説明

超音波診断装置

【課題】特定の周波数の信号を、共振回路を用いて共振させることで振幅を増幅する超音波診断装置において、共振回路の出力のリンギングの発生を防ぎ、高精細な超音波画像を構築できる超音波診断装置を提供する。
【解決手段】送信電気信号を、少なくとも1周期の矩形波状の電気信号である第1波形40と、位相が180度異なる1周期分の電気信号である第2波形とで生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検体内に超音波信号を送信し、反射波に基づいて被検体内部の超音波画像を生成する超音波診断装置に関する。
【背景技術】
【0002】
超音波は、通常、16000Hz以上の音波をいい、非破壊、無害および略リアルタイムでその内部を調べることが可能なことから、欠陥の検査や疾患の診断等の様々な分野に応用されている。その一つに、被検体内を超音波で走査し、被検体内から来た超音波の反射波(エコー)から生成した受信信号に基づいて当該被検体内の内部状態を画像化する超音波診断装置がある。この超音波診断装置は、医療用では、他の医療用画像装置に較べて小型で安価であり、そしてX線等の放射線被爆が無く安全性が高いこと、また、ドップラ効果を応用した血流表示が可能であること等の様々な特長を有している。このため、超音波診断装置は、循環器系(例えば心臓の冠動脈等)、消化器系(例えば胃腸等)、内科系(例えば肝臓、膵臓および脾臓等)、泌尿器系(例えば腎臓および膀胱等)および産婦人科系等で広く利用されている。
【0003】
超音波診断装置には、被検体に対して超音波(超音波信号)を送受信する超音波探触子が用いられている。超音波探触子は、圧電現象を利用することによって、送信の電気信号に基づいて機械振動して超音波(超音波信号)を発生し、被検体内部で音響インピーダンスの不整合によって生じる超音波(超音波信号)の反射波を受けて受信の電気信号を生成する複数の圧電素子を備え、これら複数の圧電素子が例えばアレイ状に2次元配列されて構成されている(例えば、特許文献1参照)。
【0004】
また、近年では、超音波探触子から被検体内へ送信された超音波の周波数(基本周波数)成分ではなく、その高調波成分によって被検体内の内部状態の画像を形成するハーモニックイメージング(Harmonic Imaging)技術が研究、開発されている。ハーモニックイメージング技術は、基本周波数成分のレベルに比較してサイドローブレベルが小さく、S/N比(Signal to Noise ratio)が良くなってコントラストが向上すること、周波数が高くなることによってビーム幅が細くなって横方向分解能が向上すること、近距離では音圧が小さくて音圧の変動が少ないために多重反射が抑制されること、および、焦点以遠の減衰が基本波並みであり高周波を基本波とする場合に較べて深速度を大きく取れること等の様々な利点を有している。
【0005】
高調波成分の検出は、超音波探触子が超音波から変換された電気信号を、基本周波数を除去するハイパスフィルタなどに通して実施されている。しかし、高調波成分は、基本波成分に比べてかなり小さいことから、高精細な超音波画像を構築するに十分な信号レベルを得るには、高価で大規模なハイパスフィルタを採用する必要があり、装置の高コスト化と大規模化を招く要因になっている。
【0006】
この不具合を解決するための提案がなされている。例えば、超音波から変換された電気信号を共振回路を通過させて、高調波成分のみを共振により増幅させる技術がある(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2004−088056号公報
【特許文献2】特開2007−185525号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献2に記載の技術は、特定の周波数の信号を、共振回路を用いて共振させることで振幅を増幅しているので、共振回路の出力に共振回路の特性に応じたリンギングが発生する。超音波探触子に送信する電気信号は、所定の時間間隔をおいた電気信号の集合であるので、電気信号同士の間に発生するリンギングは、時間的に後の電気信号に重畳されるという不具合が発生する。リンギングが重畳された電気信号は、超音波画像にノイズを発生させるので、高精細な超音波画像の構築を妨げることとなる。
