説明

超音波発生方法および非破壊検査方法

【課題】アブレーションによるレーザ痕の発生を防ぎつつ、対象物の材質や形状によることなく超音波を好適に発生させ高い精度を得ることが可能な超音波発生方法および非破壊検査方法を提供することを目的とする。
【解決手段】本発明にかかる超音波発生方法の代表的な構成は、金属製の基材102を有する対象物100を伝播する超音波を発生させる超音波発生方法であって、基材の表面102aの少なくとも一部に、レーザ光非透過性および難燃性を有する高分子材料からなる樹脂膜106を形成し、対象物の表面のうち樹脂膜が形成された領域にレーザ光を照射してアブレーションを生じさせることにより対象物を伝播する超音波を発生させることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、対象物の表面に向かってレーザ光を照射してアブレーションを生じさせることにより対象物を伝播する超音波を発生させる超音波発生方法、およびそれを用いた非破壊検査方法に関するものである。
【背景技術】
【0002】
非破壊検査とは、対象物(被検査体)における内部欠陥や微細な傷、薄膜の剥離等(以下、単に欠陥と称する)を、かかる対象物を破壊することなく検出する検査方法である。非破壊検査には、放射線や超音波、赤外線等が用いられる。これらのうち超音波を用いる場合において、レーザ光によるアブレーション(除去加工とも称される)を利用して超音波を発生させる手法(以下、レーザ超音波法と称する)がある。
【0003】
レーザ超音波法では、対象物の表面(ワーク表面)にレーザ光を照射する(レーザ照射)。このレーザ光のエネルギにより、対象物の表層が蒸発・気化する現象であるアブレーションが生じ、アブレーションの反作用として超音波が発生し、対象物内を伝播する。そして、伝播した超音波や反射波の強度変化等によって、被試験体の欠陥を検出する。
【0004】
上記のレーザ超音波法を用いた非破壊検査では、対象物が破壊されることはないものの、アブレーションによって対象物の表面が損傷されることにより外観上レーザ痕が生じてしまうことが課題となっている。これを解決するために、例えば特許文献1では、対象物(被試験体)の表面に薄板を接触配置し、その薄板にレーザ光(パルス光または強度変調光)を照射している。特許文献1によれば、レーザ光が照射されると薄板の表面においてアブレーションが生じ、それによって発生した超音波が、薄板、薄板と被試験体との接触面、ひいては被試験体に伝播するため、被試験体の損傷を招かないとしている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平10−128236号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
更に、特許文献1では、薄板から対象物(被試験体)に超音波が伝播する際の反射波の発生を抑制するために、薄板と対象物とに同一材料を用いることが記載されている。しかしながら、工業製品では、鋳造や押出等の加工は容易であっても薄板状に加工することが困難な材質が多い。このため、特許文献1は適用可能な材質が限られていて汎用性に優れているとは言い難く、仮に薄板と対象物とを異なる材料にすると上述したように反射波の発生により正確な検査ができないおそれがある。また工業製品に限らず、加工品は、表面が平面であることは珍しく、概して起伏、凹凸またはざらつきがあることが多い。故に、薄板と対象物とを接触させる(密着させる)ことは極めて難しい。すると、接触不良による隙間が生じ、薄板と対象物との界面で反射波が発生し、やはり検査精度の低下を招いてしまう。
【0007】
本発明は、このような課題に鑑み、アブレーションによるレーザ痕の発生を防ぎつつ、対象物の材質や形状によることなく超音波を好適に発生させ高い精度を得ることが可能な超音波発生方法および非破壊検査方法を提供することを目的としている。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明にかかる超音波発生方法の代表的な構成は、金属製の基材を有する対象物を伝播する超音波を発生させる超音波発生方法であって、基材の表面の少なくとも一部に、レーザ光非透過性および難燃性を有する高分子材料からなる樹脂膜を形成し、対象物の表面のうち樹脂膜が形成された領域にレーザ光を照射してアブレーションを生じさせることにより対象物を伝播する超音波を発生させることを特徴とする。
【0009】
樹脂膜は、難燃性を有するため、レーザ照射によりかかる樹脂膜の表面においてアブレーションが起こっても燃焼することがない。また樹脂膜はレーザ光を透過しないため(レーザ光非透過性)、対象物の表面へのレーザ光の到達を防ぐことができる。したがって、上記構成のように対象物においてレーザ光が照射される領域に樹脂膜を形成することにより、アブレーションによって超音波を発生させた際に対象物の表面を樹脂膜によって保護することができ、アブレーションによるレーザ痕の発生を防ぐことが可能となる。また樹脂膜は柔軟性を有するため、曲面形状の基材の表面にも容易に追従することができる。故に、対象物の形状によることなく樹脂膜とかかる対象物とを良好に接触(密着)させることができる。したがって、対象物と樹脂膜との間に間隙が生じず、それに起因するノイズを抑制される。このため、本発明の超音波発生方法を非破壊検査方法に適用すれば高い検査精度を得ることが可能となる。
【0010】
上記の樹脂膜は、トリアセチルセルロースまたはポリ塩化ビニルからなるとよい。これらの物質は、多くの高分子材料の中でも、レーザ光非透過性および難燃性に優れているため、樹脂膜として最適である。
【0011】
上記の基材のうち樹脂膜が形成される領域は曲面形状であるとよい。上述したように本発明の超音波発生方法は、曲面形状の基材に対して特に適している。
【0012】
上記の樹脂膜は、シート状のフィルムであって、基材上に接着材を塗布してフィルムを接着することにより形成するとよい。かかる構成によれば、基材上に樹脂膜を容易に形成することが可能である。
【0013】
上記課題を解決するために、本発明にかかる非破壊検査方法の代表的な構成は、金属製の基材を有する対象物の欠陥を超音波により検査する非破壊検査方法であって、基材の表面の少なくとも一部に、レーザ光非透過性および難燃性を有する高分子材料からなる樹脂膜を形成し、対象物の表面のうち樹脂膜が形成された領域にレーザ光を照射してアブレーションを生じさせることにより対象物を伝播する超音波を発生させ、対象物の樹脂膜が形成された側とは反対側に配置された受信装置に対象物を伝播した超音波を受信させて反対側の表面の変位測定を行うことを特徴とする。上述した超音波発生方法における技術的思想に対応する構成要素やその説明は、当該非破壊検査方法にも適用可能である。
【発明の効果】
【0014】
本発明によれば、アブレーションによるレーザ痕の発生を防ぎつつ、対象物の材質や形状によることなく超音波を好適に発生させ高い精度を得ることが可能な超音波発生方法および非破壊検査方法を提供することができる。
【図面の簡単な説明】
【0015】
【図1】本実施形態にかかる超音波発生方法および非破壊検査方法を説明する概略図である。
【図2】本実施形態の非破壊検査方法による変位測定結果を例示する図である。
【発明を実施するための形態】
【0016】
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
【0017】
図1は、本実施形態にかかる超音波発生方法および非破壊検査方法を説明する概略図である。図1に示すように、本実施形態の超音波発生方法では、対象物100の表面に向かってレーザ光(一点鎖線にて図示)を照射しアブレーションを生じさせることにより、対象物100を伝播する超音波(波線にて図示)を発生させる。また本実施形態の非破壊検査方法では、上記の超音波発生方法によって発生し、対象物100内(厳密には後述する基材102内)に伝播した超音波により、対象物100の欠陥の有無を検査する。
【0018】
本実施形態の対象物100は、めっき層104が形成されたアルミニウム合金製の基材102であり、この対象物100の欠陥として、基材102からのめっき層104の剥離の有無を非破壊検査方法によって検査する。ただし、かかる構成は例示にすぎず、以下に詳述する超音波発生方法はめっき層104を有さない対象物に対しても適用可能であり、本実施形態の非破壊検査方法は基材102からのめっき層104の剥離の有無以外の欠陥の検査に用いてもよい。また、基材102の材質も上記に限定されず、アルミニウム合金以外の合金や他の金属であってもよい。
【0019】
本実施形態の特徴として、対象物100は、基材102のレーザ光が照射される側の表面102aに樹脂膜106を備える。樹脂膜106は、レーザ光非透過性および難燃性を有する高分子材料から構成される。かかる高分子材料としては、レーザ光非透過性および難燃性において特に優れているトリアセチルセルロースやポリ塩化ビニルを好適に用いることができる。ただし、これに限定するものではなく、レーザ光非透過性および難燃性を有する他の物質を用いることの可能である。
【0020】
