説明

超音波診断装置及び超音波プローブ制御方法

【課題】操作者による感覚的な操作で超音波の送信方向を変更することができる超音波診断装置及び超音波プローブ制御方法を提供することである。
【解決手段】実施形態に係る超音波診断装置は、検出部と、偏向部とを備える。検出部は、超音波プローブに加えられた力、及び、前記超音波プローブの動きのうち、少なくともいずれか1つを検出する。偏向部は、前記力及び前記動きのうち少なくともいずれか1つに基づいて、前記超音波プローブから送信される超音波の送信方向を傾ける。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、超音波診断装置及び超音波プローブ制御方法に関する。
【背景技術】
【0002】
従来、超音波診断装置は、X線診断装置やX線コンピュータ断層撮影装置などの他の医用画像診断装置に比べ、簡便な操作性、被爆のおそれがない非侵襲性などの利点を備えた装置として、今日の医療において、心臓、肝臓、腎臓、乳腺など、様々な生体組織の検査や診断に利用されている。このような超音波診断装置は、超音波プローブから超音波を送信し、被検体の内部組織から反射された反射波信号を受信することによって、被検体内の組織構造の画像である超音波画像を生成する。このとき、超音波診断装置は、超音波が垂直に照射された組織ほど明瞭に描出された超音波画像を生成する。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2000−132664号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明が解決しようとする課題は、操作者による感覚的な操作で超音波の送信方向を変更することができる超音波診断装置及び超音波プローブ制御方法を提供することである。
【課題を解決するための手段】
【0005】
実施形態に係る超音波診断装置は、検出部と、偏向部とを備える。検出部は、超音波プローブに加えられた力、及び、前記超音波プローブの動きのうち、少なくともいずれか1つを検出する。偏向部は、前記力及び前記動きのうち少なくともいずれか1つに基づいて、前記超音波プローブから送信される超音波の送信方向を傾ける。
【図面の簡単な説明】
【0006】
【図1】図1は、第1の実施形態に係る超音波診断装置の構成例を示すブロック図である。
【図2】図2は、超音波診断装置によって生成される超音波画像の一例を示す図である。
【図3】図3は、第1の実施形態における制御部等の構成例を示す図である。
【図4】図4は、第1の実施形態における制御部による処理の一例を示す図である。
【図5】図5は、第1の実施形態に係る超音波診断装置によって生成される超音波画像の一例を示す図である。
【図6】図6は、第1の実施形態に係る超音波診断装置による処理手順を示すフローチャートである。
【図7】図7は、第2の実施形態における制御部等の構成例を示す図である。
【図8】図8は、第2の実施形態における制御部による処理の一例を示す図である。
【図9】図9は、第2の実施形態に係る超音波診断装置による処理手順を示すフローチャートである。
【発明を実施するための形態】
【0007】
(第1の実施形態)
まず、第1の実施形態に係る超音波診断装置の構成について説明する。図1は、第1の実施形態に係る超音波診断装置の構成例を示すブロック図である。図1に例示するように、第1の実施形態に係る超音波診断装置1は、超音波プローブ10と、入力装置20と、モニタ30と、装置本体100とを有する。
【0008】
超音波プローブ10は、複数の圧電振動子を有し、これら複数の圧電振動子は、後述する装置本体100が有する超音波送信ユニット110から供給される駆動信号に基づき超音波を発生する。また、超音波プローブ10は、被検体Pからの反射波信号を受信して電気信号に変換する。また、超音波プローブ10は、圧電振動子に設けられる整合層と、圧電振動子から後方への超音波の伝播を防止するバッキング材などを有する。なお、超音波プローブ10は、装置本体100と着脱自在に接続される。
【0009】
超音波プローブ10から被検体Pに超音波が送信されると、送信された超音波は、被検体Pの体内組織における音響インピーダンスの不連続面で次々と反射され、反射波信号として超音波プローブ10が有する複数の圧電振動子にて受信される。受信される反射波信号の振幅は、超音波が反射される不連続面における音響インピーダンスの差に依存する。なお、送信された超音波パルスが、移動している血流や心臓壁などの表面で反射された場合の反射波信号は、ドプラ効果により、移動体の超音波送信方向に対する速度成分に依存して、周波数偏移を受ける。
【0010】
入力装置20は、装置本体100と接続され、マウス、キーボード、ボタン、パネルスイッチ、タッチコマンドスクリーン、フットスイッチ、トラックボールなどを有する。かかる入力装置20は、超音波診断装置1の操作者からの各種設定要求を受け付け、受け付けた各種設定要求を装置本体100に転送する。
【0011】
モニタ30は、超音波診断装置1の操作者が入力装置20を用いて各種設定要求を入力するためのGUI(Graphical User Interface)を表示したり、装置本体100において生成された超音波画像などを表示したりする。具体的には、モニタ30は、後述する画像合成部160から入力されるビデオ信号に基づいて、生体内の形態学的情報や血流情報を画像として表示する。
【0012】
装置本体100は、超音波プローブ10が受信した反射波信号に基づいて超音波画像を生成する。かかる装置本体100は、図1に例示するように、超音波送信ユニット110と、超音波受信ユニット120と、Bモード処理ユニット131と、ドプラ処理ユニット132と、画像生成ユニット140と、画像メモリ150と、画像合成部160と、制御部170と、記憶部180と、インタフェース部190とを有する。
【0013】
超音波送信ユニット110は、パルス発生器111、送信遅延部112、パルサ113を有し、超音波プローブ10に駆動信号を供給する。パルス発生器111は、所定のレート周波数で、送信超音波を形成するためのレートパルスを繰り返し発生する。また、送信遅延部112は、超音波プローブ10から発生される超音波をビーム状に集束し、かつ送信指向性を決定するために必要な圧電振動子ごとの遅延時間を、パルス発生器111が発生する各レートパルスに対し与える。また、パルサ113は、レートパルスに基づくタイミングで、超音波プローブ10に駆動信号(駆動パルス)を印加する。すなわち、送信遅延部112は、各レートパルスに対し与える遅延時間を変化させることで、圧電振動子面から送信される超音波の送信方向を任意に調整する。なお、送信方向あるいは送信方向を決定する遅延時間は記憶部180に記憶されており、送信遅延部112は、記憶部180を参照して遅延時間を与える場合がある。
【0014】
超音波受信ユニット120は、プリアンプ121、図示しないA/D(Analog/Digital)変換器、受信遅延部122、加算器123を有し、超音波プローブ10が受信した反射波信号に対して各種処理を行って反射波データを生成する。プリアンプ121は、反射波信号をチャネル毎に増幅する。図示しないA/D変換器は、増幅された反射波信号をA/D変換する。受信遅延部122は、受信指向性を決定するために必要な遅延時間を与える。加算器123は、受信遅延部122によって処理された反射波信号の加算処理を行なって反射波データを生成する。加算器123の加算処理により、反射波信号の受信指向性に応じた方向からの反射成分が強調され、受信指向性と送信指向性とにより超音波送受信の総合的なビームが形成される。なお、送信と同様、受信方向あるいは受信方向を決定する遅延時間は記憶部180に記憶されており、受信遅延部122は、記憶部180を参照して遅延時間を与える。