【0009】
本発明は、共振回路の出力のリンギングの発生を防ぎ、高精細な超音波画像を構築できる超音波診断装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
前述の目的は、下記に記載する発明により達成される。
【0011】
1.無機圧電材料を主成分とし、送信電気信号を第1超音波信号に変換して、被検体内に送信する複数の圧電素子を有する無機圧電素子アレイと、
所定の周波数の第1電気信号波形と、該第1電気信号波形と略同一の周波数を成し略180度位相の異なる第2電気信号波形とを、この順で連続して生成された電気信号である送信電気信号を出力する電気回路を備え、前記送信電気信号を前記圧電素子に印加する送信部と、
有機圧電材料を主成分とし、前記第1超音波信号が前記被検体内において反射して生成された第2超音波信号の高調波成分を受信し、受信電気信号に変換する複数の圧電素子を備える有機圧電素子アレイと、
前記受信電気信号を入力し、前記第2超音波信号の高調波成分を共振周波数とする共振回路を備える受信部と、
前記受信部の出力から前記被検体内の内部状態の画像を生成する画像処理部14と、
を有することを特徴とする超音波診断装置。
【0012】
2.前記有機圧電材料は、フッ化ビニリデンの重合体、または、フッ化ビニリデンとトリフルオロエチレンの共重合体であることを特徴とする前記1に記載の超音波診断装置。
【0013】
3.前記無機圧電材料は、ジルコニウム酸チタン酸鉛であることを特徴とする前記1に記載の超音波診断装置。
【0014】
4.前記無機圧電素子アレイは、前記無機圧電素子アレイが前記被検体に第1超音波信号を送信する方向に、前記有機圧電素子アレイ上に積層されていることを特徴とする前記1から3の何れか1項に記載の超音波診断装置。
【発明の効果】
【0015】
超音波探触子における共振回路の出力のリンギングの発生を防ぎ、高精細な超音波画像を構築できる超音波診断装置を提供できる。
【図面の簡単な説明】
【0016】
【図1】本実施形態に係る超音波診断装置Sの外観構成を示す概要図である。
【図2】本実施形態に係る超音波診断装置Sの電気的な構成を示すブロック図である。
【図3】本実施形態に係る超音波診断装置Sにおける超音波探触子2の構成を示す概要図である。
【図4】送信部12が生成する送信電気信号の波形の例を示す図であり、図4(a)は従来の超音波診断装置の送信部12が生成していた送信電気信号の例であり、図4(b)は本実施形態における送信電気信号の例である。
【図5】本実施形態に係る送信部12と受信部13の回路構成の1例を示す概要図である。
【図6】本実施形態に係る超音波探触子2の回路構成と送信電気波形を説明する図であり、図6(a)は、回路構成の1例を示す概要図であり、図6(b)は圧電素子に印加される送信電気波形の1例を示す概要図である。
【図7】本実施形態に係る受信電気信号が共振回路47を通過した後の波形の概要図である。
【図8】本実施形態に係る増幅回路の例である。
【図9】本実施形態に係る送信電気信号の例である。
【発明を実施するための形態】
【0017】
以下に本発明の実施形態を図面により説明するが、本発明は以下に説明する実施形態に限られるものではない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
【0018】
以下に超音波診断装置および超音波探触子の各構成および動作について図1から図3を用いて説明する。図1は、超音波診断装置の外観構成を示す概要図である。図2は、超音波診断装置の電気的な構成を示すブロック図である。図3は超音波診断装置における超音波探触子の構成を示す概要図である。
【0019】
