説明

複合磁石構造体

【課題】平坦度などの寸法精度が高く、しかも良好な磁気特性を有し、強度のバラツキが少なく、製造コストが安価な複合磁石構造体を提供すること。
【解決手段】複合磁石構造体は、少なくとも一部の辺に沿って稜線加工処理されている稜線加工部を有する2以上の磁石片と、磁石片の主側面を露出させた状態で、稜線加工部に沿って配置されることにより2以上の前記磁石片を一体化して固定する樹脂枠と、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複合磁石構造体に関する。
【背景技術】
【0002】
たとえば各種モータ等の応用製品においては、磁石を組み込んだモータが主流であり、これまで磁石を単体でアッセンブリすることが行われている。近年、モータ等の磁石利用製品では精密化や高特性化が著しく進んでおり、より高特性な磁石が要求されている。一方で、磁石が大型化すると渦電流による発熱や損失等が問題となり、その対策が望まれている。
【0003】
このような状況から、磁石を複数の小さな磁石に分割し、それらをまとめて取り扱う形態が提案されている(例えば、特許文献1や特許文献2等を参照)。特許文献1に示す技術では、接着剤で磁石片を一体化して複合磁石構造体を形成している。また、特許文献2に示す技術では、接着シートで磁石片を一体化して複合磁石構造体を形成している。
【0004】
しかしながら、特許文献1または2に示す技術では、接着剤または接着シートを介して磁石片を接着するために、磁石片の表面処理によっては、使用可能な接着剤または接着シートの種類が限定される等の課題がある。特に、磁石片の表面処理としてNiめっきが行われている場合には、接着面の洗浄度などが影響して、接着強度にバラツキが生じるおそれもある。
【0005】
また、これらの従来技術では、接着剤または接着シートの管理など自動化が難しく、製造コストが嵩むという課題を有する。また、接着精度が悪く、磁石片相互の位置合わせが難しく、複合磁石構造体の平面度などの寸法精度が悪くなるという課題もある。寸法精度が悪くなると、所定の取付位置に複合磁石構造体を取り付けることが困難になる。
【0006】
なお、プラスチック板などの基体に複数の磁石片を接着などで取り付けることにより、複合磁石構造体を作成することも提案されている(特許文献3)。この構造では、磁石片の位置決めが容易であり、平面度などの寸法精度が向上するが、磁石片の表面にプラスチック板などが配置されるために、磁気特性が低下するおそれがある。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2008−253046号公報
【特許文献2】特開2003−164083号公報
【特許文献3】特開2007−266200号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、このような実状に鑑みてなされ、その目的は、平面度などの寸法精度が高く、しかも良好な磁気特性を有し、強度のバラツキが少なく、製造コストが安価な複合磁石構造体を提供することである。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本発明に係る複合磁石構造体は、
少なくとも一部の辺に沿って稜線加工処理されている稜線加工部を有する2以上の磁石片と、
前記磁石片の主側面の一部を露出させた状態で、前記稜線加工部に沿って配置されることにより2以上の前記磁石片を一体化して固定する樹脂枠と、を有する。
【0010】
本発明では、稜線加工部に沿って樹脂枠が配置されることにより2以上の前記磁石片を一体化して複合磁石構造体が構成されている。稜線加工部は、たとえば面取り加工などにより形成される部分であり、稜線加工前の磁石片から除去された空間部分である。
【0011】