【0015】
Bモード処理ユニット131は、超音波受信ユニット120から反射波データを受け取り、対数増幅、包絡線検波処理などを行って、信号強度が輝度の明るさで表現されるデータ(Bモードデータ)を生成する。
【0016】
ドプラ処理ユニット132は、超音波受信ユニット120から受け取った反射波データから速度情報を周波数解析し、ドプラ効果による血流や組織、造影剤エコー成分を抽出し、平均速度、分散、パワー等の血流情報を多点について抽出したデータ(ドプラデータ)を生成する。
【0017】
画像生成ユニット140は、Bモード処理ユニット131が生成したBモードデータや、ドプラ処理ユニット132が生成した血流情報から、超音波画像を生成し、生成した超音波画像を後述する画像メモリ150又は記憶部180に格納する。
【0018】
具体的には、画像生成ユニット140は、Bモードデータから、反射波データの強度が輝度にて表現されるBモード画像を生成する。また、画像生成ユニット140は、血流情報から、血流の平均速度、分散、血流量、これらの組合せを色によって識別可能に表示するカラードプラ画像を生成する。
【0019】
また、画像生成ユニット140は、超音波スキャンの走査線信号列を、テレビなどに代表されるビデオフォーマットの走査線信号列に変換(スキャンコンバート)し、表示画像としての超音波画像(Bモード画像やカラードプラ画像)を生成する。
【0020】
画像メモリ150は、画像生成ユニット140が生成した超音波画像や、超音波画像を画像処理することで生成した画像を記憶するメモリである。例えば診断の後に、操作者が検査中に記録された画像を画像メモリ150から呼び出すことが可能となっており、静止画像的に、あるいは複数枚を使って動画的に再生することが可能である。また、画像メモリ150は、超音波受信ユニット120を通過した後の画像輝度信号、その他の生データ、ネットワークを介して取得した画像等を必要に応じて記憶する。
【0021】
画像合成部160は、画像生成ユニット140が生成した超音波画像に、種々のパラメータの文字情報、目盛り、ボディーマークなどを合成した合成画像を生成する。画像合成部160によって生成された合成画像は、モニタ30に表示される。
【0022】
制御部170は、情報処理装置(計算機)としての機能を実現する制御プロセッサ(CPU:Central Processing Unit)であり、超音波診断装置1における処理全体を制御する。具体的には、制御部170は、入力装置20を介して操作者から入力された各種指示や設定要求、記憶部180から読み込んだ各種プログラム及び各種設定情報に基づき、超音波送信ユニット110、超音波受信ユニット120、Bモード処理ユニット131、ドプラ処理ユニット132、画像生成ユニット140及び画像合成部160の処理を制御したり、画像メモリ150が記憶する超音波画像などをモニタ30にて表示するように制御したりする。
【0023】
記憶部180は、超音波送受信、画像処理及び表示処理を行うための各種プログラム181や、画像生成ユニット140によって生成された超音波画像を記憶する画像記憶部182や、診断情報(例えば、患者ID、医師の所見等)、診断プロトコルや各種設定情報等の各種データを記憶する。なお、各種プログラム181は、制御部170と同様の処理を実行する手順が記述されたプログラムを含む場合もある。また、記憶部180が記憶する各種データは、インタフェース部190を経由して、外部の周辺装置へ転送することができる。
【0024】
また、記憶部180は、超音波プローブ10によって送信される超音波の方向に関する情報等を記憶するビーム方向記憶部183を有する。かかるビーム方向記憶部183は、制御部170によって用いられるので、後に詳述する。
【0025】
インタフェース部190は、入力装置20、操作パネル、新たな外部記憶装置(図示を省略)、ネットワークに関するインタフェースである。超音波診断装置1によって得られた超音波画像などのデータは、インタフェース部190によって、ネットワークを介して他の装置へ転送することができる。
【0026】
なお、装置本体100に内蔵される超音波送信ユニット110及び超音波受信ユニット120などは、集積回路などのハードウェアで構成されることもあるが、ソフトウェア的にモジュール化されたプログラムにより実現される場合もある。
【0027】
以上、第1の実施形態に係る超音波診断装置1の全体構成について説明した。ここで、一般的な超音波診断装置は、被検体Pの撮影対象によっては、医師等の操作者が観察することを所望する組織と、かかる組織の近傍に位置する組織とが描出された超音波画像を生成できるとは限らない。この点について、図2を用いて具体的に説明する。図2は、超音波診断装置によって生成される超音波画像の一例を示す図である。図2では、操作者によって被検体Pの足首に超音波プローブ10が押し当てられる例について説明する。すなわち、図2に示した例では、超音波診断装置は、被検体Pの足首内の組織が描出された超音波画像を生成する。なお、図2の状態(A)及び状態(B)の上図は、被検体Pに超音波プローブ10が押し当てられている状態を示し、図2の状態(A)及び状態(B)の下図は、超音波プローブ10が上図に示した状態である場合に、超音波診断装置によって生成される超音波画像の例を示す。
【0028】
ここで、操作者が観察することを所望する組織が図2に例示した「対象組織T」であるものとする。かかる場合に、図2の状態(A)の上図に示した例では、超音波プローブ10によって送信される超音波は対象組織Tに対して垂直に照射されない。このため、図2の状態(A)の下図に示した領域A1のように、超音波診断装置によって生成される超音波画像には対象組織Tが明瞭に描出されない場合がある。これは、超音波診断装置によって生成される超音波画像は、超音波が垂直に照射された組織ほど明瞭に描出されるからである。
【0029】
このとき、操作者は、図2の状態(B)に示した例のように、対象組織Tを観察することを目的として、超音波が対象組織Tに対して垂直に照射されるように超音波プローブ10を傾ける操作を行うことがある。かかる場合には、超音波プローブ10によって送信される超音波は対象組織Tに対して略垂直に照射されることとなる。これにより、図2の状態(B)の下図に例示した領域A1のように、超音波診断装置によって生成される超音波画像には対象組織Tが明瞭に描出される。
【0030】
しかし、超音波プローブ10が押し当てられている部位の軟部組織が薄い場合、図2の状態(B)の上図に示すように、超音波プローブ10が傾けられたことによって、超音波プローブ10の圧電振動子面と被検体Pの体表とが離れ、圧電振動子面と体表との間に隙間が形成されることがある。かかる場合には、図2の状態(B)の下図に例示した領域A2のように、圧電振動子面と体表との間における隙間に対応する部分は、被検体P内の組織が描出されない場合がある。つまり、図2の状態(B)に示した例では、超音波診断装置によって生成される超音波画像に、対象組織Tの近傍に位置する組織が描出されないこととなる。
【0031】
近年、整形外科などでは、足、手、肩や膝等の関節を超音波診断装置により観察し、骨の表面や筋肉の断裂、皮下腫瘍、腱の動き等を診断することが行われている。しかし、指等は骨の上の軟部組織が薄いので、操作者は、超音波プローブ10を体表に接触させた状態で傾けさせることが困難となる。この結果、超音波診断装置は、上記の図2に示した例のように、対象組織T及び対象組織Tの近傍に位置する組織が描出された超音波画像を生成することができない場合がある。
【0032】