超音波診断装置Sは、図1に示すように、図略の生体等の被検体Hに対して超音波(第1超音波信号)を送信すると共に、被検体Hで反射した超音波の反射波(エコー、第2超音波信号)を受信する超音波探触子2と、超音波探触子2とケーブル3を介して接続され、超音波探触子2へケーブル3を介して電気信号の送信信号を送信することによって超音波探触子2に被検体Hに対して超音波を送信させると共に、超音波探触子2で受信された被検体H内からの第2超音波信号に応じて超音波探触子2で生成された受信信号に基づいて被検体H内の内部状態を超音波画像として画像化する超音波診断装置本体1とを備えて構成される。
【0020】
超音波診断装置本体1は、例えば、図2に示すように、診断開始を指示するコマンドや被検体Hの個人情報等のデータを入力する操作入力部11と、超音波探触子2へケーブル3を介して電気信号の送信信号を供給することで超音波探触子2に超音波を発生させるよう駆動する送信部12と、超音波探触子2からケーブル3を介して受信信号を受信する受信部13と、
受信信号の高調波成分に基づいて被検体H内の内部状態の画像(超音波画像)を生成する画像処理部14と、
画像処理部14で得られた結果等を記憶させる記憶部17と、画像処理部14で生成された被検体H内の内部状態の画像を表示する表示部15と、これら操作入力部11、送信部12、受信部13、画像処理部14、表示部15および記憶部17とを該機能に応じて制御することによって超音波診断装置Sの全体制御を行う制御部16と、を備えて構成される。
【0021】
超音波探触子2の一例を、図3を用いて説明する。超音波探触子2は、有機圧電素子アレイ5と無機圧電素子アレイ4とを備えている。
【0022】
無機圧電素子アレイ4は無機圧電素子を、有機圧電素子アレイ5は有機圧電素子を備え、無機圧電素子は無機圧電材料を主成分とし、有機圧電素子は有機圧電材料を主成分とする。各々圧電現象を利用することによって受信信号と超音波信号との間で相互に信号を変換することができる。
【0023】
超音波探触子2は、被検体H方向に向かって、平板状の音響制動部材23と、音響制動部材23の上に積層された音響整合層31と、無機圧電素子アレイ4と、音響整合層26と、有機圧電素子アレイ5と、有機圧電素子アレイ5上に積層される音響整合層27と、を有する。無機圧電素子アレイ4は被検体H方向に向かって超音波信号(第1超音波信号とも称す)を送信する圧電素子アレイであり、有機圧電素子アレイ5は被検体Hから反射して生成された超音波信号(第2超音波信号とも称す)を受信する圧電素子アレイである。このように、被検体H方向に向かって、送信用と受信用の圧電素子アレイを積層することで、反射してきた超音波信号を効率よく受信することができるとともに、超音波探触子2の小型に寄与する。
【0024】
無機圧電素子アレイ4は、複数の無機圧電素子22と、無機圧電素子22同士の隙間に音響分離材を充填して作製される音響分離部24と、無機圧電素子22上に積層された共通接地電極25とを有す。
【0025】
この他、図示しないが、外部からの電気信号を受ける導電パッドが音響制動部材23の下部に設けられ、導電パッドと無機圧電素子22の電極とを信号線で接続されている。
【0026】
音響制動部材23は、超音波を吸収する材料から構成され、複数の無機圧電素子22から音響制動部材23方向へ放射される超音波を吸収するものである。
【0027】
音響整合層31は、音響制動部材23と無機圧電素子22の各々の音響インピーダンスの中間の音響インピーダンスを有し、音響制動部材23と無機圧電素子22の音響インピーダンスの整合を図る。
【0028】
各無機圧電素子22は、無機圧電材料から構成される圧電素子101における互いに対向する両面にそれぞれ電極102、103を備えて構成される。複数の無機圧電素子22は、互いに所定の間隔を空けて平面視にて2次元状に配列され、音響制動部材23上に配置されている。
【0029】
複数の無機圧電素子22は、超音波を送信するように構成されている。より具体的には、複数の無機圧電素子22には、送信部12からケーブル3と導電パッドと信号線を介して電気信号が入力される。電気信号は、無機圧電素子22の電極102と電極103との間に入力される。複数の無機圧電素子22は、この電気信号を超音波信号に変換することによって第1超音波信号を送信する。