本実施形態では、樹脂膜106としてトリアセチルセルロース(TriAcetylCellulose)製のシート状のフィルム(TAC膜)を用いる。そして、基材102の表面102a上(または樹脂膜106の裏面上)に接着材を塗布して形成した接着層108によってかかるフィルムを接着することにより、表面102a上に樹脂膜106を形成している。これにより、基材102上に樹脂膜106を容易に形成することが可能である。
【0021】
なお、接着層108を構成する接着材については例えばアクリル系接着材を挙げることができるが、これ以外の接着材を用いてもよい。接着層108の厚みについては、可能な限り薄いほうが好ましく、例えば本実施形態のように厚さ90μmとするとよい。接着層108が極度に厚くなると界面での反射によりノイズが発生するおそれがあるからである。
【0022】
また本実施形態においてはシート状(フィルム)の樹脂膜106を基材102の表面102aに接着する構成を例示したが、トリアセチルセルロースを溶解させた溶液をスプレー等によって基材102上に塗布する等、他の方法によって樹脂膜106を形成してもよい。更に、基材102の表面102a上に設ける樹脂膜106の範囲についても、図1のように表面102aの一部に設けてもよいし、表面102aの全面に樹脂膜106を設けてもよい。
【0023】
そして、対象物100の表面(基材102の表面102a)のうち、樹脂膜106が形成された領域に向かって、Qスイッチパルスレーザ110からレーザ光を発振する。発振されたレーザ光は、集光レンズ112において集光され、樹脂膜106に照射される。すると、樹脂膜106でアブレーションが生じ、そのアブレーションによって発生した超音波が基材102内(対象物100内)を伝播する。
【0024】
このとき、従来技術ではアブレーションにより基材102の表面102aに外観上レーザ痕が生じてしまっていた。これに対し、本実施形態では上述したように表面102aのレーザ光が照射される領域に樹脂膜106が形成されている。樹脂膜106は、難燃性を有しレーザ照射によるアブレーションが起こっても燃焼することがないため、基材102の表面102aが樹脂膜106によって保護される。また樹脂膜106はレーザ光非透過性を有するため、基材102の表面102aへのレーザ光の到達が抑制される。したがって、アブレーションを利用して超音波を発生させる際のレーザ痕を防ぐことができる。
【0025】
また樹脂膜106は柔軟性を有する。このため、樹脂膜106は、本実施形態の基材102の表面102aは樹脂膜106が形成された領域が平面形状であるが、かかる領域が曲面形状であっても容易に追従可能である。したがって、対象物100(厳密には基材102の表面102a)の形状に拘わらず、樹脂膜106と対象物100とを良好に接触(密着)させることができる。故に、対象物100(基材102の表面102a)と樹脂膜106との間に間隙が生じづらく、それに起因するノイズを抑制することが可能となる。
【0026】
なお好ましくは、樹脂膜106は、Qスイッチパルスレーザ110から発振されるレーザ光の波長を吸収する分光特性を有するとよい。詳細には、樹脂膜106には、色素の混入等により分光特性を付与することできる。これにより、樹脂膜106におけるレーザ光の吸収率の向上が図れるため、レーザ光の照射エネルギに対して樹脂膜106表面でのアブレーションによる超音波の発生効率を高めることができる。またレーザ光が樹脂膜106に吸収されることにより、レーザ光の樹脂膜106の透過が抑制されるため、より確実に対象物100におけるレーザ痕の発生を防ぐことが可能となる。
【0027】
以上、本実施形態の超音波発生方法の詳細について説明した。次に説明する本実施形態の非破壊検査方法では、上述した超音波発生方法によって発生した超音波を利用して対象物100の欠陥(基材102からのめっき層104の剥離)を検査する。なお、上述した超音波発生方法と重複する部分については説明を省略する。
【0028】
図1に示すように、対象物100に対して樹脂膜106が形成された側とは反対側、換言すればめっき層104が形成されている側には受信装置120が配置されている。本実施形態にかかる非破壊検査方法では、上述した超音波発生方法によって発生し対象物100を伝播した超音波を受信装置120において受信し、対象物100のめっき層104側の表面の変位測定を行う。すなわち、本実施形態にかかる受信装置120は表面変位測定装置であり、例えばレーザ干渉計を好適に用いることができる。そして、受信装置120において得られた変位測定結果はPC130(コンピュータ)に送信され、PC130に設けられた剥離判定部132において、基材102からのめっき層104の剥離(対象物100の欠陥)の有無が検出される。
【0029】
(実施例および比較例)
図2は、本実施形態の非破壊検査方法による変位測定結果を例示する図であり、図2(a)は本実施形態の樹脂膜106を設けた対象物100(実施例)の変位測定結果を例示する図であり、図2(b)は樹脂膜106を設けない比較例の変位測定結果を例示する図である。実施例である対象物100では、波長640nm以下の波長を吸収する分光特性(SC640)を有する厚さ90μmの樹脂膜106をアルミニウム合金からなる基材102に接着した。比較例は、樹脂膜106を設けていないアルミニウム合金製の基材102である。これらの実施例および比較例に対して、レーザ出力60mJ、パルス幅5ns、波長532nmのレーザ光をQスイッチパルスレーザ110から照射した。
【0030】
図2(a)と図2(b)を比較すると、それらはほぼ同様の波形を示している。このことから、本実施形態の対象物100のように基材102上に樹脂膜106を形成しても、それらの界面の反射によるノイズ成分が発生していないことを理解できる。また実施例の対象物100から樹脂膜106を除去後に基材102の表面を観察したところ、レーザ痕は生じていなかった。したがって、上述した超音波発生方法は非破壊検査で使用するレーザ超音波の発生方法として有効であり、それを利用した本実施形態の非破壊検査方法によれば、アブレーションによるレーザ痕の発生を防ぎつつ、対象物の材質や形状によることなく超音波を好適に発生させ高い精度が得られることが確認された。
【0031】
なお、上述した実施例においては、波長640nm以下の波長を吸収する分光特性(SC640)を有する樹脂膜106を例示したが、これに限定するものではない。例えば、レーザ光としてYAGレーザ基本波(波長1064nm)を照射する場合には、赤外線を吸収する分光特性を有する樹脂膜106(または赤外線吸収層を付加した樹脂膜106)を用いることが好ましい。
【0032】
また上述した実施形態では、本実施形態の超音波発生方法を非破壊検査方法に適用する場合を例示したが、これに限定するものではなく、本実施形態の超音波発生方法を他の技術分野に適用することも可能である。
【0033】
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【産業上の利用可能性】
【0034】
本発明は、対象物の表面にレーザ光を照射してアブレーションを生じさせることにより対象物において超音波を発生させる超音波発生方法、およびそれを用いた非破壊検査方法に利用することができる。
【符号の説明】
【0035】
100…対象物、102…基材、102a…表面、104…めっき層、106…樹脂膜、108…接着層、110…Qスイッチパルスレーザ、120…受信装置、130…PC

【特許請求の範囲】
【請求項1】
金属製の基材を有する対象物を伝播する超音波を発生させる超音波発生方法であって、
前記基材の表面の少なくとも一部に、レーザ光非透過性および難燃性を有する高分子材料からなる樹脂膜を形成し、
前記対象物の表面のうち前記樹脂膜が形成された領域にレーザ光を照射してアブレーションを生じさせることにより該対象物を伝播する超音波を発生させることを特徴とする超音波発生方法。
【請求項2】
前記樹脂膜は、トリアセチルセルロースまたはポリ塩化ビニルからなることを特徴とする請求項1に記載の超音波発生方法。
【請求項3】
前記基材のうち前記樹脂膜が形成される領域は曲面形状であることを特徴とする請求項1または2に記載の超音波発生方法。
【請求項4】
前記樹脂膜は、シート状のフィルムであって、前記基材上に接着材を塗布して該フィルムを接着することにより形成することを特徴とする請求項1から3のいずれか1項に記載の超音波発生方法。
【請求項5】
金属製の基材を有する対象物の欠陥を超音波により検査する非破壊検査方法であって、
前記基材の表面の少なくとも一部に、レーザ光非透過性および難燃性を有する高分子材料からなる樹脂膜を形成し、
前記対象物の表面のうち前記樹脂膜が形成された領域にレーザ光を照射してアブレーションを生じさせることにより該対象物を伝播する超音波を発生させ、
前記対象物の前記樹脂膜が形成された側とは反対側に配置された受信装置に前記対象物を伝播した超音波を受信させて該反対側の表面の変位測定を行うことを特徴とする非破壊検査方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−57521(P2013−57521A)
【公開日】平成25年3月28日(2013.3.28)
【国際特許分類】
【出願番号】特願2011−194610(P2011−194610)
【出願日】平成23年9月7日(2011.9.7)
【出願人】(000002082)スズキ株式会社 (3,196)
【Fターム(参考)】