説明

車両搭載用マルチフェーズコンバータ

【課題】車両搭載用の昇圧コンバータに用いられる昇圧インダクタのコアの総体積を低減することを目的とする。
【解決手段】複数の昇圧コイルを備える車両搭載用マルチフェーズコンバータにおいて、各昇圧コイルに対応して設けられ、対応する昇圧コイルが巻かれる環状の自己インダクタンスコアと、複数の昇圧コイルから2つを選択する組み合わせに対応して設けられ、組をなす2つの昇圧コイルが巻かれ、組をなす当該2つの昇圧コイルに対応する各自己インダクタンスコアを含む環状の相互インダクタンスコアと、を備え、自己インダクタンスコアおよび相互インダクタンスコアは、それぞれの周回方向線を切断するギャップを有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、互いに磁気結合する複数の昇圧コイルを備え、各昇圧コイルの誘導起電力に応じた電圧を出力する車両搭載用マルチフェーズコンバータに関する。
【背景技術】
【0002】
モータの駆動力によって走行するハイブリッド自動車、電気自動車等が広く用いられている。このようなモータ駆動車両は、電池電圧を昇圧し、昇圧した電圧をモータ駆動回路に出力する昇圧コンバータを備える。
【0003】
昇圧コンバータは、昇圧インダクタ、昇圧インダクタに流れる電流をスイッチングするスイッチング回路等を備える。昇圧インダクタは電流のスイッチングにより誘導起電力を発生する。昇圧コンバータは、入力電圧に誘導起電力を加えた昇圧電圧をモータ駆動回路に出力する。これによって、昇圧コンバータは、電池電圧より大きい電圧をモータ駆動回路に出力することができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−65384号公報
【特許文献2】特開2008−22594号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
昇圧コンバータの昇圧インダクタは、車両のエンジンコンパートメントに配置されることが多い。昇圧インダクタは、コアと、コアに巻き付けられる昇圧コイルとを備える。コアの体積が大きい場合、エンジンコンパートメントの容積を大きくする必要が生じ、車室を狭くせざるを得ない場合がある。
【0006】
本発明はこのような課題に対してなされたものである。すなわち、車両搭載用の昇圧コンバータに用いられる昇圧インダクタのコアの総体積を低減することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、複数の昇圧コイルと、各昇圧コイルに流れる電流のスイッチングにより各昇圧コイルに誘導起電力を発生させるスイッチング回路と、を備え、各昇圧コイルに発生した誘導起電力に基づく出力電圧を車両駆動回路に印加する、車両搭載用マルチフェーズコンバータにおいて、各昇圧コイルに対応して設けられ、対応する昇圧コイルが巻かれる環状の自己インダクタンスコアと、前記複数の昇圧コイルから2つを選択する組み合わせに対応して設けられ、組をなす2つの昇圧コイルが巻かれ、組をなす当該2つの昇圧コイルに対応する各自己インダクタンスコアの一部を含む環状の相互インダクタンスコアと、を備えることを特徴とする。
【0008】
また、本発明に係る車両搭載用マルチフェーズコンバータにおいては、前記自己インダクタンスコアおよび前記相互インダクタンスコアは、それぞれの周回方向線を切断するギャップを有することが好適である。
【0009】
また、本発明は、複数の昇圧コイルと、各昇圧コイルに流れる電流のスイッチングにより各昇圧コイルに誘導起電力を発生させるスイッチング回路と、を備え、各昇圧コイルに発生した誘導起電力に基づく出力電圧を車両駆動回路に印加する、車両搭載用マルチフェーズコンバータにおいて、環状コアと、前記昇圧コイルに対応して設けられ、一端が前記環状コアに接続され、前記環状コアの中心方向に延伸するコイル巻き柱コアと、各コイル巻き柱コアに対応して設けられ、一端が対応するコイル巻き柱コアの他端に接続され、前記環状コアの周方向に垂直な方向に延伸し、他端が前記環状コアに接続される補助柱コアと、を備えることを特徴とする。
【0010】
また、本発明に係る車両搭載用マルチフェーズコンバータにおいては、前記コイル巻き柱コアおよび当該コイル巻き柱コアに対応する前記補助柱コアは、対応する昇圧コイルが巻かれる環状の自己インダクタンスコアを前記環状コアと共に形成し、一つの自己インダクタンスコアを形成するコイル巻き柱コアおよび補助柱コアの接続部と、他の自己インダクタンスコアを形成するコイル巻き柱コアおよび補助柱コアの接続部との間にはギャップが設けられ、各コイル巻き柱コアは、延伸方向線を切断するギャップを有することが好適である。
【発明の効果】
【0011】
本発明によれば、車両搭載用の昇圧コンバータに用いられる昇圧インダクタのコアの総体積を低減することができる。
【図面の簡単な説明】
【0012】
【図1】第1の実施形態に係る2相マルチフェーズコンバータの構成を示す図である。
【図2】第1の実施形態に係る第1昇圧インダクタ12および第2昇圧インダクタ14の構成を示す図である。
【図3】第1の実施形態に係る第1昇圧インダクタ12および第2昇圧インダクタ14に対する磁気等価回路を示す図である。
【図4】第2の実施形態に係る3相マルチフェーズコンバータの構成を示す図である。
【図5】第2の実施形態に係る昇圧インダクタブロックの構成を示す図である。
【図6】第2の実施形態に係る昇圧インダクタブロックに対する磁気等価回路を示す図である。
【図7】変形例に係る昇圧インダクタブロックの構成を示す図である。
【図8】結合ハブコアを取り除いた場合の昇圧インダクタブロックの構成を示す図である。
【発明を実施するための形態】
【0013】
図1に本発明の第1の実施形態に係る2相マルチフェーズコンバータの構成を示す。2相マルチフェーズコンバータは、互いに磁気結合する2つの昇圧インダクタを備え、各昇圧インダクタに流れる電流を異なるタイミングでスイッチング制御するものである。出力端子からは各昇圧インダクタの誘導起電力に応じた電圧が出力される。
【0014】
2相マルチフェーズコンバータの構成について説明する。上スイッチ16−1の一端は下スイッチ18−1の一端に接続される。下スイッチ18−1の他端は電池10の負極端子に接続され、上スイッチ16−1の他端と下スイッチ18−1の他端との間には、コンデンサ20が接続される。第1昇圧インダクタ12の一端は電池10の正極端子に接続され、他端は上スイッチ16−1および下スイッチ18−1の接続点に接続される。
【0015】
同様に、上スイッチ16−2の一端は下スイッチ18−2の一端に接続される。下スイッチ18−2の他端は電池10の負極端子に接続され、上スイッチ16−2の他端と下スイッチ18−2の他端との間には、コンデンサ20が接続される。第2昇圧インダクタ14の一端は電池10の正極端子に接続され、他端は上スイッチ16−2および下スイッチ18−2の接続点に接続される。
【0016】
コンデンサ20の一端は出力端子22に接続され、他端は出力端子24に接続される。出力端子22および24には、車両駆動用モータジェネレータを駆動する車両駆動回路26が接続される。
【0017】
第1昇圧インダクタ12および第2昇圧インダクタ14は、電池10から各昇圧インダクタに電流が流れた場合または各昇圧インダクタから電池10に電流が流れた場合に、一方で発生した磁束が他方における磁束を減少させるよう負に磁気結合する。第1昇圧インダクタ12および第2昇圧インダクタ14は、それぞれ、結合部aLおよび単独部(1−a)Lを直列接続したインダクタによって表される。ここで、aは結合率であり0以上1以下の値をとる。結合率aは、第1昇圧インダクタ12の誘導起電力が、第2昇圧インダクタ14の端子間電圧に寄与する割合、および、第2昇圧インダクタ14の誘導起電力が、第1昇圧インダクタ12の端子間電圧に寄与する割合を示す。すなわち、Lは各昇圧インダクタの自己インダクタンスを示し、結合部aLは、第1昇圧インダクタ12および第2昇圧インダクタ14の相互インダクタンスを示す。図1において結合部aLの傍らに付した点は、一方の結合部aLにおいて、点が付されている側の端子を正とする誘導起電力が発生したときに、他方の結合部aLに点が付されている側の端子を正とする誘導起電力が発生することを意味する。
【0018】
なお、図1の回路は等価回路による表現であり、実際の第1昇圧インダクタ12および第2昇圧インダクタ14は、コイル導線のあらゆる部分で分布的に磁気結合する構成とすることができる。
【0019】
2相マルチフェーズコンバータの動作について説明する。コントロールユニット28は、各スイッチのオンオフ制御を行う。下スイッチ18−1をオンとすることにより、第1昇圧インダクタ12には電池10の正極から電流が流れ、続いて下スイッチ18−1をオフとすることにより、第1昇圧インダクタ12には電流変化に基づく誘導起電力が発生する。そして、上スイッチ16−1をオンとすることにより、電池電圧Vbに第1昇圧インダクタ12の誘導起電力が加えられた電圧がコンデンサ20に印加される。
【0020】
また、下スイッチ18−2をオンとすることにより、第2昇圧インダクタ14には電池10の正極から電流が流れ、続いて下スイッチ18−2をオフとすることにより、第2昇圧インダクタ14には電流変化に基づく誘導起電力が発生する。そして、上スイッチ16−2をオンとすることにより、電池電圧Vbに第2昇圧インダクタ14の誘導起電力が加えられた電圧がコンデンサ20に印加される。
【0021】
第1昇圧インダクタ12に生じた誘導起電力は、結合率aに応じて第2昇圧インダクタ14に電圧を誘起し、第2昇圧インダクタ14に生じた誘導起電力は、結合率aに応じて第1昇圧インダクタ12に電圧を誘起する。
【0022】
このような構成によれば、コントロールユニット28による各スイッチの制御によって、電池電圧Vbより大きい電圧Vhでコンデンサ20を充電し、電池電圧Vbより大きい電圧Vhを出力端子22および24から車両駆動回路26に出力することができる。また、車両駆動回路26に出力する電圧Vhは、各スイッチの制御タイミングを変化させることで調整することができる。
【0023】
したがって、車両の走行制御に応じて2相マルチフェーズコンバータの出力電力を調整し、車両駆動回路26に与える電圧を調整することができる。車両駆動回路26は、2相マルチフェーズコンバータから出力された電圧に基づいてモータジェネレータに加速トルクを発生させて車両を加速し、または、モータジェネレータに制動トルクを発生させて車両を減速する。
【0024】
次に、第1昇圧インダクタ12および第2昇圧インダクタ14の構成について図2を参照して説明する。各昇圧インダクタは、コアと、コアに巻き付けられた昇圧コイルによって構成される。コアには、ダストコア、フェライト、アモルファス等の材料を用いることが好適である。
【0025】
第1昇圧インダクタ12の単独部(1−a)Lは、第1リング形状コア30、および第1リング形状コア30に巻き付けられた第1昇圧コイル32によって構成される。図2の例では、第1リング形状コア30は、4つの直線状コア30−1〜30−4によって四角形状に形成される。直線状コア30−4と直線状コア30−1との間には自己インダクタンス調整ギャップ34が設けられる。第1リング形状コア30のリング形状は、四角形状に限られず、円環形状、多角形状等、一般的なリング形状とすることができる。また、第1リング形状コア30の周回方向に垂直な断面は、円形、四角形等、任意の形状とすることができる。直線状コア30−1には、第1リング形状コア30の内側をくぐるよう第1昇圧コイル32が巻き付けられる。
【0026】
第2昇圧インダクタ14の単独部(1−a)Lは、第2リング形状コア36、および第2リング形状コア36に巻き付けられた第2昇圧コイル38によって構成される。図2の例では、第2リング形状コア36は、4つの直線状コア36−1〜36−4によって四角形状に形成される。直線状コア36−4と直線状コア36−1との間には自己インダクタンス調整ギャップ40が設けられる。第2リング形状コア36のリング形状は、四角形状に限られず、円環形状、多角形状等、一般的なリング形状とすることができる。また、第2リング形状コア36の周回方向に垂直な断面は、円形、四角形等任意の形状とすることができる。直線状コア36−3には、第2リング形状コア36の内側をくぐるよう第2昇圧コイル38が巻き付けられる。
【0027】
第1リング形状コア30および第2リング形状コア36は、直線状コア30−1および直線状コア36−3が同一直線上に配置され、直線状コア30−3および直線状コア36−1が同一直線上に配置されるよう配置される。
【0028】
直線状コア30−1は、直線状コア30−4との間で自己インダクタンス調整ギャップ34が形成される部分から更に第2リング形状コア36の方向に向かって延びた結合用突起部30−5を有する。直線状コア30−3は、直線状コア30−4と接する部分から更に第2リング形状コア36の方向に向かって延びた結合用突起部30−6を有する。
【0029】
直線状コア36−1は、直線状コア36−4との間で自己インダクタンス調整ギャップ40が形成される部分から更に第1リング形状コア30の方向に向かって延びた結合用突起部36−5を有する。直線状コア36−3は、直線状コア36−4と接する部分から更に第1リング形状コア30の方向に向かって延びた結合用突起部36−6を有する。
【0030】
結合用突起部30−5の終端面および結合用突起部36−6の終端面は互いに向き合い、結合調整ギャップ42を形成する。また、結合用突起部30−6の終端面および結合用突起部36−5の終端面は互いに向き合い、結合調整ギャップ44を形成する。
【0031】
第1リング形状コア30および第2リング形状コア36は、それぞれの周回方向に沿った磁気経路を形成する。また、第1リング形状コア30および第2リング形状コア36が、結合調整ギャップ42および44によって磁気的に結合することにより、直線状コア30−1,30−2,30−3,36−1,36−2,および36−3に沿った磁気経路が形成される。
【0032】
これによって、第1昇圧コイル32は、電流が流れることによって、第1リング形状コア30の周回方向に沿って閉じる自己鎖交磁束の他、直線状コア30−1,30−2,30−3,36−1,36−2,および36−3によって形成される経路に沿って閉じ、第2昇圧コイル38と鎖交する結合磁束を発生する。
【0033】
同様に、第2昇圧コイル38は、電流が流れることによって、第2リング形状コア36の周回方向に沿って閉じる自己鎖交磁束の他、直線状コア36−3,36−2,36−1,30−3,30−2,および30−1によって形成される経路に沿って閉じ、第1昇圧コイル32と鎖交する結合磁束を発生する。
【0034】
第1昇圧コイル32および第2昇圧コイル38が、それぞれ、他方のコイルと鎖交する結合磁束を発生することにより、第1昇圧インダクタ12および第2昇圧インダクタ14の結合部aLを構成することができる。
【0035】
第1昇圧インダクタ12および第2昇圧インダクタ14の自己インダクタンスLは、自己インダクタンス調整ギャップ34および40のギャップ空間体積(磁気経路方向の長さ、幅等)を変化させることで調整することができる。また、第1昇圧インダクタ12および第2昇圧インダクタ14の相互インダクタンスaLは、結合調整ギャップ42および44のギャップ空間体積を変化させることで調整することができる。
【0036】
第1昇圧インダクタ12および第2昇圧インダクタ14を磁気等価回路によって表すと図3のようになる。起磁力発生源FL1およびFL2には、それぞれ、磁気抵抗Rm1−1およびRm1−2が並列接続される。起磁力発生源FL1の正極端子と起磁力発生源FL2の正極端子との間には、磁気抵抗Rm2−1が接続される。起磁力発生源FL1の負極端子と起磁力発生源FL2の負極端子との間には、磁気抵抗Rm2−2が接続される。
【0037】
起磁力発生源FL1およびFL2は、それぞれ、第1昇圧コイル32および第2昇圧コイル38に対応する。磁気抵抗Rm1−1およびRm1−2は、それぞれ、自己インダクタンス調整ギャップ34および40に対応する。また、磁気抵抗Rm2−1およびRm2−2は、それぞれ結合調整ギャップ44および42に対応する。各起磁力は、昇圧コイルの巻回数および電流値によって定まり、各磁気抵抗の大きさは、ギャップ部分の透磁率、ギャップの大きさ等によって定まる。磁気等価回路を用いることで、第1昇圧インダクタ12および第2昇圧インダクタ14の設計を容易に行うことができる。
【0038】
一般に、コアとそれに巻き付けたコイルとから構成される昇圧インダクタでは、電流がある飽和閾値に達するとインダクタンス値が電流に対して変化する磁気飽和が生じる。コアの体積と飽和閾値との間には、コアの体積が大きい程、飽和閾値が大きくなるという関係がある。したがって、飽和閾値を小さくすることができればコアの体積を小さくし昇圧インダクタの体積を小さくすることができる。しかし、飽和閾値を小さくするためには、昇圧性能を損ねることなく昇圧インダクタに流れる電流を低減する必要が生じる。
【0039】
ここで、昇圧インダクタに流れる電流は直流成分とリップル成分とを含む。このうち、リップル成分が、昇圧インダクタにおける誘導起電力の発生、すなわち、昇圧動作に寄与する。したがって、昇圧インダクタに流れる電流の直流成分を低減すれば、2相マルチフェーズコンバータにおける昇圧性能を損ねることなく、昇圧インダクタに流れる電流を低減することができる。
【0040】
そこで、本実施形態に係る2相マルチフェーズコンバータでは、第1昇圧インダクタ12および第2昇圧インダクタ14を負に磁気結合させることにより、各昇圧インダクタに流れる電流の直流成分を低減する。昇圧インダクタに流れる電流の直流成分を小さくすることにより、昇圧性能を損ねることなく、昇圧インダクタに流れる電流の大きさを低減することができる。これによって、飽和閾値を小さくすることができ、コアの体積を低減することができる。
【0041】
従来の2相マルチフェーズコンバータでは、単独部(1−a)Lに対するコアと、結合部aLに対するコアとを互いに結合させることなく別個に設け、第1昇圧インダクタ12および第2昇圧インダクタ14を構成していた。これによって、第1昇圧インダクタ12の単独部に対するコア、第2昇圧インダクタ14の単独部に対するコア、第1昇圧インダクタ12および第2昇圧インダクタ14の結合部に対するコアの合計3つのコアが必要とされ、コアの総体積が大きいものとなっていた。
【0042】
本実施形態に係る2相マルチフェーズコンバータでは、第1リング形状コア30と、第2リング形状コア36とを磁気結合させることによって結合磁束の経路を形成する。これによって、第1昇圧インダクタ12および第2昇圧インダクタ14の自己鎖交磁束の経路と、結合磁束の経路とを共通化することができる。したがって、第1昇圧インダクタ12の結合部および第2昇圧インダクタ14の各結合部に対するコアを別途設ける必要がなく、2相マルチフェーズコンバータに含まれるコアの体積を低減することができる。
【0043】
例えば、a=0.2とした場合、結合部aLと単独部(1−a)Lとの、巻線比で定まる体積比はa/(1−a)の平方根より0.5である。したがって、2つの結合部aLと2つの単独部(1−a)Lとから構成される従来構成に比して、2つの結合部aLの体積が削減された本実施形態では、第1昇圧インダクタ12および第2昇圧インダクタ14の総体積をおよそ3分の2とすることができる。
【0044】
次に、本発明の第2の実施形態について説明する。図4に第2の実施形態に係る3相マルチフェーズコンバータの構成を示す。3相マルチフェーズコンバータは、互いに磁気結合する3つの昇圧インダクタを備え、各昇圧インダクタに流れる電流を異なるタイミングでスイッチング制御するものである。図1に示す2相マルチフェーズコンバータと同一の構成部については同一の符号を付してその説明を省略する。
【0045】
3相マルチフェーズコンバータは、2相マルチフェーズコンバータに、さらに、第3昇圧インダクタ46、上スイッチ16−3、下スイッチ18−3を設けた構成を有する。上スイッチ16−3の一端は下スイッチ18−3の一端に接続される。下スイッチ18−3の他端は電池10の負極端子に接続され、上スイッチ16−3の他端および下スイッチ18−3の他端は、コンデンサ20の両端に接続される。また、第3昇圧インダクタ46の一端は電池10の正極端子に接続され、他端は上スイッチ16−3および下スイッチ18−3の接続点に接続される。
【0046】
第1昇圧インダクタ12、第2昇圧インダクタ14、および第3昇圧インダクタ46は、電池10から各昇圧インダクタに電流が流れた場合または各昇圧インダクタから電池10に電流が流れた場合に、1つの昇圧インダクタで発生した磁束が他の2つの昇圧インダクタにおける磁束を減少させるよう、負に磁気結合する。第1昇圧インダクタ12、第2昇圧インダクタ14、第3昇圧インダクタ46は、それぞれ、2つの結合部aLおよび単独部(1−2a)Lを直列接続したインダクタによって表される。ここで、aは結合率であり0以上0.5以下の値をとる。結合率aは、1つの昇圧インダクタの誘導起電力が、他の2つの昇圧インダクタの誘導起電力にそれぞれ寄与する割合を示す。すなわち、Lは各昇圧インダクタの自己インダクタンスを示し、結合部aLは、3つの昇圧インダクタのうちの2つの間での相互インダクタンスを示す。なお、図4の回路は等価回路による表現であり、実際の第1昇圧インダクタ12、第2昇圧インダクタ14、および第3昇圧インダクタ46は、コイル導線のあらゆる部分で分布的に磁気結合する構成とすることができる。
【0047】
3相マルチフェーズコンバータの動作について説明する。コントロールユニット28は、各スイッチのオンオフ制御を行う。下スイッチ18−1をオンとすることにより、第1昇圧インダクタ12には電池10の正極から電流が流れ、続いて下スイッチ18−1をオフとすることにより、第1昇圧インダクタ12には電流変化に基づく誘導起電力が発生する。そして、上スイッチ16−1をオンとすることにより、電池電圧Vbに第1昇圧インダクタ12の誘導起電力が加えられた電圧がコンデンサ20に印加される。
【0048】
また、下スイッチ18−2をオンとすることにより、第2昇圧インダクタ14には電池10の正極から電流が流れ、続いて下スイッチ18−2をオフとすることにより、第2昇圧インダクタ14には電流変化に基づく誘導起電力が発生する。そして、上スイッチ16−2をオンとすることにより、電池電圧Vbに第2昇圧インダクタ14の誘導起電力が加えられた電圧がコンデンサ20に印加される。
【0049】
さらに、下スイッチ18−3をオンとすることにより、第3昇圧インダクタ46には電池10の正極から電流が流れ、続いて下スイッチ18−3をオフとすることにより、第3昇圧インダクタ46には電流変化に基づく誘導起電力が発生する。そして、上スイッチ16−3をオンとすることにより、電池電圧Vbに第2昇圧インダクタ14の誘導起電力が加えられた電圧がコンデンサ20に印加される。
【0050】
各昇圧インダクタに生じた誘導起電力は、結合率aに応じて他の2つの昇圧インダクタに電圧を誘起する。
【0051】
このような構成によれば、コントロールユニット28による各スイッチの制御によって、電池電圧Vbより大きい電圧Vhでコンデンサ20が充電され、電池電圧Vbより大きい電圧Vhを出力端子22および24から車両駆動回路26に出力することができる。また、車両駆動回路26に出力する電圧Vhは、各スイッチの制御タイミングを変化させることで調整することができる。したがって、車両の走行制御に応じて3相マルチフェーズコンバータの出力電力を調整し、車両駆動回路26に与える電圧を調整することができる。
【0052】
次に、第1昇圧インダクタ12、第2昇圧インダクタ14、および第3昇圧インダクタ46の構成について図5を参照して説明する。図5(a)は各昇圧インダクタを構成する昇圧インダクタブロック48の正面図であり、図5(b)は、図5(a)を右側から見た図である。
【0053】
昇圧インダクタブロック48を構成するコアは、図5(c)に示す櫛型コア50、結合コア58、および図5(d)に示すU字コア60を備えて構成される。
【0054】
櫛型コア50は、直線状の接続コア52、接続コア52の延伸方向に対して垂直な方向に延伸し、接続コア52の両端および中点に一端が接合される柱コア54−1〜54−3から構成される。結合コア58は、各柱コアの他端との間に結合調整ギャップ56を形成し、接続コア52と平行に配置される。
【0055】
柱コア54−1、54−2、および54−3には、それぞれ、第1昇圧コイル64−1、第2昇圧コイル64−2、および第3昇圧コイル64−3が巻き付けられる。
【0056】
各柱コアの両端付近にはU字コア60が接合される。U字コア60は、自己インダクタンス調整ギャップ62を有する。
【0057】
なお、ここでは、コアの延伸方向に垂直な断面の形状を四角形としているが、この形状は一般的な多角形、円形等、任意の形状とすることができる。
【0058】
各昇圧コイルは、電流が流れることによって、その昇圧コイルが巻き付けられた柱コア、および、その柱コアに対応して設けられたU字コアに沿って、自己鎖交磁束を発生する。
【0059】
さらに、1つの柱コアの結合調整ギャップ56が形成される一端を始点とし、その柱コアを経て接続コア52へと至り、接続コア52からさらに他の柱コアを経て、その柱コアの一端に形成される結合調整ギャップ56を介して結合コア58へと至り、再び先の結合調整ギャップ56を介して先の柱コアの始点へと戻る磁気経路が形成される。
【0060】
このような構成によれば、各昇圧コイルは、電流が流れることにより、自らと鎖交する自己鎖交磁束の他、他の2つの昇圧コイルと鎖交する結合磁束を発生する。各昇圧コイルが、自己鎖交磁束を発生することにより、各インダクタの単独部(1−2a)Lを構成することができる。また、各昇圧コイルが、他のコイルと鎖交する結合磁束を発生することにより、各インダクタの結合部aLを構成することができる。
【0061】
各昇圧インダクタの自己インダクタンスLは、自己インダクタンス調整ギャップ62のギャップ空間体積を変化させることで調整することができる。また、第1昇圧インダクタ12、第2昇圧インダクタ14および第3昇圧インダクタ46の相互間の相互インダクタンスaLは、結合調整ギャップ56のギャップ空間体積を変化させることで調整することができる。
【0062】
昇圧インダクタブロック48を磁気等価回路によって表すと図6のようになる。起磁力発生源FL1〜FL3には、それぞれ、磁気抵抗Rm1−1〜Rm1−3が並列接続される。起磁力発生源FL1〜FL3の各正極端子には、それぞれ、磁気抵抗Rm2−1〜Rm2−3の一端が接続される。磁気抵抗Rm2−1〜Rm2−3の他端は共通に接続される。
【0063】
起磁力発生源FL1、FL2およびFL3は、それぞれ、第1昇圧コイル64−1、第2昇圧コイル64−2および第3昇圧コイル64−3に対応する。磁気抵抗Rm1−1〜Rm1−3は、それぞれ、柱コア54−1〜54−3に対応して設けられたU字コア60の自己インダクタンス調整ギャップ62に対応する。また、磁気抵抗Rm2−1〜Rm2−3は、それぞれ、柱コア54−1〜54−3の一端に形成される結合調整ギャップ56に対応する。
【0064】
磁気等価回路を用いることで、第1昇圧インダクタ12、第2昇圧インダクタ14および第3昇圧インダクタ46の設計を容易に行うことができる。
【0065】
本実施形態に係る3相マルチフェーズコンバータでは、第1昇圧インダクタ12、第2昇圧インダクタ14および第3昇圧インダクタ46を相互に負に磁気結合させることにより、各昇圧インダクタに流れる電流の直流成分を低減する。各昇圧インダクタに流れる電流の直流成分を小さくすることにより、昇圧性能を損ねることなく、各昇圧インダクタに流れる電流の大きさを低減することができる。これによって、飽和閾値を小さくすることができ、コアの体積を低減することができる。
【0066】
従来の3相マルチフェーズコンバータでは、単独部(1−2a)Lに対するコアと、結合部aLに対するコアとを互いに結合させることなく別個に設け、各昇圧インダクタを構成していた。これによって、各昇圧インダクタの単独部に対するコア、昇圧インダクタの相互間の結合部に対するコアの合計6つのコアが必要とされ、コアの総体積が大きいものとなっていた。
【0067】
本実施形態に係る昇圧インダクタブロック48によれば、各昇圧インダクタの自己鎖交磁束の経路と、結合磁束の経路とを共通化することができる。これによって、昇圧インダクタの相互間の結合部に対するコアを別途設ける必要がなく、3相マルチフェーズコンバータに含まれるコアの総体積を低減することができる。
【0068】
例えば、a=0.2とした場合、結合部aLと単独部(1−2a)Lとの、巻線比で定まる体積比はa/(1−2a)の平方根より0.58である。したがって、6つの結合部aLと3つの単独部(1−2a)Lとから構成される従来構成に比して、6つの結合部aLの体積が削減された本実施形態では、第1昇圧インダクタ12、第2昇圧インダクタ14および第3昇圧インダクタ46の総体積をおよそ46%とすることができる。
【0069】
次に、昇圧インダクタブロック48の変形例について説明する。図7(a)に、変形例に係る昇圧インダクタブロック66の構成を示す。昇圧インダクタブロック66は、図5に示す昇圧インダクタブロック48を平面状に変形したものである。図5の構成部と同一の構成部については同一の符号を付してその説明を簡略化する。図7(b)は昇圧インダクタブロック66から昇圧コイルを取り除いた状態を示す。
【0070】
昇圧インダクタブロック66は、環状コア68、環状コア68の中心に設けられた円形の結合ハブコア74、一端が結合ハブコア74との間で結合調整ギャップ56を形成し、結合調整ギャップ56から環状コア68の周方向に垂直な方向に延伸し、他端が環状コア68に接合される3本のコイル巻き柱コア70、および各コイル巻き柱コア70に対応して設けられ、一端がコイル巻き柱コア70に接合され、結合ハブコア74の円形形状に沿って結合調整ギャップ56を形成し、さらに、環状コア68の周方向に垂直な方向に延伸し、他端が環状コア68に接合される補助柱コア72を備える。各コイル巻き柱コア70と補助柱コア72とを60°の角度をなすV字形状に形成し、これらのV字形状を、先端を中心に位置させて環状コア68の内側に120°間隔で配置することで、3本のコイル巻き柱コア70および3本の補助柱コア72が配置される。
【0071】
各補助柱コア72は、自己インダクタンス調整ギャップ62を有する。第1昇圧コイル64−1、第2昇圧コイル64−2、および第3昇圧コイル64−3は、それぞれ、対応するコイル巻き柱コア70に巻き付けられる。
【0072】
なお、環状コア68および各柱コアの延伸方向に垂直な断面は、円形、四角形等任意の形状とすることができる。
【0073】
各昇圧コイルは、電流が流れることによって、その昇圧コイルが巻き付けられたコイル巻き柱コア70、および、そのコイル巻き柱コア70に対応して設けられた補助柱コア72、および、そのコイル巻き柱コア70と補助柱コア72との間に挟まれる環状コア68の区間に沿って、自己鎖交磁束を発生する。
【0074】
さらに、1つのコイル巻き柱コア70の結合調整ギャップ56が形成される一端を始点とし、そのコイル巻き柱コア70を経て環状コア68へと至り、環状コア68からさらに他のコイル巻き柱コア70を経て、そのコイル巻き柱コア70の一端に形成される結合調整ギャップを56介して結合ハブコア74へと至り、再び先の結合調整ギャップ56を介して先のコイル巻き柱コア70の始点へと戻る磁気経路が形成される。
【0075】
これによって、各昇圧コイルは、電流が流れることにより、自らと鎖交する自己鎖交磁束の他、他の2つの昇圧コイルと鎖交する結合磁束を発生する。各昇圧コイルが、自己鎖交磁束を発生することにより、各インダクタの単独部(1−2a)Lを構成することができる。また、各昇圧コイルが、他のコイルと鎖交する結合磁束を発生することにより、各インダクタの結合部aLを構成することができる。
【0076】
各昇圧インダクタの自己インダクタンスLは、自己インダクタンス調整ギャップ62のギャップ空間体積を変化させることで調整することができる。また、第1昇圧インダクタ12、第2昇圧インダクタ14および第3昇圧インダクタ46の相互間の相互インダクタンスaLは、結合調整ギャップ56のギャップ空間体積を変化させることで調整することができる。
【0077】
昇圧インダクタブロック66を磁気等価回路によって表すと昇圧インダクタブロック48と同様、図6のようになる。磁気抵抗Rm1−1〜Rm1−3は、補助柱コア72が有する自己インダクタンス調整ギャップ62に対応する。また、磁気抵抗Rm2−1〜Rm2−3は、結合調整ギャップ56に対応する。
【0078】
変形例に係る昇圧インダクタブロック66によれば、各昇圧インダクタの自己鎖交磁束の経路と、結合磁束の経路とを共通化することができる。これによって、昇圧インダクタの相互間の結合部に対するコアを別途設ける必要がなく、3相マルチフェーズコンバータに含まれるコアの総体積を低減することができる。
【0079】
図7に示す昇圧インダクタブロック66においては、第1昇圧インダクタ12、第2昇圧インダクタ14および第3昇圧インダクタ46の相互間の相互インダクタンスaLとして所望の値が得られる場合には、結合ハブコア74を取り除くことができる。
【0080】
図8に結合ハブコア74を取り除いた場合の昇圧インダクタブロック76の構成を示す。図7の構成部と同一の構成部については同一の符号を付してその説明を省略する。コイル巻き柱コア70および補助柱コア72の各組のV字形状の先端は、環状コア68の中心に近接させている。これによって、第1昇圧インダクタ12、第2昇圧インダクタ14および第3昇圧インダクタ46の相互間の相互インダクタンスaLの値を大きくすることができる。
【符号の説明】
【0081】
10 電池、12 第1昇圧インダクタ、14 第2昇圧インダクタ、16−1〜16−3 上スイッチ、18−1〜18−3 下スイッチ、20 コンデンサ、22,24 出力端子、26 車両駆動回路、28 コントロールユニット、30 第1リング形状コア、30−1〜30−4,36−1〜36−4 直線状コア、30−5,30−6,36−5,36−6 結合用突起部、32,64−1 第1昇圧コイル、34,40,62 自己インダクタンス調整ギャップ、36 第2リング形状コア、38,64−2 第2昇圧コイル、42,44,56 結合調整ギャップ、46 第3昇圧インダクタ、48,66,76 昇圧インダクタブロック、50 櫛型コア、52 接続コア、54−1〜54−3 柱コア、58 結合コア、60 U字コア、64−3 第3昇圧コイル、68 環状コア、70 コイル巻き柱コア、72 補助柱コア、74 結合ハブコア。

【特許請求の範囲】
【請求項1】
複数の昇圧コイルと、
各昇圧コイルに流れる電流のスイッチングにより各昇圧コイルに誘導起電力を発生させるスイッチング回路と、を備え、
各昇圧コイルに発生した誘導起電力に基づく出力電圧を車両駆動回路に印加する、車両搭載用マルチフェーズコンバータにおいて、
各昇圧コイルに対応して設けられ、対応する昇圧コイルが巻かれる環状の自己インダクタンスコアと、
前記複数の昇圧コイルから2つを選択する組み合わせに対応して設けられ、組をなす2つの昇圧コイルが巻かれ、組をなす当該2つの昇圧コイルに対応する各自己インダクタンスコアの一部を含む環状の相互インダクタンスコアと、
を備えることを特徴とする車両搭載用マルチフェーズコンバータ。
【請求項2】
請求項1に記載の車両搭載用マルチフェーズコンバータにおいて、
前記自己インダクタンスコアおよび前記相互インダクタンスコアは、
それぞれの周回方向線を切断するギャップを有することを特徴とする車両搭載用マルチフェーズコンバータ。
【請求項3】
複数の昇圧コイルと、
各昇圧コイルに流れる電流のスイッチングにより各昇圧コイルに誘導起電力を発生させるスイッチング回路と、を備え、
各昇圧コイルに発生した誘導起電力に基づく出力電圧を車両駆動回路に印加する、車両搭載用マルチフェーズコンバータにおいて、
環状コアと、
前記昇圧コイルに対応して設けられ、一端が前記環状コアに接続され、前記環状コアの中心方向に延伸するコイル巻き柱コアと、
各コイル巻き柱コアに対応して設けられ、一端が対応するコイル巻き柱コアの他端に接続され、前記環状コアの周方向に垂直な方向に延伸し、他端が前記環状コアに接続される補助柱コアと、
を備えることを特徴とする車両搭載用マルチフェーズコンバータ。
【請求項4】
請求項3に記載の車両搭載用マルチフェーズコンバータにおいて、
前記コイル巻き柱コアおよび当該コイル巻き柱コアに対応する前記補助柱コアは、対応する昇圧コイルが巻かれる環状の自己インダクタンスコアを前記環状コアと共に形成し、
一つの自己インダクタンスコアを形成するコイル巻き柱コアおよび補助柱コアの接続部と、他の自己インダクタンスコアを形成するコイル巻き柱コアおよび補助柱コアの接続部との間にはギャップが設けられ、
各コイル巻き柱コアは、
延伸方向線を切断するギャップを有することを特徴とする車両搭載用マルチフェーズコンバータ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−252539(P2010−252539A)
【公開日】平成22年11月4日(2010.11.4)
【国際特許分類】
【出願番号】特願2009−99776(P2009−99776)
【出願日】平成21年4月16日(2009.4.16)
【出願人】(000003609)株式会社豊田中央研究所 (4,200)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】