶融スラグ17を生成させてもよい。これは、溶融スラグ17によって生成される溶鋼16を保温することができるからである。
【0024】
炉底電極6と上部電極7との通電後、酸素吹き込みランス8及び炭材吹き込みランス9の溶解室内への挿入が可能となったなら、酸素吹き込みランス8から酸素を供給して冷鉄源13の溶解を補助すると同時に、炭材吹き込みランス9からは、電力原単位の削減のために、溶融スラグ17に炭材を補助熱源として吹き込む。
【0025】
この複合アーク溶解炉1の操業においては、冷鉄源13の溶解量に応じて、供給用バケット11から冷鉄源13を間欠的に予熱室3に装入する。これにより、排ガスの顕熱を冷鉄源13の予熱に連続的に利用することができる。予熱室3への冷鉄源13の装入方法は、1ヒート分の冷鉄源13の装入が完了したなら、次ヒートの溶解までは冷鉄源13の予熱室3への供給を停止する方式を採用しても、また、1ヒート分の冷鉄源13の使用量に関係なく、予熱室3に常に所定量の冷鉄源13が充填されるように供給する方式を採用しても、どちらの方式を採用しても構わないが、冷鉄源13を効率良く予熱する観点からは、予熱室3に常に所定量の冷鉄源13が充填されるように供給する方式を採用することが好ましい。
【0026】
この溶解操業において、溶解室内に巻き込まれる空気の量を調整し、これによって予熱室3を通過する排ガスの流量を所定量に制御する。具体的には、溶解室2で溶解される冷鉄源13の1トンあたり40〜120Nm3の範囲内の空気が溶解室2に巻き込まれるように、調整することが好ましい。空気の巻き込み量の調整は、例えば、排滓口14の開度を調整する方法、或いは、炉蓋5に別途設けた炉内観察窓の開度を調整する方法などを使用することができる。
【0027】
溶解室2への空気の巻き込み量は、予熱室3から排出される排ガス中の窒素ガス濃度から求めることができる。予熱室3から排出される排ガスは、主に、酸素吹き込みランス8から吹き込む酸素ガス、この酸素ガスと炭材吹き込みランス9から吹き込む炭材とが反応して生成するCOガス及びCO2ガス、前記酸素ガスと溶鋼中炭素とが反応して生成するCOガス、前記酸素ガスと冷鉄源13に付着した油脂や合成樹脂とが反応して生成するCOガス、CO2ガス及びH2Oガス、炭材吹き込みランス9で搬送用ガスとして使用する空気または窒素ガスで構成される。従って、排ガス中の窒素ガス成分は、炭材吹き込みランス9で搬送用ガスとして使用される空気または窒素ガス以外は巻き込まれた空気を起源としており、予熱室3から排出される排ガス中の窒素ガス濃度を測定することで、空気の巻き込み量を求めることができる。この場合に、炭材吹き込みランス9で搬送用ガスとして使用する空気または窒素ガスは、巻き込まれた空気の一部として計算する。複合アーク溶解炉1が密閉炉の場合には、上記のような空気の取り入れ口を設け、逆に、複合アーク溶解炉1が開放炉の場合には、開口部を閉鎖して空気の巻き込みを抑制する。
【0028】
このようにして冷鉄源13を溶解し、溶解室2に1ヒート分の溶鋼16が形成されたなら、複合アーク溶解炉1を傾動させて、溶解室2の底部に設置されている出鋼口15を開孔して溶鋼16を取鍋10に出鋼する。溶解室内で溶鋼16の成分を調整して所定の組成の溶鋼として出鋼してもよく、出鋼後、取鍋10に収容された溶鋼16をRH真空脱ガス装置、加熱機能を有する取鍋精錬炉などの二次精錬炉で所定の組成の溶鋼に溶製してもよい。
【0029】
本発明においては、溶解室2に巻き込まれる空気量を調整し、それによって、予熱室3を通過する排ガスの流量を適正化するので、排ガスの有する熱エネルギーを効率高く冷鉄源13に着熱させることが安定して実現され、従来よりも更に電力使用量を低減することが達成される。
【0030】
尚、本発明は上記説明の範囲に限定されるものではなく、種々の変更が可能である。例えば上記説明では、複合アーク溶解炉1として直流式のものを例示したが、交流式複合アーク溶解炉であっても構わず、また、炭材の添加方法としては、上述した例のように、ランス吹き込み法でもよいが、溶解室2の上方から浴中へインジェクションする方法でも構わないし、炉底に専用のノズルを埋設して、底吹きインジェクションであっても構わない。要は、設備投資と効率とのバランスから最適な設備で実施すればよい。
【実施例】
【0031】