本発明では、この除去された空間部分を利用して、たとえば射出成形により樹脂を流し込んで硬化させることにより樹脂枠を形成することができる。磁石片の主側面を、射出成形用金型のキャビティ内壁面に接触させて配置し、しかも各磁石片を、金型のキャビティの内部で相互に接触させて配置すれば、磁石片相互の位置合わせが自己整合的に行われると共に、稜線加工部に対応する樹脂流路も自動的に形成される。その状態で射出成形(インサート成形とも言う)を行えば、稜線加工部に沿って樹脂枠が一体成形され、磁石片の主側面を露出させた状態で、樹脂枠により磁石片相互を一体化することが可能になる。
【0012】
このため、本発明の複合磁石構造体では、各磁石片の主側面が相互に自己整合的に位置合わせされているために、平面度などの寸法精度が向上する。また、各磁石片の主側面が露出しているために、良好な磁気特性を有する。さらに、樹脂枠自体には接着力が無くとも、磁石片の稜線加工部に沿って樹脂枠が形成されることで、磁石片相互を一定の強度で保持することが可能となり、接着剤による一体化に比較して強度のバラツキが少ない。さらにまた、射出成形などにより樹脂枠を一体成形することが可能なので、多量生産が容易であり、製造コストも安価である。
【0013】
さらに本発明では、複数の磁石片が一体化されて大面積の主側面を形成することができるため、磁気特性に優れていると共に、渦電流による弊害が少ない。好ましくは、主側面が磁極面である。
【0014】
前記稜線加工部は、たとえば面取り加工、あるいは、稜線加工時の削除部分の断面形状が四角形状である稜線加工により形成される。面取り加工としては、角部を断面三角状に除去して加工する通常のC面取り加工のみでなく、R面取り加工、あるいはその他の形状に除去して面取りを行う加工も含む。R面取り加工は、角部に丸みを持たせる加工である。
【0015】
好ましくは、前記樹脂枠が第1連結部と第2連結部とを有し、
前記第1連結部は、2以上の磁石片にまたがって配置され、
前記第2連結部は、2以上の前記第1連結部を相互に連結するように配置されている。樹脂枠が第1連結部と第2連結部とを有することで、一体化された磁石片の相互を連結する樹脂枠が、構造的に強くなり、複合磁石構造体の強度が向上する。
【0016】
前記複合磁石構造体は直方体形状であって、前記複合磁石構造体の長辺方向に第1連結部を有していても良い。あるいは、前記複合磁石構造体が直方体形状であって、前記複合磁石構造体の短辺方向に第1連結部を有しても良い。複合磁石構造体が用いられる用途に応じて、適宜変更することができる。
【0017】
少なくとも一つの前記磁石片が他の前記磁石片と磁気特性が異なっていても良い。一体化される全ての磁石片の磁気特性が同じであっても良いが、用途によっては、異ならしめても良い。たとえば複合磁石構造体の中心部分と端部分とで、磁気特性を異ならせたい場合には有効である。
【図面の簡単な説明】
【0018】
【図1】図1は、本発明の一実施形態に係る複合磁石構造体の斜視図である。
【図2】図2(a)は、図1に示す複合磁石構造体のIIa−IIa線に沿う断面図、図2(b)は、図1に示す複合磁石構造体のIIb−IIb線に沿う断面図である。
【図3】図3は、図1に示す複合磁石構造体のIII−III線に沿う断面図である。
【図4】図4は、図1〜図3に示す複合磁石構造体を構成する磁石片の斜視図である。
【図5】図5(a)は、図4に示す磁石片の稜線加工部を示す概略図、図5(b)および図5(c)は、稜線加工部の変形例を示す概略図である。
【図6】図6は、図1〜図3に示す複合磁石構造体を製造するために、図4に示す磁石片を金型のキャビティ(図示省略)内に配列した状態を示す斜視図である。
【図7】図7は、本発明の他の実施形態に係る複合磁石構造体の斜視図である。
【図8】図8は、図7に示す複合磁石構造体のVIII−VIII線に沿う断面図である。
【図9】図9は、図7に示す複合磁石構造体のIX−IX線に沿う断面図である。
【図10】図10は、図7に示す複合磁石構造体の枠体を除いた磁石片の配列を示す斜視図である。