【0030】
音響分離部24は、無機圧電素子22の音響インピーダンスに比して値が大きく異なる低音響インピーダンス樹脂から構成され、音響インピーダンスが大きく異なることにより、音響分離材として働き、これら複数の無機圧電素子22の相互干渉を低減する機能を有する。音響分離部24によって各無機圧電素子22間におけるクロストークの低減が可能となる。
【0031】
共通接地電極25は、導電性の材料から構成され、図略の配線によって接地されており、そして、複数の無機圧電素子22上にまたがって直線状に積層されることによってこれら無機圧電素子22における各電極103を電気的に接地している。
【0032】
音響整合層26は、無機圧電素子アレイ4と有機圧電素子アレイ5の各々の音響インピーダンスの中間の音響インピーダンスを有し、無機圧電素子アレイ4と有機圧電素子アレイ5の音響インピーダンスの整合を図る。
【0033】
音響整合層27は、有機圧電素子アレイ5の音響インピーダンスと被検体Hの音響インピーダンスとの整合をとる部材である。音響整合層27は、円弧状に膨出した形状とされ、被検体Hに向けて送信される超音波を収束する音響レンズの機能を有する。
【0034】
有機圧電素子アレイ5は、所定の厚さを持った平板状の有機圧電材料から成る圧電素子105と、この圧電素子105の一方主面に形成された互いに分離した複数の電極106と、この圧電素子105の他方主面に略全面に亘って一様に形成された電極107とを備えて構成されたシート状の圧電素子である。
【0035】
複数の電極106が圧電素子105の一方主面に形成されることによって、有機圧電素子アレイ5は、1個の電極107と圧電素子105と電極106とから成る圧電素子を2次元状に備え、各圧電素子が個別に動作する。
【0036】
有機圧電素子アレイ5における複数の圧電素子は、個別に機能させるために無機圧電素子22のように個々に分離する必要がなく、一体的なシート状で構成することが可能である。
【0037】
図3では、21で示される部分のように、電極107と圧電素子105と電極106とで形成される部分を一つの各々有機圧電素子、すなわち有機圧電素子21とみなすことができる。
【0038】
有機圧電素子21は、反射波の超音波信号を受信する受信用圧電素子であり、受信した超音波信号を電気信号に変換する。この電気信号は、有機圧電素子21における電極106と電極107とから出力される。この電気信号は、ケーブル3を介して受信部13へ出力される。
【0039】
無機圧電材料には、例えばPZT(ジルコニウム酸チタン酸鉛)などの焼結体を分極処理したもの、水晶、LiNbO、LiTaO、KNbOなどの単結晶、ZnO、AlNなどの薄膜、を用いることができる。無機圧電材料を用いることで、狭い帯域を有する第1超音波信号を送信することができる。これら無機圧電材料は、弾性スティフネスが高く、機械的損失係数が高い、密度が高く誘電率も高いなどの特徴を持っている。中でもPZTを用いることで、高感度、高解像度の超音波信号の送信(受信)を行うことができる。
【0040】
有機圧電材料には、例えば、フッ化ビニリデンの重合体や、フッ化ビニリデンとトリフルオロエチレンの共重合体を用いることができる。フッ化ビニリデンとトリフルオロエチレンの共重合体の場合、共重合比によって厚み方向の電気機械結合定数(圧電効果)が変化すので、例えば、前者の共重合比が60〜99モル%が好ましいが、無機圧電素子と有機圧電素子を重ねる時に使用する有機結合剤の使用方法にもよるので、その最適値は変化する。最も好ましい前者の共重合比の範囲は85〜99モル%である。フッ化ビニリデンを85〜99モル%にして、パーフルオロアルキルビニルエーテル、パーフルオロアルコキシエチレン、パーフルオロヘキサエチレン等を1〜15モル%にしたポリマーは、送信用無機圧電素子と受信用有機圧電素子との組み合わせにおいて、送信における基本周波波を抑制して、高調波受信の感度を高めることができる。
【0041】