なお、観察部位の体表に超音波用ゼリーを厚く塗ることで超音波プローブ10を傾けさせることを可能にする手法も知られているが、かかる手法は、超音波用ゼリーを用いる点で経済的ではなく、また、検査後の処理に手間がかかり、被検体Pにとっても負担が大きい。また、超音波診断装置の入力装置20(つまみ等)を操作することで、超音波プローブ10から送信される超音波の方向を変更することも可能であるが、多数の部位を次々と観察していく検査過程においては、何度も入力装置20の操作を要する点で操作者に負担がかかり、また、超音波診断装置を用いて内部組織を観察しながら穿刺治療を行っている場合には、両手が塞がっている操作者は入力装置20を操作することができない。
【0033】
このようなことから、第1の実施形態に係る超音波診断装置1は、制御部170の制御の下、操作者による感覚的な操作で超音波の送信方向を変更することを可能する。具体的には、第1の実施形態に係る超音波診断装置1の制御部170は、超音波プローブ10に加えられた力や超音波プローブ10の動きを検出し、検出した力や動きに基づいて、超音波の送信方向を傾ける。すなわち、制御部170は、検出した力や動きに基づいて、検査者等の操作者が超音波の送信方向を傾けようとする方向をさらに検出し、検出した方向に基づいて、超音波の送信方向を傾ける。これにより、第1の実施形態に係る超音波診断装置1は、超音波用ゼリーや入力装置20の操作を要することなく、超音波の送信方向を変更することを可能する。
【0034】
以下に、図3〜図6を用いて、このような第1の実施形態に係る超音波診断装置1について詳細に説明する。図3は、第1の実施形態における制御部170等の構成例を示す図である。
【0035】
図3に例示するように、超音波プローブ10は、圧電振動子11と圧力センサ12とを有する。圧電振動子11は、上述したように、超音波送信ユニット110から供給される駆動信号に基づき超音波を発生し、受信した反射波信号を超音波受信ユニット120に出力する。また、上述したように、超音波送信ユニット110の送信遅延部112は、各レートパルスに対し与える遅延時間を変化させることで、圧電振動子面から送信される超音波の送信方向を任意に調整する。
【0036】
圧力センサ12は、超音波プローブ10に設けられ、超音波プローブ10に加わる圧力を検知する圧力検知部である。ここで、第1の実施形態においては、超音波プローブ10の圧電振動子面の左右両端に圧力センサ12が1個ずつ設けられる。例えば、第1の実施形態における超音波プローブ10には、圧電振動子面の重心位置を対称点とした点対称の位置等に圧力センサ12が1個ずつ設けられる。なお、この例に限られず、超音波プローブ10には、3個以上の圧力センサ12が設けられてもよい。
【0037】
このような圧力センサ12は、超音波診断装置1が撮影処理を行っている間、圧力を検知する処理を定期的に行う。すなわち、圧力センサ12は、超音波プローブ10の圧電振動子面のうち圧力センサ12自身が設けられた位置において、圧電振動子面が被検体Pの体表に押し当てられている力を検知する。そして、圧力センサ12は、このようにして検知した圧力の値を超音波診断装置1に順次出力する。なお、圧力センサ12によって検知された圧力の値は、記憶部180に順次格納される。
【0038】
ビーム方向記憶部183は、後述する制御部170による制御に用いられ、圧力差閾値と、超音波の送信方向に関する情報とを記憶する。例えば、ビーム方向記憶部183は、超音波の送信方向に関する情報として、「−20°、−10°、0°、+10°、+20°」といった送信方向のパターンを記憶する。
【0039】
この送信方向のパターンの例では、所定方向を「−」とし、かかる所定方向と反対の方向を「+」としている。例えば、圧電振動子面に対して垂直に送信される超音波の送信方向を「0°」とするものとする。そして、「−10°」は、圧電振動子面の重心位置を通る直線により圧電振動子面を2分割した場合に、送信方向「0°」に対して、重心位置から分割後の一方の面への方向に「10°」傾いた超音波の送信方向を示すものとする。かかる場合に、「+10°」は、送信方向「0°」に対して、重心位置から分割後の他方の面への方向に「10°」傾いた超音波の送信方向を示す。また、送信方向のパターン「−20°、−10°、0°、+10°、+20°」は、隣接する数値が変更後の送信方向の候補を示す。例えば、超音波の現状の送信方向が「0°」である場合に、変更後の送信方向は、「−10°」又は「+10°」のいずれかである。
【0040】
なお、ビーム方向記憶部183によって記憶されている各種情報の用いられ方については、制御部170とともに説明する。かかる制御部170は、検出部171と、偏向部172とを有する。
【0041】
検出部171は、超音波プローブ10における応力又は動作に基づいて、検査者である操作者が超音波プローブ10によって送信される超音波の送信方向を傾けようとする方向(以下、「傾き要求方向」と表記する場合がある)を検出する。具体的には、第1の実施形態における検出部171は、超音波プローブ10が被検体Pの体表に押し当てられている力を、超音波プローブ10に複数設けられた圧力センサ12によって検知する。そして、検出部171は、検知された圧力の差異が、ビーム方向記憶部183に記憶されている圧力差閾値以上である場合に、検知した圧力の大きい圧力センサ12が設けられた位置から、検知した圧力の小さい圧力センサ12が設けられた位置への方向を前述の傾き要求方向として検出する。
【0042】
偏向部172は、検出部171によって検出された傾き要求方向に、超音波プローブ10から送信される超音波の送信方向を所定値だけ傾ける。具体的には、偏向部172は、検出部171によって傾き要求方向が検出された場合に、ビーム方向記憶部183に記憶されている送信方向のパターンに基づいて、超音波の送信方向を所定値だけ傾ける。このとき、偏向部172は、超音波の送信方向を所定値だけ傾けさせる遅延時間を超音波送信ユニット110に出力する。そして、超音波送信ユニット110の送信遅延部112は、偏向部172から入力された遅延時間を各レートパルスに与えることにより、超音波の送信方向を傾けさせる。
【0043】
ここで、図4を用いて、第1の実施形態における制御部170による処理について説明する。図4は、第1の実施形態における制御部170による処理の一例を示す図である。なお、ここでは、ビーム方向記憶部183は、上記例と同様に、送信方向のパターンとして「−20°、−10°、0°、+10°、+20°」を記憶するものとする。また、図4では、送信方向が「−」の角度よって示される超音波が左方向に送信され、送信方向が「+」の角度よって示される超音波が右方向に送信されるものとする。
【0044】
図4に示した例において、超音波プローブ10は、圧電振動子面の両端に圧力センサ12aと圧力センサ12bとが設けられる。まず、図4の状態(A)の上図に示した例のように、超音波プローブ10によって送信方向「0°」の超音波が送信されているものとする。すなわち、超音波プローブ10は、圧電振動子面に対して垂直方向に超音波を送信する。このとき、圧力センサ12aによって検知された圧力A11が、圧力センサ12bによって検知された圧力B11よりも小さく、かつ、圧力A11と圧力B11との差異が圧力差閾値以上であるものとする。
【0045】
かかる場合には、超音波プローブ10の左側(圧力センサ12aが設けられている位置)よりも、右側(圧力センサ12bが設けられている位置)が被検体Pに強く押し当てられていることを示す。つまり、操作者が超音波プローブ10を右側に傾けようとしていること(超音波プローブ10において右側に傾くように力が加えられていること、超音波プローブ10が右側に傾くように動くこと等)を示す。言い換えれば、操作者が超音波プローブ10から送信される超音波の送信方向を左側に傾けようとしていること(傾き要求方向は左方向であること)を示す。このようなことから、検出部171は、操作者が超音波の送信方向を傾けようとする方向である傾き要求方向として、圧力センサ12bが設けられた位置から圧力センサ12aが設けられた位置への方向を検出する。