【図11】図11は、本発明のさらに他の実施形態に係る複合磁石構造体の斜視図である。
【発明を実施するための形態】
【0019】
以下、本発明を、図面に示す実施形態に基づき説明する。
【0020】
第1実施形態
図1に示すように、本発明の第1実施形態に係る複合磁石構造体2は、2以上の磁石片4が樹脂枠10により一体化されて固定されている。複合磁石構造体2の形状に特に制限はないが、たとえば図示するような平板状の直方体形状である。
【0021】
複合磁石構造体2を構成する磁石片4は、複合磁石構造体2を長手方向に沿って複数(たとえば4つ)に分割する平板状の直方体形状である。本実施形態では、たとえば図4に示すように、各磁石片4は、厚み方向に相互に向き合う比較的大面積の2つの主側面4aと、長手方向に相互に向き合う2つの端面4bと、幅方向に相互に向き合う2つの副側面4cと、を有する。
【0022】
各磁石片4の長さL0、幅W0および厚みT0は、特に限定されないが、たとえばL0=8〜40mm、W0=4〜40mm、T0=3〜15mmである。本実施形態では、各磁石片4の長手方向をX軸とし、幅方向をZ軸とし、厚み方向をY軸とし、これらは相互に垂直となる。
【0023】
図4に示すように、本実施形態では、各磁石片4において、主側面4aと副側面4bとの角部(辺または稜線/以下同様)、主側面4aと端面4bとの角部、および副側面4cと端面4bとの角部の全ての角部において、稜線加工処理がなされ、稜線加工部20が形成してある。すなわち、本実施形態に係る磁石片4は、全ての辺が、辺に沿って稜線加工処理されている稜線加工部20を有する。
【0024】
図示する例では、稜線加工部20は、図5(a)に示すように、稜線に垂直な断面において、加工による削除断面が三角形状になるように、加工寸法αで面取り加工処理がなされている。ただし、本発明では、図5(b)に示すように、加工による削除断面が四角形状になるように、加工寸法αで稜線加工処理がなされていても良いし、図5(c)に示すように、曲率半径(加工寸法)αを有するようにR加工処理されていても良い。
【0025】
加工による削除断面が三角形状になる面取り加工は、たとえば切削加工、研削加工、研磨加工、放電加工などにより行われる。R加工は、角部に丸みを持たせる加工であり、たとえばバレル研磨、研削加工、研磨加工、放電加工などにより行われる。加工による削除断面が四角形状になる稜線加工処理は、たとえば切削加工、研削加工、研磨加工、放電加工などにより行われる。
【0026】
稜線加工処理における加工寸法αは、特に限定されないが、好ましくは0.8〜7.5mmであり、磁石片4の最小長さ(厚みT0)に対する比(α/T0)と表した場合には、好ましくは0.1〜0.5である。
【0027】
図1〜図3に示すように、本実施形態に係る樹脂枠10は、磁石片4の稜線加工部20に沿って配置されることにより、2以上の磁石片を一体化して固定し、Z軸方向に沿って細長い板状の複合磁石構造体2を構成している。この実施形態では、各磁石片4の幅方向Zが構造体2の長手方向と一致するように構成してある。
【0028】
図1に示すように、樹脂枠10は、第1連結部10aと第2連結部10bとを有する。第1連結部10aは、Z軸方向に形成された稜線加工部20(図6参照)に沿って、2以上の磁石片4にまたがって配置される。本実施形態では、第1連結部10bは、図2(A)に示すように、磁石片4の端面4bを覆うように形成してあり、そのX軸方向の外側には、第1連結部10aと補強部10cが一体的に形成してある。
【0029】
補強部10cは、図1に示すように、第1連結部10aからX軸方向に突出し、Z軸方向に沿って連続して形成される。補強部10cは、複合磁石構造体2のX軸方向の両側に形成されるが、いずれか一方でも良く、あるいは、補強部10cは、必ずしも設けなくとも良い。
【0030】