図1に示す直流式複合アーク溶解炉を用いて冷鉄源を溶解する際に、溶解室への空気の巻き込み量を変更し、そのときの電力使用量を調査する試験を実施した。使用した複合アーク溶解炉は、溶解室が炉径6m、高さ3m、予熱室が幅3m、奥行き4m、高さ5m、炉容量150t/ヒート、トランス容量100MVAのものである。
【0032】
溶解室内及び予熱室内に、冷鉄源として、日本鉄源協会の「鉄スクラップ検収統一規格」に規定されている鉄スクラップを150トン装入し、炉底電極及び上部電極に通電してアークを発生させ、前記鉄スクラップを溶解した。また、酸素吹き込みランスからは酸素ガスを5000Nm3/hで送酸し、炭材吹き込みランスからは70kg/minのコークスを吹き込んだ。溶解室内での鉄スクラップの溶解に伴って、予熱室内に装入・充填した鉄スクラップが降下したなら、予熱室上方の冷鉄源供給用バケットから追加の鉄スクラップを供給し、予熱室内の鉄スクラップの高さを常に一定に保持した。
【0033】
このように、溶解室内及び予熱室内に鉄スクラップが連続して存在する状態の下に溶解を進行させ、溶解室内に150トンの溶鋼が生成した段階で、50トンの溶鋼を炉内に残し、1ヒート分の100トンの溶鋼を出鋼口から取鍋に出鋼した。出鋼時の溶鋼の温度は1600℃、溶鋼中のC濃度は0.1質量%となるように操業した。
【0034】
100トンの溶鋼の出鋼後も、酸素ガスの供給とコークス吹き込みとを行いながら鉄スクラップの溶解を継続し、再度、溶解室内の溶鋼量が150トンになったなら100トンの溶鋼を出鋼することを繰り返して実施し、平均値で、溶解時間約30分間/ヒート、酸素量25Nm3/t、コークス量21kg/tの条件で100トンの溶鋼が得られた。
【0035】
このような操業の中で、排滓口の開度を調整することで、溶解室への空気の巻き込み量を調整し、電力原単位に及ぼす影響を調査した。溶解室への空気の巻き込み量は、予熱室の上部に設けられるダクトの後段に設置した流量計及びガス分析装置を用いて、排ガス流量及びガス組成(CO、CO2、O2、N2)を測定し、窒素ガスのバランスから算出した。或る時間での排ガス流量をf(Nm3/h)とし、排ガス中の窒素ガス濃度をa%とすると、空気の巻き込み量g(Nm3/h)は、g=f×a/78.1で計算でき、操業時間に亘ってこの量を積分し、鉄スクラップ溶解質量W(t)あたりに換算して空気の巻き込み量G(Nm3/t)を算出した(G=∫g(t)dt/W)。
【0036】
この溶解試験における電力原単位の調査結果を図2に示す。図2に示すとおり、本発明方法に適合する溶解方法の場合、つまり、空気の巻き込み量が40Nm3/t以上120Nm3/t以下の場合には、直流式複合アーク溶解炉の電力原単位が目標の300kWh/tよりも少なくなり、排ガスの有する顕熱のエネルギーを効率良く回収できることが確認できた。
【符号の説明】
【0037】
1 複合アーク溶解炉
2 溶解室
3 予熱室
4 炉壁
5 炉蓋
6 炉底電極
7 上部電極
8 酸素吹き込みランス
9 炭材吹き込みランス
10 取鍋
11 供給用バケット
12 ダクト
13 冷鉄源
14 排滓口
15 出鋼口
16 溶鋼
17 溶融スラグ

【特許請求の範囲】
【請求項1】
溶解室と、該溶解室の上部に直結するシャフト形の予熱室と、を有する複合アーク溶解炉を用い、前記予熱室に装入・充填された冷鉄源を、該冷鉄源が予熱室内を徐々に降下する間に前記溶解室内で発生した排ガスで予熱するとともに、予熱された冷鉄源を溶解室に導いてアーク熱で溶解する冷鉄源の溶解方法において、前記溶解室内に巻き込まれる空気の量を調整し、これによって前記予熱室を通過する排ガスの流量を制御することを特徴とする、複合アーク溶解炉を用いた冷鉄源の溶解方法。
【請求項2】
前記溶解室内に巻き込まれる空気の量を、溶解室で溶解される冷鉄源1トンあたり40〜120Nm3の範囲内に調整することを特徴とする、請求項1に記載の複合アーク溶解炉を用いた冷鉄源の溶解方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−28826(P2013−28826A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【出願番号】特願2011−163808(P2011−163808)
【出願日】平成23年7月27日(2011.7.27)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】