【0046】
そして、偏向部172は、超音波の送信方向を左方向に傾ける。具体的には、偏向部172は、超音波プローブ10によって送信されている超音波の現状の送信方向が「0°」であり、ビーム方向記憶部183に記憶されている送信方向のパターンが「−20°、−10°、0°、+10°、+20°」であるので、変更後の送信方向の候補として「−10°」及び「+10°」を特定する。そして、偏向部172は、検出部171によって検出された傾き要求方向が左方向であるので、送信方向の候補である「−10°」及び「+10°」のうち「−10°」を変更後の送信方向とし、超音波の送信方向を「−10°」だけ傾けさせる遅延時間を超音波送信ユニット110に出力する。これにより、図4の状態(A)の下図に示した例のように、超音波プローブ10によって送信される超音波の送信方向は、圧電振動子面に対する垂線に対して左側に「10°」傾いた方向となる。
【0047】
続いて、超音波の送信方向が「−10°」となった後にも、圧力センサ12a及び圧力センサ12bは圧力を検知する処理を行う。このとき、図4の状態(B)の上図に示した例のように、圧力センサ12aによって検知された圧力A21が、圧力センサ12bによって検知された圧力B21よりも小さく、かつ、圧力A21と圧力B21との差異が圧力差閾値以上であるものとする。
【0048】
かかる場合に、検出部171は、圧力センサ12bが設けられた位置から圧力センサ12aが設けられた位置への方向を傾き要求方向として検出する。そして、偏向部172は、超音波プローブ10によって送信されている超音波の現状の送信方向が「−10°」であるので、超音波の送信方向を「−20°」だけ傾けさせる遅延時間を超音波送信ユニット110に出力する。この結果、図4の状態(B)の下図に示した例のように、超音波プローブ10によって送信される超音波の送信方向は、圧電振動子面に対する垂線に対して左側に「20°」傾いた方向となる。
【0049】
これにより、超音波プローブ10は、対象組織Tに対して略垂直に超音波を照射することができる。したがって、第1の実施形態に係る超音波診断装置1は、対象組織Tが明瞭に描出された超音波画像を生成することができる。さらに、図4の状態(B)の下図に示した例のように、超音波プローブ10の圧電振動子面と体表との間に隙間が形成されていないので、第1の実施形態に係る超音波診断装置1は、対象組織Tの近傍に位置する組織についても描出された超音波画像を生成することができる。このような第1の実施形態に係る超音波診断装置1によって生成される超音波画像の一例を図5に示す。図5に示すように、超音波診断装置1は、領域A1に対象組織Tが明瞭に描出され、領域A2に対象組織Tの近傍に位置する組織が描出された超音波画像を生成することができる。
【0050】
なお、超音波の送信方向が「−20°」となった後にも、圧力センサ12a及び圧力センサ12bは圧力を検知する処理を行う。このとき、図4の状態(C)の上図に示した例のように、圧力センサ12aによって検知された圧力A31が、圧力センサ12bによって検知された圧力B31よりも大きく、かつ、圧力A31と圧力B31との差異が圧力差閾値以上であるものとする。すなわち、圧力センサ12aによる検知圧力と、圧力センサ12bによる検知圧力との大小関係が、状態(B)と比較して逆転したものとする。
【0051】
かかる場合に、検出部171は、圧力センサ12aが設けられた位置から圧力センサ12bが設けられた位置への方向を傾き要求方向として検出する。そして、偏向部172は、超音波プローブ10によって送信されている超音波の現状の送信方向が「−20°」であるので、超音波の送信方向を「−10°」だけ傾けさせる遅延時間を超音波送信ユニット110に出力する。これにより、図4の状態(C)の下図に示した例のように、超音波プローブ10によって送信される超音波の送信方向は、圧電振動子面に対する垂線に対して左側に「10°」傾いた方向となる。すなわち、超音波の送信方向は、図4の状態(A)の下図に示した状態に戻る。
【0052】
なお、偏向部172は、図4の状態(C)に示した例において、超音波の送信方向を「−10°」とするのではなく、「0°」としてもよい。すなわち、偏向部172は、超音波の送信方向を一方の方向に変化させた後に他方の方向に戻す場合には、徐々に戻すのではなく、1回で「0°」に戻してもよい。
【0053】
また、図4では図示することを省略したが、例えば状態(B)の下図の状態の後に、操作者が超音波プローブ10を傾ける操作をやめた場合には、超音波の送信方向は、「−20°」から変化しない。具体的には、操作者が超音波プローブ10を傾ける操作をやめた場合、圧力センサ12aによる検知圧力と圧力センサ12bによる検知圧力との差異は略同一となり、双方の圧力差は圧力差閾値以上とならない。かかる場合に、検出部171によって傾き要求方向が検出されないので、偏向部172は、超音波の送信方向を変更する処理を行わない。このため、超音波プローブ10によって送信される超音波の送信方向は、直前の偏向状態が保たれる。
【0054】
このように、第1の実施形態に係る超音波診断装置1は、超音波プローブ10が被検体Pに押し当てられる力に基づいて、操作者が超音波の送信方向を傾けようとしている方向を検出し、超音波の送信方向を変更する。これにより、第1の実施形態に係る超音波診断装置1は、操作者による感覚的な操作で超音波の送信方向を変更することができる。
【0055】
次に、図6を用いて、第1の実施形態に係る超音波診断装置1による処理の手順について説明する。図6は、第1の実施形態に係る超音波診断装置1による処理手順を示すフローチャートである。
【0056】
図6に示した例のように、超音波診断装置1は、操作者から撮影開始要求を受け付けたか否かを判定する(ステップS101)。ここで、超音波診断装置1は、撮影開始要求を受け付けていない場合には(ステップS101否定)、撮影開始要求を受け付けるまで待機する。
【0057】
一方、超音波診断装置1は、撮影開始要求を受け付けた場合には(ステップS101肯定)、撮影処理を開始する。なお、図6では図示することを省略したが、超音波診断装置1は、以下に説明するステップS102〜S106における処理手順と並行して、超音波プローブ10に超音波を送信させる処理や、超音波プローブ10によって受信された反射波信号に基づいて超音波画像を生成する処理等を行う。
【0058】
ここで、第1の実施形態においては、超音波プローブ10に設けられた複数の圧力センサ12が、超音波プローブ10に加わる圧力を検知する(ステップS102)。続いて、検出部171は、複数の圧力センサ12によって検知された圧力の差異を算出する(ステップS103)。なお、第1の実施形態においては、超音波プローブ10の圧電振動子面の左右両端に圧力センサ12が1個ずつ設けられるので、検出部171は、2個の圧力センサ12によって検知された圧力の差異を算出する。
【0059】
そして、検出部171は、算出した圧力差がビーム方向記憶部183に記憶されている圧力差閾値以上であるか否かを判定する(ステップS104)。このとき、検出部171は、圧力差が圧力差閾値以上でない場合には(ステップS104否定)、処理を終了する。そして、超音波診断装置1は、後述するステップS107における処理に進む。
【0060】
一方、検出部171は、圧力差が圧力差閾値以上である場合には(ステップS104肯定)、検知した圧力の大きい圧力センサが設けられた位置から、検知した圧力の小さい圧力センサが設けられた位置への方向を、操作者が超音波の送信方向を傾けようとする方向である傾き要求方向として検出する(ステップS105)。
【0061】