図1に示す第2連結部10bは、図6に示す磁石片4にX軸方向に沿って形成された稜線加工部20に沿って形成される。図1に示すように、第2連結部10bは、第1連結部10aの相互間を連結するように、X軸方向に伸びており、各磁石片の主側面4aと、Z軸方向の両端に位置する磁石片4の副側面4cとが露出するようになっており、磁石片4のその他の部分は、樹脂枠10により被覆されるようになっている。樹脂枠10の厚みは、第2連結部10bでは、図5に示す稜線加工部20の加工寸法に対応し、第1連結部10aでは、図2(a)および図2(b)に示すように、自由に設定することができる。
【0031】
<磁石片>
本実施形態に用いられる磁石片4の構成材料は特に限定されず、例えば、R−Fe−B系の組成が挙げられる。磁石片の組成をR−Fe−B系のものとすることで、優れた磁石特性が得られる他、後述する保護層の形成による耐食性向上効果がより良好に得られる。
【0032】
磁石片4には、各々保護層が形成されていてもよい。保護層が樹脂層である場合、樹脂の種類は特に限定されず、熱硬化性樹脂からなる層または熱可塑性樹脂からなる層の両方が適用できる。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、メラミン樹脂、エポキシメラミン樹脂、熱硬化性アクリル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリパラキシリレン樹脂、ポリ尿素樹脂、エポキシシリコーン樹脂、アクリルシリコーン樹脂等が挙げられる。また、熱可塑性樹脂としては、アクリル酸、エチレン、塩化ビニル、酢酸ビニル等のビニル化合物を原料とするビニル樹脂が挙げられる。
【0033】
また、保護層が金属層である場合には、例えば、Ni、Ni−P、Cu、Zn、Cr、Sn、Al又はこれらからなる複数の層を組み合わせたものが例示できる。
【0034】
さらに、保護層が無機層である場合には、アルカリ珪酸塩、TiO2 、ZrO2 、SiO2 、Al2 O3 等の酸化物、TiN、AlN等の窒化物等からなるものが挙げられる。
【0035】
<樹脂枠>
樹脂枠10を構成する樹脂の種類は特に限定されず、熱硬化性樹脂からなる層または熱可塑性樹脂からなる層の両方が適用できる。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、メラミン樹脂、エポキシメラミン樹脂、熱硬化性アクリル樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリパラキシリレン樹脂、ポリ尿素樹脂、エポキシシリコーン樹脂、アクリルシリコーン樹脂等が挙げられる。また、熱可塑性樹脂としては、ナイロン、ポリエステル樹脂、アクリル酸、エチレン、塩化ビニル、酢酸ビニル等のビニル化合物を原料とするビニル樹脂が挙げられる。本実施形態の複合磁石構造体に用いられる樹脂枠としては、中でもナイロン、ポリエステル樹脂、ポリブチレンテフタレート、ポリフェニレンサルファイドが好ましい。これらの樹脂は、狭い隙間に対しても射出成形が容易であり、または耐熱性に優れる。ナイロンとポリエステル樹脂は流動性が良く狭い隙間に射出成形が容易で、ポリブチレンテフタレートとポリフェニレンサルファイドは耐熱性に優れる。
【0036】
<複合磁石構造体の製造方法>
以下では、本実施形態に係る複合磁石構造体の製造方法を説明する。
まず、同一サイズの直方体形状の磁石片を複数個準備し、前記磁石片の角部に、角部の稜線に垂直な断面において、加工による削除断面が三角形状になるように面取り加工を行い、稜線加工部20を形成する。
【0037】
次いで、各磁石片4に、必要に応じて保護層を形成する。保護層が樹脂層の場合は、上述した樹脂を溶剤に溶解して塗布液を調整し、これをディップコート法、ディップスピンコート法、スプレーコート法等により磁石片の表面に塗布した後、焼き付けたり乾燥させたりすることで形成することができる。また、樹脂層を形成するためのモノマーを気化させて磁石片表面に蒸着すると同時に重合させる、いわゆる重合蒸着法によっても、樹脂層の形成が可能である。あるいは、電着塗装でも樹脂層の形成が可能である。