フッ化ビニリデンとトリフルオロエチレンの共重合体は、薄膜化、大面積化等の加工性に比較的優れ、任意の形状、形態の物が作ることができ、弾性率が低い、誘電率が低い等の特徴を持つため、超音波信号を受信する圧電素子としての使用に際しては、高感度な検出を可能とする特徴を持っている。また、これらの有機圧電材料は、高周波特性、広帯域特性を必要とするハーモニックイメージング技術における圧電材料として適している。
【0042】
この他、例えば、ポリシアノビニリデン、4,4’−ジフェニルメタンジイソシアネート(MDI)のようなジイソシアネート化合物と4,4’−ジアミノジフェニルメタン(MDA)のようなジアミン化合物よりつくるウレイン基から構成されるポリウレア樹脂等の有機圧電材料も好適である。
【0043】
次いで、超音波診断装置本体1における送信部12、受信部13、および超音波探触子2における回路構成と、被検体に送信する第1超音波信号について説明する。
【0044】
図4は、送信部12が生成する送信電気信号の波形の例を示す図である。図5は、送信部12と受信部13の回路構成の1例を示す概要図である。図6は、超音波探触子2の回路構成の1例と圧電素子に印加される送信電気信号の波形の1例を示す概要図である。
【0045】
最初に送信部12が生成する送信電気信号について説明する。図4(a)は従来の超音波診断装置の送信部12が生成していた送信電気信号の1例である。図4(b)は本実施形態における送信電気信号の例である。
【0046】
従来の送信電気信号は、少なくとも1周期の矩形波状の電気信号である(第1波形40とも称す)。これに対して本実施形態における送信電気信号は図4(b)に示すように、第1波形40に時間的に微小遅れdtが経過した後に、付加部分が付加された波形である。付加部分は第1波形40をなす矩形波と略同じ振幅を有し、位相が略180度異なる1周期分の波形(第2波形とも称す)である。微小遅れdtは、第1波形と第2波形の1周期分の時間に対して、例えば10分の1以下の値である。
【0047】
次に第2波形を生成する送信部12と、受信部13の回路構成について説明する。図5において、送信部1と受信部13とは各々一点差線で囲まれた範囲である。送信部12と受信部13とは超音波診断装置本体1と超音波探触子2とを繋ぐケーブル3に接続されている。1つのケーブル3を共有するにあたり、ケーブル3を送信に用いる場合には、制御部16は、送信部12のスイッチSW1をONにし受信部13のスイッチSW2をOFFにする。逆に、ケーブル3を受信に用いる場合には、制御部16は、送信部12のスイッチSW1をOFFにし受信部13のスイッチSW2をONにする。
【0048】
送信部12が超音波探触子2に送信する送信電気信号は、例えば二つのCMOS(Complementary Metal Oxide Semiconductor)44、45と、そのCMOSを駆動するCMOSドライバ43を用いて生成される。具体的には、プラスの定圧電源Vc1、マイナスの定電圧源Vc2とを用いて、図5に示すような回路配置を採用する。
【0049】
以下に動作を説明する。制御部16がCMOSドライバ43を制御し、CMOSドライバ43の駆動により、CMOS44をONにし、CMOS45をOFFにすると、スイッチSW1を介してケーブル3に接続される地点46の電位は定電圧源Vc1と同電位になり、例えば図4(b)における正の電圧値V0となる。次に、制御部16がCMOSドライバ43を制御し、CMOSドライバ43の駆動により、CMOS44をOFFにし、CMOS45をONにすると、地点46の電位は定電圧源Vc2と同電位になり、例えば図4(b)における負の電圧値−V0となる。以上の動作を制御部16が繰り返すことで、図4(b)に示す矩形の連続波形の送信電気信号である第1波形40を得ることができる。次に、制御部16は、制御部16内に備える図示しないクロックの時間計測値を読み出し、所定のdtの時間経過後に、第2波形、すなわち第1波形40をなす矩形と同じ振幅を有し、位相が180度異なる1周期分の波形を、上記の同様に、CMOSドライバ43を制御することで生成する。このように第1波形40と第2波形42とからなる送信電気信号41は、スイッチSW1、ケーブル3を介して超音波探触子2に送信される。超音波探触子2は、図6(a)に示すように、送信電気信号41を送信する無機圧電素子22、基板50上のインダクタンスLおよびスイッチSW3のラインと、有機圧電素子21およびスイッチSW4のラインとが、一つのケーブル3に接続されている。超音波診断装置本体1から送信される送信電気信号41は、制御部16に制御により、スイッチSW3をON、スイッチSW4をOFFされた後に、インダクタンスL、無機圧電素子22に伝達される。送信電気信号41は、インダクタンスLを通過することで、図6(b)に示すような正弦波状の連続波に変換され、無機圧電素子22に印加される。
【0050】
無機圧電素子22においては、正弦波状の電圧印加を受けて、その厚み方向に伸縮し、超音波振動するよう駆動され、正弦波状の強度振幅を有する第1超音波信号を生成して送信する。第1超音波信号は有機圧電素子アレイ5等を伝播して被検体H方向へ照射される。
【0051】
第1超音波信号には送信部からの送信電気信号41に含まれる周波数(基本波の基本周波数)成分だけでなく、基本周波数の整数倍の高調波成分も含まれる。例えば、基本周波数の2倍、3倍および4倍などの第2高調波成分、第3高調波成分および第4高調波成分なども含まれる。これは、送信部12からの電気信号自体に高調波成分が含まれることと、圧電素子の応答特性等に依存する。
【0052】
この被検体Hに対して送信された第1超音波信号は、被検体H内部における音響インピーダンスが異なる1または複数の境界面で反射され、超音波の反射波である第2超音波信号となる。
【0053】
第2超音波信号には、送信された第1超音波信号の周波数(基本波の基本周波数)成分だけでなく、基本周波数の整数倍の高次高調波の周波数成分も含まれる。第2超音波信号、超音波探触子2で受信される。より具体的には、第2超音波信号は、音響整合層27を介して受信用圧電素子である有機圧電素子21で受信され、有機圧電素子21で機械的な振動が受信電気信号に変換されて取り出される。取り出された受信電気信号は、制御部16により制御されてONにされたスイッチSW4介してケーブル3を通じ、制御部16で制御される受信部13で受信される。この時、スイッチSW3は制御部16に制御によりOFFにされる。受信部13においては、受信電気信号は制御部16の制御により、ONにされたスイッチSW2を介して共振回路47に入力される。この時、スイッチSW1は制御部16に制御によりOFFにされる。受信電気信号には送信電気信号41に含まれる基本周波数の他に被検体Hの中で第2超音波信号に含まれる高調波成分には、例えば3次高調波成分の電気信号が含まれる。本実施形態に係る超音波診断装置Sにおいては、被検体Hからの反射波である第2超音波信号における3次高調波成分を解析することで、高精細な超音波画像を得る。そのために、共振回路47の共振周波数を3次高調波の周波数に合わせる。例えば、図5に示すような公知のLC共振回路を採用した場合、共振周波数はインダクタンスLとキャパシタCの値を3次高調波の周波数が共振するように選択する。このようにすることで、3次高調波を共振させて次段に3次高調波のみ伝送し、基本周波数や2次高調波を減衰させることができる。また3次高調波をさらに増幅器AMP1に入射されることでより増幅させる。
【0054】
共振回路47を通過した受信電気信号の中で3次高調波の周波数を有する受信電気信号の信号波形について図7を用いて説明する。図7は受信電気信号が共振回路47を通過した後の波形の概要図である。
【0055】
図7(a)から(e)において、横軸は時間、縦軸は受信電気信号の振幅を表す。図7(a)は送信用の圧電素子である無機圧電素子に印加される送信電気信号41がインダクタンスLを通過した信号である。上記したように送信電気信号41は実線で表した第1波形40と点線で表した第2波形42とに分けられる。
【0056】
第1波形40のみが共振回路47を通過した波形を図7(b)に示す。共振回路47を通過することで、リンギングR1が発生する。このリンギングR1は、第1波形40をなす正弦波と同相の正弦波状である。特にリンギングの最初の波形であるリンギングR11は、第1波形40をなす正弦波と180度位相の異なる第2波形と打ち消しあう関係にある。リンギングR1は、振幅を徐々に減少させながら減衰していく。
【0057】
第2波形42のみが共振回路47を通過した波形を図7(c)に示す。共振回路47を通過することで、リンギングR2が発生する。上記のように、第2波形42は、リンギングR11と打ち消しあう関係にある。また、リンギングR2も図7(b)で示したリンギングR1におけるリンギングR11より後のリンギングと位相が180ずれているので互いに打ち消しあう関係にある。
【0058】
図7(d)は第1波形40のみが共振回路47を通過した波形と、第2波形42のみが共振回路47を通過した波形とを重ね合わせた波形である。これらの波形を足し算すると図7(e)のように第1波形のリンギングR1が減衰することとなる。このように、第1波形のリンギングR1と、第2波形と第2波形のリンギングR2とを相殺させ、共振回路47の出力のリンギングを極めて小さくすることができる。従って、送信部12が送信電気信号を送信させた後に、引き続いて次に送信電気信号を直ちに送信でき、次の送信電気信号にリンギングによるノイズが重畳されることがないので、高精細な超音波画像を構築することが可能となる。
【0059】
なお、超音波探触子2は、被検体Hの表面上に当接して用いられてもよいし、被検体H内部に挿入して、例えば、生体の体腔内に挿入して用いられてもよい。
【0060】
このように高次高調波成分を抽出した受信部13の出力は、画像処理部14に送られる。画像処理部14は、制御部16の制御によって、受信部13で受信した受信信号に基づいて、送信から受信までの時間や受信強度などから被検体H内の内部状態の画像(超音波画像)を生成し、表示部15は、制御部16の制御によって、画像処理部14で生成された被検体H内の内部状態の画像を表示する。
【0061】
本実施形態における超音波探触子2および超音波診断装置Sでは、上述したように基本波の高調波が受信されるので、いわゆるハーモニックイメージング技術によって超音波画像を形成することが可能となる。このため、本実施形態における超音波探触子2および超音波診断装置Sは、より高精度な超音波画像の提供が可能となる。そして、比較的パワーの大きい第3高調波が受信されるので、より鮮明な超音波画像の提供が可能となる。
【0062】
なお、送信部12が超音波探触子2に送信する送信電気信号を生成する回路は、図8(a)、(b)に示すような回路でもよい。図8は増幅回路の例である。以下に説明する。図8(a)の増幅回路は、アンプAMP2の出力端にトランジスタtr1、tr2を同図に示す向きで配置した回路である。ここで、Vc3は正の定電圧、Vc4は負の定電圧である。このような増幅回路の増幅率は、1+R1/R2となる。同様に図8(b)の増幅回路は、アンプAMP2の出力端にトランジスタtr3、tr4を、同図に示す向きで配置した回路であり、Vc5は正の定電圧、Vc6は負の定電圧である。このような増幅回路の増幅率は、−R2/R1となる。このような増幅回路に所望の波形を生成する図示しない回路の出力を入力して増幅する。例えば、図9(a)に示すような時間波形を有する送信電気信号を生成した場合を検討する。図9は送信電気信号の例である。図4(b)で示した送信電気信号は±V0の振幅を有する矩形波であったが、図9(a)に示す送信電気信号は、第1波形40の振幅が±V0、第2波形42の振幅が±V1であり、V1はV0より大きいとする。
【0063】
このような送信電気信号の場合、図4(b)で示した送信電気信号の場合に比較して、第1波形のリンギングR1と、第2波形と第2波形のリンギングR2とが、より良く相殺させ、共振回路47の出力のリンギングをさらに小さくすることができる。すなわち図9(b)で示すように、図4(b)で示した送信電気信号の場合のリンギング50に対して、図9(a)に示す送信電気信号の場合のリンギング51の振幅が、より小さくなる効果を有する。
【0064】
以上のように、本実施形態によれば、送信電気信号を、少なくとも1周期の矩形波状の電気信号である第1波形40と、位相が180度異なる1周期分の電気信号である第2波形とで生成することで、リンギングを極めて小さくすることができる。従って、送信部12が送信電気信号を送信させた後に、引き続いて次に送信電気信号を直ちに送信でき、次の送信電気信号にリンギングによるノイズが重畳されることがないので、高精細な超音波画像を構築することが可能となる。
【0065】
また、本実施形態によれば、前記有機圧電材料に、フッ化ビニリデンの重合体、または、フッ化ビニリデンとトリフルオロエチレンの共重合体を採用することで、薄膜化、大面積化等の加工性に比較的優れ、任意の形状、形態の物が作ることができ、弾性率が低い、誘電率が低い等の特徴を持つため、超音波信号を受信する圧電素子としての使用に際しては、高感度な検出を可能とする特徴を持っている。また、これらの有機圧電材料は、高周波特性、広帯域特性を必要とするハーモニックイメージング技術における圧電材料として適している。
【0066】
また、本実施形態によれば、前記無機圧電材料に、ジルコニウム酸チタン酸鉛を採用することで、高感度、高解像度の超音波信号の送信を行うことができる。
【0067】
また、本実施形態によれば、被検体H方向に向かって、無機圧電素子アレイと有機圧電素子アレイを積層することで、反射してきた第2超音波信号を効率よく受信することができるとともに、超音波探触子2の小型に寄与する。
【符号の説明】
【0068】
1 超音波診断装置本体
2 超音波探触子
3 ケーブル
4 無機圧電素子アレイ
5 有機圧電素子アレイ
11 操作入力部
12 送信部
13 受信部
14 画像処理部
15 表示部
16 制御部
17 記憶部
21 有機圧電素子
22 無機圧電素子
23 音響制動部材
24 音響分離部
25 共通接地電極
26、27、31 音響整合層
41 送信電気信号
43 CMOSドライバ
47 共振回路
101 圧電素子
102、103、106、107 電極
105 圧電素子
H 被検体
S 超音波診断装置

【特許請求の範囲】
【請求項1】
無機圧電材料を主成分とし、送信電気信号を第1超音波信号に変換して、被検体内に送信する複数の圧電素子を有する無機圧電素子アレイと、
所定の周波数の第1電気信号波形と、該第1電気信号波形と略同一の周波数を成し略180度位相の異なる第2電気信号波形とを、この順で連続して生成された電気信号である送信電気信号を出力する電気回路を備え、前記送信電気信号を前記圧電素子に印加する送信部と、
有機圧電材料を主成分とし、前記第1超音波信号が前記被検体内において反射して生成された第2超音波信号の高調波成分を受信し、受信電気信号に変換する複数の圧電素子を備える有機圧電素子アレイと、
前記受信電気信号を入力し、前記第2超音波信号の高調波成分を共振周波数とする共振回路を備える受信部と、
前記受信部の出力から前記被検体内の内部状態の画像を生成する画像処理部14と、
を有することを特徴とする超音波診断装置。
【請求項2】
前記有機圧電材料は、フッ化ビニリデンの重合体、または、フッ化ビニリデンとトリフルオロエチレンの共重合体であることを特徴とする請求項1に記載の超音波診断装置。
【請求項3】
前記無機圧電材料は、ジルコニウム酸チタン酸鉛であることを特徴とする請求項1に記載の超音波診断装置。
【請求項4】
前記無機圧電素子アレイは、前記無機圧電素子アレイが前記被検体に第1超音波信号を送信する方向に、前記有機圧電素子アレイ上に積層されていることを特徴とする請求項1から3の何れか1項に記載の超音波診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−213903(P2010−213903A)
【公開日】平成22年9月30日(2010.9.30)
【国際特許分類】
【出願番号】特願2009−64116(P2009−64116)
【出願日】平成21年3月17日(2009.3.17)
【出願人】(303000420)コニカミノルタエムジー株式会社 (2,950)
【Fターム(参考)】