続いて、偏向部172は、検出部171によって検出された傾き要求方向に、超音波プローブ10から送信される超音波の送信方向を所定値だけ傾ける(ステップS106)。このとき、偏向部172は、上述したようにビーム方向記憶部183に記憶されている送信方向のパターンに基づいて、超音波の送信方向を傾ける角度を決定する。
【0062】
そして、超音波診断装置1は、操作者から撮影終了要求を受け付けたか否かを判定する(ステップS107)。このとき、超音波診断装置1は、撮影終了要求を受け付けていない場合には(ステップS107否定)、ステップS102における処理手順に戻る。一方、超音波診断装置1は、撮影終了要求を受け付けた場合には(ステップS107肯定)、処理を終了する。
【0063】
なお、検出部171は、ステップS103における処理を所定時間毎に行ってもよい。例えば、検出部171は、所定時間(例えば、1分)が経過するたびに、2個の圧力センサ12によって検知された圧力の差異を算出し(ステップS103)、圧力差が圧力差閾値以上であるか否かを判定する(ステップS104)。
【0064】
上述したように、第1の実施形態に係る超音波診断装置1は、操作者による感覚的な操作で超音波の送信方向を変更することができる。この結果、第1の実施形態によれば、操作者による感覚的な操作で、操作者が観察することを所望する対象組織と、かかる対象組織の近傍に位置する組織とが描出された超音波画像を生成することができる。
【0065】
例えば、第1の実施形態に係る超音波診断装置1は、骨の上の軟部組織が薄い部位に超音波プローブ10が押し当てられる場合であっても、操作者が超音波プローブ10を傾けようとする方向に超音波の送信方向を傾けるので、圧電振動子面と体表との間に隙間を形成させることなく、超音波を対象組織に略垂直に照射することができる。この結果、第1の実施形態に係る超音波診断装置1は、対象組織と対象組織の近傍に位置する組織とが描出された超音波画像を生成することができる。また、第1の実施形態に係る超音波診断装置1は、操作者による感覚的な操作で超音波の送信方向を変更することができるので、超音波用ゼリーを用いずに検査を行うことを可能とし、また、超音波の送信方向を変更するために入力装置20(つまみ等)を操作せずに検査を行うことを可能とする。
【0066】
なお、上記第1の実施形態において、超音波診断装置1は、操作者によって超音波の送信方向を傾けようとしている操作が所定の時間以上行われた場合に、超音波の送信方向を変更してもよい。例えば、偏向部172は、検出部171によって略同一の傾き要求方向が所定時間以上連続して検出された場合に、超音波の送信方向を変更してもよい。また、例えば、偏向部172は、検出部171によって略同一の傾き要求方向が所定回数以上連続して検出された場合に、超音波の送信方向を変更してもよい。
【0067】
また、上記第1の実施形態では、ビーム方向記憶部183が、所定の角度(10°)ずつ変動する送信方向のパターン「−20°、−10°、0°、+10°、+20°」を記憶する例を示した。しかし、ビーム方向記憶部183が記憶する送信方向のパターンはこの例に限られない。例えば、ビーム方向記憶部183は、角度の変化が一定でない送信方向のパターンとして、「−23°、−20°、−15°、−10°、0°、+10°、+15°、+20°、+23°」等を記憶してもよい。この例の場合、超音波診断装置1は、撮影開始当初では超音波の送信方向を大きく変化させ、撮影処理が進むに従って超音波の送信方向を微調整することができる。
【0068】
また、例えば、ビーム方向記憶部183は、送信方向のパターンとして、単に「10°」といった情報を記憶してもよい。この例の場合、偏向部172は、検出部171によって検出された傾き要求方向に超音波の送信方向を「10°」ずつ変化させる。
【0069】
また、例えば、ビーム方向記憶部183は、送信方向のパターンとして、「10°/5°/3°」といった情報を記憶してもよい。そして、偏向部172は、超音波の現状の送信角度が小さい場合には超音波の送信方向を大きく変化させ、超音波の現状の送信角度が大きい場合には超音波の送信方向を小さく変化させてもよい。例えば、偏向部172は、超音波の現状の送信方向が第1の角度の範囲内(例えば、「−20°〜+20°」)である場合には、かかる超音波の送信方向を「10°」ずつ変化させ、現状の送信方向が第2の角度の範囲内(例えば、「−30°〜−20°」又は「+20°〜+30°」)である場合には、かかる超音波の送信方向を「5°」ずつ変化させ、現状の送信方向が第3の角度の範囲内(例えば、「−40°〜−30°」又は「+30°〜+40°」)である場合には、かかる超音波の送信方向を「3°」ずつ変化させてもよい。
【0070】
または、偏向部172は、例えば、検出部171によって傾き要求方向が検出された回数が第1閾値未満である場合には、超音波の送信方向を「10°」ずつ変化させ、かかる検出回数が第1閾値以上かつ第2閾値(>第1閾値)未満である場合には、超音波の送信方向を「5°」ずつ変化させ、かかる検出回数が第2閾値以上である場合には、超音波の送信方向を「3°」ずつ変化させてもよい。
【0071】
また、ビーム方向記憶部183は、複数の圧力差閾値を記憶してもよい。例えば、ビーム方向記憶部183は、第1の圧力差閾値と、第1の圧力差閾値よりも大きい第2の圧力差閾値とを記憶してもよい。かかる場合に、検出部171は、超音波の現状の送信角度が所定値よりも小さい場合には、第1の圧力差閾値を用いて傾き要求方向の検出処理を行い、超音波の現状の送信角度が所定値以上である場合には、第2の圧力差閾値を用いて傾き要求方向の検出処理を行う。
【0072】
また、上記第1の実施形態では、超音波プローブ10には、圧電振動子面の左右両端に圧力センサ12が1個ずつ設けられる例を示した。しかし、超音波プローブ10には、例えば、圧電振動子面の四隅に圧力センサ12が1個ずつ設けられてもよい。かかる場合には、4個の圧力センサ12によって圧力が検知されるので、検出部171は、4個の圧力センサ12によって検知された圧力の大小関係に基づいて、操作者が傾けようとする超音波プローブ10の方向を3次元的に検出することができる。かかる場合には、検出部171は、検出した方向に超音波プローブ10を仮想的に傾け、仮想的に傾けた超音波プローブ10の圧電振動子面に対して垂直な方向を傾き要求方向として検出してもよい。
【0073】
また、上記第1の実施形態では、超音波プローブ10に圧力センサ12を設ける例を示したが、圧力センサ12の代わりに加速度センサを超音波プローブ10に設け、この加速度センサによって、超音波プローブ10の動きを検出してもよい。このとき、かかる加速度センサは、超音波プローブ10の位置変動を検知する移動検知部として動作する。そして、検出部171は、加速度センサによって超音波プローブ10の位置変動を検出し、検出した位置変動から特定される超音波プローブ10の移動方向を、傾き要求方向として検出する。例えば、操作者が超音波プローブ10の一端を体表に接させたままの状態で横に滑らせる操作を行った場合、加速度センサは、かかる超音波プローブ10の位置変動を検出する。かかる場合に、検出部171は、加速度センサによって検知された超音波プローブ10の位置変動に基づいて、超音波プローブ10の移動方向を検出し、かかる移動方向を傾き要求方向として検出する。
【0074】
また、超音波プローブ10は、圧力センサ12とともに加速度センサを有してもよい。かかる場合には、検出部171は、上述してきた処理と同様に圧力センサ12による検知結果に基づいて、傾き要求方向を検出するとともに、加速度センサによる検知結果に基づいて、傾き要求方向を検出する。すなわち、検出部171は、複数の情報に基づいて傾き要求方向を検出するので、操作者が超音波の送信方向を傾けようとする方向を高精度に検出することができる。
【0075】
(第2の実施形態)