【0038】
保護層が金属層の場合には、磁石片に対して電気めっき、無電解めっき等を施すことにより形成することができる。その他、イオンプレーティング法、スパッタ法、蒸着法等の気相法も適用できる。
【0039】
さらに、保護層が無機層の場合には、水ガラス等のアルカリ珪酸塩溶液や金属アルコキシド溶液を磁石片の表面に塗布した後、焼き付けや乾燥等を行うことで形成することができるほか、イオンプレーティング法、CVD法等の気相法や酸化、窒化、化成処理による表面改質法を用いても形成することができる。
【0040】
次いで、樹脂枠10を成形するための金型を準備する。金型は、第1金型と第2金型とからなり、前記第1金型と前記第2金型とを分割面で組み合わせることにより、内部にキャビティが形成される。
【0041】
図示省略してある射出成形用金型のキャビティ内に、図4に示す磁石片4を、図6に示すように、各磁石片4の副側面4cが相互に当接するようにして、各磁石片4の幅方向Zに沿って一列に並べて配置する。
【0042】
金型のキャビティ内では、磁石片4の主側面4aは、金型のキャビティ内壁面に接触させて配置し、しかも各磁石片4は、副側面4c同士が接触して配置してあり、かつ、Z軸方向の両端に位置する磁石片4の副側面4cも、金型のキャビティ内壁面に接触させて配置される。各磁石片4の端面4bは、金型のキャビティ内壁面に対して所定の隙間で配置される。
【0043】
金型のキャビティ内における各磁石片4のX軸方向の位置合わせは、たとえば所定厚みでキャビティ内流路を確保できる形状を持つ複数のスペーサを端面4bとキャビティ内壁面との間に配置すれば良い。スペーサは、射出成形される樹脂と同じ樹脂で構成されても良く、その他の樹脂、あるいはその他の材料で構成されて良く、射出成形される樹脂と一体化される。
【0044】
図6に示す状態で、磁石片4の端面4b方向(X軸方向)から樹脂を注入して射出成形すれば、樹脂は、キャビティ内壁面と稜線加工部20との間の隙間を通して流れて硬化し、図1〜図3に示す樹脂枠10が形成される。
【0045】
本実施形態では、稜線加工部20に沿って樹脂枠10が配置されることにより2以上の磁石片4を一体化して複合磁石構造体2が構成されている。稜線加工部20は、面取り加工またはR加工により形成される部分であり、稜線加工前の磁石片4から除去された空間部分である。
【0046】
本実施形態では、この除去された空間部分を利用して、射出成形により樹脂を流し込んで硬化させることにより樹脂枠10を形成することができる。磁石片4の主側面4aを、射出成形用金型のキャビティ内壁面に接触させて配置し、しかも各磁石片4を、金型のキャビティの内部で相互に接触させて配置すれば、磁石片4相互の位置合わせが自己整合的に行われると共に、稜線加工部20に対応する樹脂流路も自動的に形成される。その状態で射出成形(インサート成形とも言う)を行えば、稜線加工部20に沿って樹脂枠10が一体成形され、磁石片4の主側面4aを露出させた状態で、樹脂枠10により磁石片4相互を一体化することが可能になる。
【0047】
このため、本実施形態の複合磁石構造体2では、各磁石片4の主側面4aが相互に自己整合的に位置合わせされているために、平面度などの寸法精度が向上する。また、各磁石片4の主側面4aが露出しているために、良好な磁気特性を有する。さらに、樹脂枠10自体には接着力が無くとも、磁石片4の稜線加工部20に沿って樹脂枠10が形成されることで、磁石片4相互を一定の強度で保持することが可能となり、接着剤による一体化に比較して強度のバラツキが少ない。さらにまた、射出成形などにより樹脂枠10を一体成形することが可能なので、多量生産が容易であり、製造コストも安価である。
【0048】
さらに本実施形態では、複数の磁石片4が一体化されて大面積の主側面4aを形成することができるため、磁気特性に優れていると共に、渦電流による弊害が少ない。
【0049】
また本実施形態では、樹脂枠10が第1連結部10aと第2連結部10bとを有することで、一体化された磁石片4の相互を連結する樹脂枠10が、構造的に強くなり、複合磁石構造体2の強度が向上する。
【0050】
第2実施形態
図7〜図10に示すように、本発明の第2実施形態に係る複合磁石構造体2Aは、図1〜図6に示す第1実施形態に係る複合磁石構造体2に比較して、磁石片4A1および4A2に形成してある稜線加工部20の形成位置が異なり、結果として得られる樹脂枠10Aの構造が異なる。それ以外の第2実施形態に係る複合磁石構造体2Aの構成および作用効果は、第1実施形態に係る複合磁石構造体2と同様なので、重複する説明は省略する。
【0051】
図7〜図10に示すように、本実施形態では、Z軸方向の両端部に配置される磁石片4A1と、それらの中間に配置される磁石片4A2とは、稜線加工部20の形成位置が異なる。すなわち、磁石片4A1では、一方の副側面4cにのみ稜線加工部20が形成され、他方の副側面4cには、稜線加工部20が形成されない。磁石片4A1の両端面4bには、稜線加工部20が形成してある。また、磁石片4A2では、双方の副側面4cには、稜線加工部20が形成されず、両端面4bにのみ、稜線加工部20が形成してある。
【0052】
そのため、図7に示すように、磁石片4A1と磁石片4A2との間には、第2連結部10bが形成されず、磁石片4の主側面4aの露出面積が増大する。磁石片の主側面4aは、磁極面となる部分であり、その面積を広くすることで、磁気特性が向上する。
【0053】
第3実施形態
図11に示すように、本発明の第3実施形態に係る複合磁石構造体2Bは、図1〜図6に示す第1実施形態に係る複合磁石構造体2に比較して、磁石片4B1および4B2のサイズが異なり、しかも、磁石片4B1と磁石片4B2とでは、磁気特性が異なる。さらに、第3実施形態に係る複合磁石構造体2Bは、図1に示す補強部10cが形成されていない樹脂枠10Bを有する。
【0054】
この第3実施形態に係る複合磁石構造体2Bでは、第1実施形態に係る複合磁石構造体2とは異なり、各磁石片4の長手方向Xが、複合磁石構造体2bの長手方向に一致し、複合磁石構造体2Bの短辺方向に第1連結部10aが形成してある。また、複合磁石構造体2Bの長辺方向に第2連結部10bが形成してある。
【0055】
しかも、本実施形態の複合磁石構造体2bでは、Z軸方向の端部に位置する磁石片4の副側面4cが露出すると共に、X軸方向の端部に位置する磁石片4の端面4bが露出している。上述した以外の第3実施形態に係る複合磁石構造体2Bの構成および作用効果は、第1実施形態に係る複合磁石構造体2と同様なので、重複する説明は省略する。
【0056】
本実施形態では、磁石片4B1が他の磁石片4B2と磁気特性が異なっている。本実施形態では、複合磁石構造体2Bの中心部分と端部分とで、保磁力や飽和磁束密度などの磁気特性を異ならせたい場合には有効である。
【0057】
なお、本発明は、上述した実施形態に限定されるものではなく、本発明の範囲内で種々に改変することができる。
たとえば、複合磁石構造体を構成する磁石片の形状や個数は、図示する例に限らず、種々に改変することができる。
【実施例】
【0058】
以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
【0059】
実施例1
まず、図4に示す寸法L0×W0×T0=24mm×18mm×8mmの同一サイズの直方体形状の磁石片4を、各試料1〜6毎に4個×10サンプル数で準備し、磁石片4の角部に、角部の稜線に垂直な断面において、加工による削除断面が三角形状になるように面取り加工を行い、稜線加工部20を形成した。面取り時の加工寸法αを表1に示す。なお、表1において、面取り方法の記号Cは、図5(a)に示す削除断面が三角形状になる面取り加工を意味し、記号□は、図5(b)に示す削除断面が四角形状になる稜線加工を意味し、記号Rは、図5(c)に示すR加工である。
【0060】
次いで、各磁石片4に、必要に応じて保護層を形成した。保護層、エポキシ樹脂、フェノール樹脂の場合は、樹脂を溶剤に溶解して塗布液を調整し、これをディップコート法により磁石片4の表面に塗布した後、乾燥させて形成した。保護層がNi金属層の場合には、磁石片4に対して電気めっきにより形成した。
【0061】
次いで、樹脂枠10を成形するための金型を準備した。図示省略してある金型のキャビティ内に、図4に示す磁石片4を、図6に示すように、各磁石片4の副側面4cが相互に当接するようにして、各磁石片4の幅方向Zに沿って一列に並べて配置した。
【0062】
金型のキャビティ内では、磁石片4の主側面4aは、金型のキャビティ内壁面に接触させて配置し、しかも各磁石片4は、副側面4c同士が接触して配置してあり、かつ、Z軸方向の両端に位置する磁石片4の副側面4cも、金型のキャビティ内壁面に接触させて配置した。各磁石片4の端面4bは、金型のキャビティ内壁面に対して所定の隙間で配置した。
【0063】
金型のキャビティ内における各磁石片4のX軸方向の位置合わせは、複数のスペーサを端面4bとキャビティ内壁面との間に配置することにより行った。図6に示す状態で、磁石片4の端面4b方向(X軸方向)から樹脂を注入して射出成形を行った。樹脂は、キャビティ内壁面と稜線加工部20との間の隙間を通して流れて硬化し、図1〜図3に示す樹脂枠10が形成された。
成形された複合磁石構造体2(図1参照)について、磁極面である主側面4aの平面度と、X軸方向の端面の平面度と、強度のバラツキと、磁気特性とを測定した。平面度の測定は、複合磁石構造体2の主側面4aまたは補強部10cの側面について、デジマチックインジケータ(型番ID-C1012X(B)、株式会社ミツトヨ製)を用いて位置ズレを測定し、その位置ズレの差が最も大きい値(単位mm)を表1に示した。平面度は、0.03以下を良好とする。
【0064】
また、強度のバラツキは、複合磁石構造体2の3点曲げ試験(JIS R 1601)を行い、その強度のバラツキを、最大値から最小値を引いた値を平均値で割った値で示した。各試料についてのサンプル数は10である。強度のバラツキは、1.00以下を良好とする。
【0065】
さらに、磁気特性は、複合磁石構造体一つ当たりのトータルフラックスを、フラックスメータ480型(LakeShore製)により測定し、稜線加工部が全く無い場合の磁石片の集合体の表面磁束を100として%表記した。磁気特性は、95%以上を良好とするが、面取りの方法によっては、92%以上を良好とする場合がある。
【0066】
結果を表1に示す。表1に示すように、面取りの加工寸法αが0.8〜2.0mmで、α/T0=0.1〜0.25の場合に、平面度、強度のバラツキおよび磁気特性が良好になることが確認された。
【0067】
実施例2
磁石片4のサイズL0×W0×T0=18mm×12mm×6mmとした以外は、実施例1と同様にして、試料10〜15を作製し、それぞれのサンプルについて、実施例1と同様な評価を行った。
【0068】
結果を表1に示す。表1に示すように、面取りの加工寸法αが0.8〜2.0mmで、α/T0=0.133〜0.333の場合に、平面度、強度のバラツキおよび磁気特性が良好になることが確認された。
【0069】
実施例3
磁石片4の稜線加工部20をR処理とした以外は、実施例1と同様にして、試料20〜25を作製し、それぞれのサンプルについて、実施例1と同様な評価を行った。
【0070】
結果を表1に示す。表1に示すように、面取りの加工寸法αが1〜2.0mmで、α/T0=0.125〜0.250の場合に、平面度、強度のバラツキおよび磁気特性が良好になることが確認された。
【0071】
実施例4
磁石片4の稜線加工部20を断面四角の面取り加工処理とした以外は、実施例1と同様にして、試料30〜35を作製し、それぞれのサンプルについて、実施例1と同様な評価を行った。