上記第1の実施形態では、超音波プローブ10に設けられた複数の圧力センサ12によって検知された圧力の差異に基づいて、傾き要求方向を検出する例について示した。第2の実施形態では、超音波プローブと体表との間にソナゲル(ゲルパッドや水袋等)が設置されることを前提とし、超音波プローブと体表との距離に基づいて、傾き要求方向を検出する例について説明する。
【0076】
まず、ソナゲルについて説明すると、操作者は、超音波診断装置により凹凸のある部位(甲状腺等)を撮影する場合に、超音波プローブと体表との間にソナゲルを設置する場合がある。かかるソナゲルの内部では、超音波の反射波がほぼ発生しない。このため、ソナゲルが設置された状態で超音波診断装置によって超音波画像が生成された場合、かかる超音波画像には、ソナゲルと体表との接触部分が略直線状の高輝度ラインとして描出される。第2の実施形態では、超音波診断装置によって撮影が行われる場合に、このようなソナゲルが用いられるものとする。
【0077】
次に、第2の実施形態に係る超音波診断装置2について説明する。第2の実施形態に係る超音波診断装置2の構成は、図1に例示した超音波診断装置1の構成と略同一であるので、図示することを省略する。ただし、第2の実施形態における超音波プローブは、第1の実施形態における超音波プローブ10と異なり、圧力センサを有しない。また、第2の実施形態における制御部は、第1の実施形態における制御部170と異なる処理を行う。また、第2の実施形態におけるビーム方向記憶部は、第1の実施形態におけるビーム方向記憶部183と異なる情報を記憶する。
【0078】
ここで、図7を用いて、第2の実施形態における制御部等について説明する。図7は、第2の実施形態における制御部等の構成例を示す図である。図7に例示するように、第2の実施形態における超音波プローブ40は、一般的な超音波プローブであり、圧力センサ等のセンサ類を有しない。
【0079】
また、第2の実施形態におけるビーム方向記憶部283は、後述する制御部270による制御に用いられ、距離差閾値と、超音波の送信方向に関する情報とを記憶する。例えば、ビーム方向記憶部283は、超音波の送信方向に関する情報として、「−20°、−10°、0°、+10°、+20°」といった送信方向のパターンを記憶する。
【0080】
また、第2の実施形態における制御部270は、計測部273と、検出部271と、偏向部272とを有する。
【0081】
計測部273は、超音波プローブ40の圧電振動子面から被検体Pの体表までの距離を複数の箇所について計測する。具体的には、計測部273は、画像記憶部182に記憶されている超音波画像を解析することにより、ソナゲルと体表との接触部分を検出する。上記の通り、ソナゲルと体表との接触部分が略直線状の高輝度ラインとして描出されるため、計測部273は、一般的な境界抽出アルゴリズムを用いて高輝度ラインを検出することで、かかる接触部分を体表として検出することができる。そして、計測部273は、超音波画像上において、超音波プローブ40の圧電振動子面から体表までの距離を予め決められている複数の箇所について計測する。例えば、計測部273は、圧電振動子面の両端において、圧電振動子面から体表までの距離を計測する。
【0082】
検出部271は、計測部273によって計測された距離を用いて超音波プローブ10に加えられた力や超音波プローブ10の動きを検出し、検出した力や動きに基づいて、検査者である操作者が超音波の送信方向を傾けようとする方向である傾き要求方向をさらに検出する。具体的には、第2の実施形態における検出部271は、計測部273によって計測された複数の箇所における距離の差異を算出し、算出した距離の差異がビーム方向記憶部283に記憶されている距離差閾値以上である場合に、距離が短い箇所から距離が長い箇所への方向を傾き要求方向として検出する。
【0083】
偏向部272は、検出部271によって検出された傾き要求方向に、超音波プローブ40から送信される超音波の送信方向を所定値だけ傾ける。具体的には、偏向部272は、第1の実施形態における偏向部172と同様に、ビーム方向記憶部283に記憶されている送信方向のパターンに基づいて、超音波の送信方向を所定値だけ傾ける。
【0084】
ここで、図8を用いて、第2の実施形態における制御部270による処理について説明する。図8は、第2の実施形態における制御部270による処理の一例を示す図である。なお、ここでは、ビーム方向記憶部283は、上記例と同様に、送信方向のパターンとして「−20°、−10°、0°、+10°、+20°」を記憶するものとする。また、超音波の送信方向は、最初は「0°」であるものとする。
【0085】
図8に示した例において、計測部273は、超音波画像を解析することにより、圧電振動子面の両端において、圧電振動子面から体表までの距離を計測する。具体的には、計測部273は、図8の状態(A)の上図に示した例において、圧電振動子面の左端から体表までの距離H11を計測するとともに、圧電振動子面の右端から体表までの距離H21を計測する。このとき、距離H11が距離H21よりも長く、かつ、距離H11と距離H21との差異が距離差閾値以上であるものとする。
【0086】
かかる場合には、操作者が超音波プローブ40の左側よりも右側を強く被検体Pに押し当てていることを示す。つまり、操作者が超音波プローブ40を右側に傾けようとしていることを示す。言い換えれば、操作者が超音波の送信方向を左側に傾けようとしていることを示す。このようなことから、検出部271は、操作者が超音波プローブ40を傾けようとする方向である傾き要求方向として、計測部273による計測距離の短い右端から計測距離の長い左端への方向を検出する。
【0087】
そして、偏向部272は、超音波の送信方向を左方向に傾ける。具体的には、偏向部272は、超音波プローブ40によって送信されている超音波の現状の送信方向が「0°」であり、ビーム方向記憶部283に記憶されている送信方向のパターンが「−20°、−10°、0°、+10°、+20°」であるので、超音波の送信方向を「−10°」だけ傾けさせる遅延時間を超音波送信ユニット110に出力する。これにより、図8の状態(A)の下図に示した例のように、超音波プローブ40によって送信される超音波の送信方向は、圧電振動子面に対する垂線に対して左側に「10°」傾いた方向となる。
【0088】
続いて、超音波の送信方向が「−10°」となった後に、操作者が超音波プローブ40を傾ける操作をやめた場合であっても、超音波の送信方向は、「−10°」から変化しない。具体的には、計測部273は、図8の状態(B)の上図に示した例のように、圧電振動子面の左端から体表までの距離H12を計測するとともに、圧電振動子面の右端から体表までの距離H22を計測する。このとき、操作者が超音波プローブ40を傾ける操作を行っていない場合には、距離H11と距離H21との差異が距離差閾値以上とならない。したがって、検出部271によって傾き要求方向が検出されないので、偏向部272は、超音波の送信方向を傾ける処理を行わない。このため、図8の状態(B)の下図に示した例のように、超音波プローブ40によって送信される超音波の送信方向は、圧電振動子面に対する垂線に対して左側に「10°」傾いた方向のままとなる。なお、操作者は、超音波の送信方向を「0°」や「+10°」に変更したい場合には、超音波プローブ40を左側に傾ければよい。
【0089】
次に、図9を用いて、第2の実施形態に係る超音波診断装置2による処理の手順について説明する。図9は、第2の実施形態に係る超音波診断装置2による処理手順を示すフローチャートである。
【0090】
図9に示した例のように、超音波診断装置2は、操作者から撮影開始要求を受け付けたか否かを判定する(ステップS201)。ここで、超音波診断装置2は、撮影開始要求を受け付けていない場合には(ステップS201否定)、撮影開始要求を受け付けるまで待機する。
【0091】
一方、超音波診断装置2は、撮影開始要求を受け付けた場合には(ステップS201肯定)、撮影処理を開始する。なお、図9では図示することを省略したが、超音波診断装置2は、以下に説明するステップS202〜S206における処理手順と並行して、超音波プローブ40に超音波を送信させる処理や、超音波プローブ40によって受信された反射波信号に基づいて超音波画像を生成する処理等を行う。
【0092】
ここで、第2の実施形態においては、計測部273は、画像生成ユニット140によって少なくとも1個の超音波画像が生成された後に、かかる超音波画像を画像記憶部182から取得し、取得した超音波画像を解析することで、圧電振動子面から体表までの距離を複数の箇所において計測する(ステップS202)。
【0093】
続いて、検出部271は、計測部273によって計測された複数の箇所における距離の差異を算出する(ステップS203)。そして検出部271は、算出した距離の差異がビーム方向記憶部283に記憶されている距離差閾値以上であるか否かを判定する(ステップS204)。このとき、検出部271は、距離差が距離差閾値以上でない場合には(ステップS204否定)、処理を終了する。そして、超音波診断装置2は、後述するステップS207における処理に進む。
【0094】
一方、検出部271は、距離差が距離差閾値以上である場合には(ステップS204肯定)、計測部273による計測距離が短い箇所から計測距離が長い箇所への方向を傾き要求方向として検出する(ステップS205)。
【0095】
続いて、偏向部272は、検出部271によって検出された傾き要求方向に超音波の送信方向を所定値だけ傾ける(ステップS206)。このとき、偏向部272は、上述したようにビーム方向記憶部283に記憶されている送信方向のパターンに基づいて、超音波の送信方向を傾ける角度を決定する。
【0096】
そして、超音波診断装置2は、操作者から撮影終了要求を受け付けたか否かを判定する(ステップS207)。このとき、超音波診断装置2は、撮影終了要求を受け付けていない場合には(ステップS207否定)、ステップS202における処理手順に戻る。一方、超音波診断装置2は、撮影終了要求を受け付けた場合には(ステップS207肯定)、処理を終了する。
【0097】
なお、検出部271は、ステップS202における処理を所定時間毎に行ってもよい。例えば、検出部271は、所定時間(例えば、1分)が経過するたびに、画像記憶部182に記憶されている最新の超音波画像を解析することで、圧電振動子面から体表までの距離を複数の箇所において計測する(ステップS202)。
【0098】
上述したように、第2の実施形態に係る超音波診断装置2は、操作者による感覚的な操作で超音波の送信方向を変更することができる。この結果、第2の実施形態によれば、操作者による感覚的な操作で、操作者が観察することを所望する対象組織と、かかる対象組織の近傍に位置する組織とが描出された超音波画像を生成することができる。
【0099】
なお、上記第2の実施形態において、超音波診断装置2は、第2の実施形態と同様に、操作者によって超音波の送信方向を傾けようとしている操作が所定の時間以上行われた場合に、超音波の送信方向を変更してもよい。例えば、偏向部272は、検出部271によって同一の傾き要求方向が所定時間以上連続して検出された場合や、検出部271によって同一の傾き要求方向が所定回数以上連続して検出された場合に、超音波の送信方向を変更してもよい。
【0100】
また、ビーム方向記憶部283は、ビーム方向記憶部183と同様に、角度の変化が一定でない送信方向のパターンを記憶してもよいし、単に「10°」といった送信方向のパターンを記憶してもよいし、「10°/5°/3°」といった送信方向のパターンを記憶してもよい。
【0101】
また、上記第2の実施形態では、計測部273が、圧電振動子面の左端から体表までの距離と、圧電振動子面の右端から体表までの距離とを計測する例を示した。しかし、計測部273は、圧電振動子面から体表までの距離を3箇所以上計測してもよい。かかる場合には、検出部271は、例えば、圧電振動子面の重心位置を通る直線により圧電振動子面を2分割し、分割後の一方の圧電振動子面から体表までの距離の平均値と、分割後の他方の圧電振動子面から体表までの距離の平均値との差異を算出してもよい。また、検出部271は、例えば、計測部273によって計測された3箇所以上の距離の大小関係に基づいて、操作者が傾けようとする超音波プローブ40の方向を3次元的に検出し、検出した方向に超音波プローブ40を仮想的に傾け、仮想的に傾けた超音波プローブ40の圧電振動子面に対して垂直な方向を傾き要求方向として検出してもよい。
【0102】
また、上記第2の実施形態において、検出部271は、計測部273によって計測された距離の時間変動を各箇所について算出してもよい。具体的には、検出部271は、計測部273によって圧電振動子面から体表までの距離が計測された場合に、かかる計測距離と、計測部273によって1回前に計測された圧電振動子面から体表までの距離との差異を各箇所について算出する。そして、検出部271は、計測距離の時間変動に基づいて、操作者が超音波プローブ40を傾けようとしている方向を検出し、かかる検出結果から傾き要求方向を検出する。
【0103】
図8に示した例を用いて説明すると、超音波画像が状態(A)から状態(B)に変化した場合に、圧電振動子面の左端から体表までの距離の時間変動として、「H11−H12」を算出し、圧電振動子面の右端から体表までの距離の時間変動として、「H21−H22」を算出する。かかる場合に、操作者が超音波プローブ10を左に傾けようとしていることを示す。言い換えれば、操作者が超音波の送信方向を右側に傾けようとしていることを示す。このようなことから、検出部271は、圧電振動子面の左端から右端の方向を傾き要求方向として検出する。
【0104】
(その他の実施形態)
なお、実施形態は、上述した実施形態に限られるものではなく、他の異なる種々の形態にて実施することができる。
【0105】
(磁気センサ)
上述した実施形態においては、超音波プローブ10に設けられた加速度センサによって超音波プローブ10の位置変動を検出することで、超音波プローブ10の動きを検出し、検出した位置変動に基づいて、傾き要求方向を検出する手法を一例として説明した。しかしながら、実施形態はこれに限られるものではない。例えば、超音波プローブ10に設けられた磁気センサによって超音波プローブ10の位置変動を検出することで、超音波プローブ10の動きを検出してもよい。
【0106】
磁気センサを用いる場合、例えば、超音波診断装置1は、位置情報取得装置(図示を省略)を備える。超音波プローブ10に設けられた磁気センサは、位置情報取得装置のトランスミッターを原点として形成された3次元の磁場を検出し、検出した磁場の情報を信号に変換し、変換した信号を位置情報取得装置に出力する。位置情報取得装置は、磁気センサから受信した信号に基づいて、トランスミッターを原点とする3次元空間における磁気センサの位置座標及び向きを算出し、算出した位置座標及び向きを制御部170に送る。例えば、操作者が超音波プローブ10の一端を体表に接させたままの状態で横に滑らせる操作を行った場合、検出部171は、磁気センサの位置座標の変化を検出する。そして、検出部171は、例えば、位置座標Aから位置座標Bへと変化した場合には、位置変動を検出し、位置座標Aから位置座標Bに向かう方向を、傾き要求方向として検出する。
【0107】
(各種手法の組み合わせ)