【0072】
結果を表1に示す。表1に示すように、面取りの加工寸法αが0.8〜2.0mmで、α/T0=0.1〜0.250の場合に、平面度、強度のバラツキおよび磁気特性が良好になることが確認された。なお、本実施例では、磁気特性は、92%以上を良好としている。目標とする磁気特性に応じて、面取り方法を選択しても良い。
【0073】
実施例5
図7〜図9に示すように、磁石片4の稜線加工部20を、一部のみに形成した以外は、実施例4と同様にして、試料40〜45を作製し、それぞれのサンプルについて、実施例4と同様な評価を行った。
【0074】
結果を表1に示す。表1に示すように、面取りの加工寸法αが0.8〜2.0mmで、α/T0=0.1〜0.250の場合に、平面度、強度のバラツキおよび磁気特性が良好になることが確認された。
【0075】
実施例6
磁石片の表面処理を表1に示すように変化させると共に、面取りの加工寸法を1.5mmと固定した以外は、実施例1と同様にして、試料50〜52を作製し、それぞれのサンプルについて、実施例1と同様な評価を行った。
【0076】
結果を表1に示す。表1に示すように、表面処理の方法によらずに、平面度、強度のバラツキおよび磁気特性が良好になることが確認された。
【0077】
比較例1
磁石片に稜線加工処理を全く施さずに、しかも樹脂枠を形成すること無く、磁石片をエポキシ接着剤から成る接着剤で固定した以外は、実施例1と同様にして、試料60〜62を作製し、それぞれのサンプルについて、実施例1と同様な評価を行った。
【0078】
結果を表1に示す。表1に示すように、接着剤による固定方法では、平面度および強度のバラツキの点で、実施例に比較して劣ることが確認された。
【0079】
【表1】

【符号の説明】
【0080】
2,2A,2B… 複合磁石構造体
4、4A1,4A2,4B1,4B2… 磁石片
4a… 主側面
4b… 端面
4c… 副側面
10,10A,10B… 樹脂枠
10a… 第1連結部
10b… 第2連結部
10c… 補強部
20,20a,20c… 稜線加工部

【特許請求の範囲】
【請求項1】
少なくとも一部の辺に沿って稜線加工処理されている稜線加工部を有する2以上の磁石片と、
前記磁石片の主側面の一部を露出させた状態で、前記稜線加工部に沿って配置されることにより2以上の前記磁石片を一体化して固定する樹脂枠と、を有する複合磁石構造体。
【請求項2】
前記主側面が磁極面である請求項1に記載の複合磁石構造体。
【請求項3】
前記稜線加工部が面取り加工により形成される請求項1または2に記載の複合磁石構造体。
【請求項4】
前記稜線加工時の削除部分の断面形状が四角形状である請求項1または2に記載の複合磁石構造体。
【請求項5】
前記樹脂枠が第1連結部と第2連結部とを有し、
前記第1連結部は、2以上の磁石片にまたがって配置され、
前記第2連結部は、2以上の前記第1連結部を相互に連結するように配置されている請求項1〜4のいずれかに記載の複合磁石構造体。
【請求項6】
前記複合磁石構造体が直方体形状であって、前記複合磁石構造体の長辺方向に前記第1連結部を有する請求項5に記載の複合磁石構造体。
【請求項7】
前記複合磁石構造体が直方体形状であって、前記複合磁石構造体の短辺方向に第1連結部を有する請求項5に記載の複合磁石構造体。
【請求項8】
少なくとも一つの前記磁石片が他の前記磁石片と磁気特性が異なる請求項1〜7のいずれかに記載の複合磁石構造体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2012−216626(P2012−216626A)
【公開日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2011−79975(P2011−79975)
【出願日】平成23年3月31日(2011.3.31)
【出願人】(000003067)TDK株式会社 (7,238)
【Fターム(参考)】