また、上述した実施形態においては、圧力センサを用いる手法、加速度センサを用いる手法、超音波画像の画像解析結果を用いる手法、磁気センサを用いる手法等を説明してきたが、これらを適宜選択し、組み合わせることで、超音波の送信方向を求めてもよい。例えば、検出部は、圧力センサによって検知された『圧力』、加速度センサによって検知された『位置変動』、及び、超音波画像の画像解析によって得られた超音波プローブから体表までの『距離』の3つのパラメータを用いて、傾き要求方向を求めてもよい。
【0108】
複数パラメータの扱い方としては、例えば、優先度を設定する手法や、各パラメータから求められた結果の平均値を用いる手法等が考えられる。優先度を設定する手法の場合、例えば、検出部は、各パラメータに優先度を設定し、閾値以上の値が得られたパラメータのうち、優先度の高いパラメータに基づいて、傾き要求方向を検出する。例えば、検知部は、複数個の圧力センサによって検知された圧力の大小関係や、複数個所の距離の差異等に基づいて、超音波プローブに加えられた力や動きを3次元的に検出することができる。そして、この場合、検知部は、検出した方向に超音波プローブを仮想的に傾け、仮想的に傾けた超音波プローブの圧電振動子面に対して垂直な方向を傾き要求方向として検出することができる。すると、複数パラメータを用いた場合、検知部は、各パラメータから傾き要求方向それぞれを得ることができる。そこで、検知部は、予め設定した優先度に従って、優先度の高いパラメータから得られた傾き要求方向を選択すればよい。
【0109】
また、各パラメータから求められた結果の平均値を用いる手法の場合、例えば、検出部は、各パラメータから得られた傾き要求方向それぞれの平均値を求め、この平均値を、傾き要求方向として用いればよい。
【0110】
(傾き要求方向と超音波の送信方向との関係)
また、上述した実施形態において、偏向部は、超音波の送信方向を送信方向のパターンに従って変化させた。例えば、検出部によって検出された傾き要求方向が「左方向」の場合に、偏向部は、送信パターンを参照し、現状の送信方向(例えば「0°」)と「左方向」との関係から「−10°」を変更後の送信方向とした。このように、検出部によって概ねの傾き要求方向が検出されると、偏向部は、予め定めた送信パターンに従って送信方向を傾ける。すなわち、送信方向は、必ずしも傾き要求方向から計算されるものではなかった。しかしながら、実施形態はこれに限られるものではない。
【0111】
例えば、上述したように、検出部が、仮想的に傾けた超音波プローブの圧電振動子面に対して垂直な方向を傾き要求方向として検出することができる場合、傾き要求方向は、3次元的なベクトルで得られる。そこで、偏向部は、この傾き要求方向と同一の方向を超音波の送信方向として求めてもよいし、傾き要求方向から計算によって超音波の送信方向を求めてもよい。更に、上述したように、複数パラメータを用いた場合、偏向部は、複数の傾き要求方向を用いた送信方向の計算にあたり、優先度を設定したり、平均値を用いればよい。
【0112】
(傾き要求方向を検出しない場合)
更に、上述した実施形態においては、検出部が傾き要求方向を検出した上で、偏向部が、この傾き要求方向に基づいて超音波の送信方向を傾ける手法を説明したが、実施形態はこれに限られるものではない。例えば、予め、圧力センサの検知パターンと超音波の送信方向を傾ける向きとを対応付けて記憶しておくことで、傾き要求方向自体の検出を省略することができる。例えば、図6のステップS105、図9のステップS205を省略することができる。例えば、偏向部は、検出部によって検知された圧力センサの検知パターンを用いて超音波の送信方向を直接特定すればよい。
【0113】
以上述べた少なくとも一つの実施形態の超音波診断装置及び超音波プローブ制御方法によれば、操作者による感覚的な操作で超音波の送信方向を変更することができる。
【0114】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0115】
1 超音波診断装置
10 超音波プローブ
12 圧力センサ
170 制御部
171 検出部
172 偏向部
183 ビーム方向記憶部
270 制御部
271 検出部
272 偏向部
273 計測部
283 ビーム方向記憶部

【特許請求の範囲】
【請求項1】
超音波プローブに加えられた力、及び、前記超音波プローブの動きのうち、少なくともいずれか1つを検出する検出部と、
前記力及び前記動きのうち少なくともいずれか1つに基づいて、前記超音波プローブから送信される超音波の送信方向を傾ける偏向部と
を備える、超音波診断装置。
【請求項2】
前記検出部は、前記超音波プローブが被検体の体表に押し当てられている力、前記超音波プローブの位置変動、及び、前記超音波プローブから前記体表までの距離のうち、少なくともいずれか1つを検出する、請求項1に記載の超音波診断装置。
【請求項3】
前記検出部は、超音波画像を画像解析することで前記超音波プローブから前記体表までの距離を検出する、請求項1に記載の超音波診断装置。
【請求項4】
前記検出部は、前記力及び前記動きのうち少なくともいずれか1つに基づいて、操作者が前記超音波の送信方向を傾けようとする方向をさらに検出し、
前記偏向部は、前記方向に基づいて前記送信方向を傾ける、請求項1〜3のいずれか1つに記載の超音波診断装置。
【請求項5】
前記超音波プローブは、
該超音波プローブから前記被検体に対して加わる圧力を検知する複数の圧力検知部が設けられ、
前記検出部は、
前記複数の圧力検知部によって検知された検知圧力の差異に基づいて、検知圧力が大きい圧力検知部が設けられた位置から検知圧力が小さい圧力検知部が設けられた位置への方向を検出する、請求項4に記載の超音波診断装置。
【請求項6】
前記超音波プローブは、
該超音波プローブの位置変動を検知する移動検知部を有し、
前記検出部は、
前記移動検知部によって検知された前記超音波プローブの位置変動に基づいて、該超音波プローブの移動方向を検出する、請求項4に記載の超音波診断装置。
【請求項7】
前記超音波プローブの振動子面から前記被検体の体表までの距離を複数の箇所について計測する計測部をさらに備え、
前記検出部は、
前記計測部によって計測された複数の箇所における計測距離に基づいて、計測距離が短い箇所から計測距離が長い箇所への方向を検出する、請求項4に記載の超音波診断装置。
【請求項8】
前記計測部は、
前記体表と前記振動子面との距離を複数の箇所について計測する処理を所定の時間毎に行い、
前記検出部は、
前記計測部によって計測された計測距離の時間変動が小さい箇所から計測距離の時間変動が大きい箇所への方向を検出する、請求項7に記載の超音波診断装置。
【請求項9】
前記偏向部は、
前記検出部によって略同一の方向が所定時間連続して検出された場合、又は、前記検出部によって略同一の方向が所定回数連続して検出された場合に、前記超音波プローブから送信される超音波の送信方向を該方向に基づいて傾ける、請求項4に記載の超音波診断装置。
【請求項10】
超音波プローブと、
前記超音波プローブが被検体の体表に押し当てられている力、前記超音波プローブの位置変動、及び、前記超音波プローブから前記体表までの距離のうち、少なくともいずれか1つに基づいて、前記超音波プローブから送信される超音波の送信方向を傾ける偏向部と
を備える、超音波診断装置。
【請求項11】
超音波診断装置によって実行される超音波プローブ制御方法であって、
超音波プローブが被検体の体表に押し当てられている力、前記超音波プローブの位置変動、及び、前記超音波プローブから前記体表までの距離のうち、少なくともいずれか1つを検出する検出工程と、
前記超音波プローブが被検体の体表に押し当てられている力、前記超音波プローブの位置変動、及び、前記超音波プローブから前記体表までの距離のうち、少なくともいずれか1つに基づいて、前記超音波プローブから送信される超音波の送信方向を傾ける偏向工程と
を含む、超音波プローブ制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate