説明

送液装置及び該装置を有するマイクロ流体デバイス

【課題】 マイクロ流体デバイスのマイクロチャネル内に液体を送液するための新規な送液装置及び該装置を有するマイクロ流体デバイスを提供する。
【解決手段】 合成樹脂層と、該合成樹脂層内に埋設された送液チューブとからなり、前記送液チューブはその合成樹脂層埋設部分に少なくとも1個の大気に連通した開口部を有することを特徴とする送液装置。合成樹脂層と、該合成樹脂層内に埋設された送液チューブとからなり、前記送液チューブはその合成樹脂層埋設部分に少なくとも1個の大気に連通した開口部を有する送液装置と、一方の面側に所定の深さと幅のマイクロチャネルが形成され、該マイクロチャネルの一端に大気に連通するアクセスポートを有するポリマーシートとからなり、該ポリマーシートは、そのマイクロチャネルが前記送液チューブの開口部と位置が合致するように、前記合成樹脂層面上に積重されていることを特徴とするマイクロ流体デバイス。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はマイクロ流体デバイスに関する。更に詳細には、マイクロチャネルなどに液体を送液するためのチューブを内蔵したマイクロ流体デバイスに関する。
【背景技術】
【0002】
最近、マイクロスケール・トータル・アナリシス・システムズ(μTAS)又はラブ・オン・チップ(Lab-on-Chip)などの名称で知られるように、基板内に所定の形状の微細な流路を構成するマイクロチャネル及びポートなどの微細構造を設け、該微細構造内で物質の化学反応、合成、精製、抽出、生成及び/又は分析など各種の操作を行うことが提案され、一部実用化されている。このような目的のために製作された、基板内にマイクロチャネル及びポートなどの微細構造を有する構造物は総称して「マイクロ流体デバイス」と呼ばれる。
【0003】
マイクロ流体デバイスなどは遺伝子解析、臨床診断、薬物スクリーニング及び環境モニタリングなどの幅広い用途に使用できる。常用サイズの同種の装置に比べて、マイクロ流体デバイスは(1)サンプル及び試薬の使用量が著しく少ない、(2)分析時間が短い、(3)感度が高い、(4)現場に携帯し、その場で分析できる、及び(5)使い捨てできるなどの利点を有する。
【0004】
従来のマイクロ流体デバイスの材質や構造は例えば、特許文献1などに提案されている。従来のマイクロ流体デバイス100は、例えば、図6(A)及び(B)に示されるように、ポリマーシート(例えば、ポリジメチルシロキサン(PDMS))などの基板101に少なくとも1本のマイクロチャネル(微細流路)102が形成されており、このマイクロチャネル102の両端には入出力ポート103,104が形成されており、基板101の下面側に透明又は不透明な素材(例えば、ガラス又は合成樹脂フィルム)からなる対面基板105が接着されている。この対面基板105の存在により、ポート103,104及びマイクロチャネル102の底部が封止される。
【0005】
入出力ポート103,104の主な用途は、(イ)薬液やサンプルの注入(分注)、(ロ)廃液や生成物の取り出し、(ハ)気体圧力の供給(主に、送液のための正圧や負圧の印加)、(ニ)大気開放(送液時に発生する内圧の分散や、反応で生じたガスの解放)、及び(ホ)密閉(液体の蒸発防止や故意に内圧を発生させる目的のため)などである。
【0006】
マイクロチャネル内に液体を送入する場合、ポート103又は104の開口部からマイクロピペット(図示されていない)などにより重力及び毛細管力だけで送入しようとしても、マイクロチャネル102の内径が細すぎるので、ポート103又は104からマイクロチャネル102内部にまで液体を送ることは困難であった。
このため、図7に示されるように、ポート103又は104の何れか一方又は両方に、テフロン、シリコン又はガラス製のチューブ107を接着剤109で固着し、このチューブ107の他端に接続された液体供給源(図示されていない)から加圧ポンプ(図示されていない)により液体をマイクロチャネル102内に圧送するように構成するのが一般的である。
【0007】
しかし、ポート開口部にチューブを固着する方式では、つぎのような欠点があった。(1)マイクロ流体デバイス100の送液部(送液ポート103)とチューブ固着位置が固定されているため、送液位置の変更ができない。(2)チューブ107をポート103内に差し込むため、チューブ107の内径が変形してしまう。(3)ポート103へのチューブ107の固設操作が煩雑である。(4)チューブ107の交換又は張り替えは原則的に不可能であり、マイクロ流体デバイス100と共に廃棄されてしまう。この廃棄によりチューブ107が無駄になるばかりか、チューブ固設操作に要した手間も無駄になってしまい、極めて不経済であった。
【0008】
別法として、図8に示されるように、チューブ107を専用ソケット111に固設し、このソケット111をポート103又は104内に着脱可能に取設する方式がある。この方式では、チューブ107をポート103に接着剤109で固着させるための操作が不要になるとともに、チューブ107を再使用することができ、チューブ107が無駄にならないという利点がある。しかし、着脱式ソケット方式の場合、(a)ポート103とソケット111との間の密閉性を確保するため、ポート103とソケット111との間でオーリング(図示されていない)を使用したり、ソケットをゴムなどの柔軟性のある軟質材料で形成するため構造が複雑となる。(b)着脱式ソケット111の場合、ポート103から着脱する際、ポンピングが起こり、マイクロチャネル102に対して予期せざる加圧や引圧などによる悪影響が生じることがある。
【0009】
マイクロ流体デバイス100の送液ポート103に送液用チューブ107を接着剤109で固着したり、ソケット111を用いたりせずにマイクロチャネル102に液体を送液するための新規な装置の開発が強く求められてきたが、未だ申し分のない装置は開発されていない。
【0010】
【特許文献1】特開2001−157855号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
従って、本発明の目的は、マイクロ流体デバイスのマイクロチャネル内に液体を送液するための新規な送液装置を提供することである。
本発明の別の目的は、マイクロチャネル内に液体を送液するための新規な送液装置を有するマイクロ流体デバイスを提供することである。
【課題を解決するための手段】
【0012】
前記課題を解決するための手段として請求項1に係る発明は、合成樹脂層と、該合成樹脂層内に埋設された送液チューブとからなり、前記送液チューブはその合成樹脂層埋設部分に少なくとも1個の大気に連通した開口部を有することを特徴とする送液装置である。
【0013】
この送液装置によれば、埋設送液チューブの開口部から液体を供給することができる。チューブは合成樹脂層内に埋設されているので、安定的に保持される。
【0014】
前記課題を解決するための手段として請求項2に係る発明は、前記合成樹脂層が支持基板上に担持されていることを特徴とする請求項1記載の送液装置である。
【0015】
合成樹脂層を支持基板上に担持させることにより送液装置全体の機械的強度を高めることができる。
【0016】
前記課題を解決するための手段として請求項3に係る発明は、前記合成樹脂層がポリジメチルシロキサン(PDMS)から形成されていることを特徴とする請求項1又は2記載の送液装置である。
【0017】
合成樹脂層をPDMSから形成すると、PDMSが有する自己吸着性により優れた密閉性が得られ、送液装置として好ましい機能が発揮される。
【0018】
前記課題を解決するための手段として請求項4に係る発明は、合成樹脂層と、該合成樹脂層内に埋設された送液チューブとからなり、前記送液チューブはその合成樹脂層埋設部分に少なくとも1個の大気に連通した開口部を有する送液装置と、一方の面側に所定の深さと幅のマイクロチャネルが形成され、該マイクロチャネルの一端に大気に連通するアクセスポートを有するポリマーシートとからなり、該ポリマーシートは、そのマイクロチャネルが前記送液チューブの開口部と位置が合致するように、前記合成樹脂層面上に積重されていることを特徴とするマイクロ流体デバイスである。
【0019】
本発明の送液装置を使用すれば、マイクロチャネルの送液ポートにチューブを接続することなく、マイクロチャネルに液体を供給することができる。これにより、マイクロ流体デバイス使用後であっても、送液装置だけは何度でも使い回すことができ、経済性が飛躍的に向上する。
【0020】
前記課題を解決するための手段として請求項5に係る発明は、前記合成樹脂層が支持基板上に担持されていることを特徴とする請求項4記載のマイクロ流体デバイスである。
【0021】
合成樹脂層を支持基板上に担持させることにより送液装置だけでなく、マイクロ流体デバイス全体の機械的強度を高めることができる。
【0022】
前記課題を解決するための手段として請求項6に係る発明は、前記合成樹脂層及びポリマーシートがポリジメチルシロキサン(PDMS)から形成されていることを特徴とする請求項4又は5記載のマイクロ流体デバイスである。
【0023】
合成樹脂層及びポリマーシートをPDMSから形成すると、PDMSが有する自己吸着性により優れたマイクロチャネル密閉性が得られ、マイクロ流体デバイスとして好ましい機能が発揮される。
【発明の効果】
【0024】
送液装置とポリマーシ−トとが別々に形成され、使用時に両部材を積重させることによりマイクロ流体デバイスを形成することができる。この構成により、送液装置の送液チューブ開口部とポリマーシートのマイクロチャネルとの整合位置を任意に変化させることが可能となる。その結果、送液装置の送液チューブ開口部とマイクロチャネルのアクセスポートとの距離を用途に応じて適宜変更することができ、分析作業の柔軟性が確保される。
また、従来のマイクロ流体デバイスと異なり、本発明の送液装置を使用すれば、ポリマーシートのポートに送液チューブを接着剤で接合させる面倒な作業を省略することができる。また、従来のマイクロ流体デバイスでは、ポートに送液チューブを差し込んで接着剤で接合させるため、チューブ内径が変形してしまい、スムーズな送液が困難であったが、本発明の送液装置によれば、チューブの内径は全く変形しないので常にスムーズな送液が可能となる。
更に、従来のマイクロ流体デバイスでは、マイクロチャネルのポートに送液チューブが接着剤で接合されていたため、マイクロ流体デバイス使用後はこの送液チューブもマイクロ流体デバイスと一緒に廃棄しなければならなかった。これに対し、本発明のマイクロ流体デバイスによれば、マイクロチャネルを有するポリマーシートだけを剥離して廃棄すればよく、送液装置自体は何度でも使い回しすることができ、極めて経済的である。
【発明を実施するための最良の形態】
【0025】
以下、図面を参照しながら本発明の検査治具の好ましい実施態様について説明する。図1は本発明の送液装置の一例の部分概要平面図であり、図2は図1におけるII-II線に沿った断面図である。図1及び図2に示されるように、本発明の送液装置1は、支持基板3の上面に固着された合成樹脂層5と、この合成樹脂層5に埋設された送液チューブ7とからなる。送液チューブ7の被埋設部分の適当な箇所に少なくとも1個の開口部9が大気に連通するように開設されている。合成樹脂層5内に埋設される送液チューブ7は図示されているような1本に限定されない。また、送液チューブ7も合成樹脂層5内であれば任意の位置に埋設することができる。送液チューブ7は図示された横方向に限らず、長手方向に埋設することもできる。送液チューブ7の一端は送液ポンプ(図示されていない)に接続されており、他端は液体供給源(図示されていない)などに接続し、余分な液体を元に戻すこともできるし、あるいは、単に閉塞させておくこともできる。
【0026】
支持基板3は合成樹脂層5と埋設送液チューブ7を支持するために使用されるが、合成樹脂層5自体に十分な機械的剛性があれば、支持基板3は使用しなくてよい場合もある。支持基板3は例えば、ガラス、セラミック、合成樹脂(例えば、ポリジメチルシロキサン(PDMS)など)、金属など任意の材料を使用できる。支持基板3の厚さは合成樹脂層5と埋設送液チューブ7を支持するために必要十分な機械的強度を発揮できる厚さであればよい。例えば、数百ミクロン〜数ミリ程度である。
【0027】
送液チューブ7はシリコン、テフロン、ガラス、金属などの任意の素材で形成することができる。送液チューブ7の外径は合成樹脂層5の厚さ、送液量、開口部9の直径などを考慮して適宜決定することができる。一般的に、送液チューブ7の外径は数百ミクロン〜数ミリ程度である。
【0028】
合成樹脂層5は送液チューブ7を埋設することができる素材からなる。例えば、ポリジメチルシロキサン(PDMS)などのシリコン樹脂系、エラストマー樹脂系、ナイロン樹脂系、ポリエチレン樹脂系、ポリアクリル樹脂系、など任意の熱可塑性合成樹脂材料を使用できる。基板3がガラス又はPDMSの場合、合成樹脂層5はPDMSであることが好ましい。ガラス基板3とPDMS合成樹脂層5はそのままでも恒久接着が可能だからである。合成樹脂層5の厚さは使用する送液チューブ7の外径により決定される。
【0029】
本発明の別の実施態様として、合成樹脂層5が必要十分な機械的強度を有していれば、支持基板3を使用しない送液装置1も可能である。従って、この実施態様では、合成樹脂層5内に送液チューブ7が埋設されただけの送液装置1が得られる。
【0030】
図3は本発明の送液装置1の製造方法の一例を説明する工程図である。ステップ(A)で、支持基板3を準備する。支持基板3の上面を清浄化処理することが好ましい。清浄化処理は例えば、支持基板3の上面を純水、蒸留水などの水性溶媒及び/又はアルコールなどの有機溶媒で洗浄したり、酸素プラズマ又はエキシマUV光などを照射することにより行うことができる。ステップ(B)において、清浄化された支持基板3の上面の所定の箇所に送液チューブ7を配置する。必要に応じて、送液チューブ7を支持基板3の上面に予め固定するか又は仮固定することもできる。送液チューブ7の固定又は仮固定は接着剤などを用いて行うことができる。ステップ(C)において、支持基板3の上面に溶融合成樹脂を注型し、硬化させて送液チューブ7を合成樹脂層5内に埋封する。最後に、ステップ(D)において、送液チューブ7の合成樹脂層5内に埋設されている箇所の適当な部分の最上部から適当な手段で開口部9を穿設する。開口部9の直径は数百ミクロン〜数ミリ程度である。
別法として、別の適当な作製用基板上で送液チューブ7を埋設した合成樹脂層5を作製し、この合成樹脂層5を作製用基板から剥離し、支持基板3に貼着することによっても、本発明の送液装置1を製造することができる。
【0031】
図4(A)は本発明の送液装置を有するマイクロ流体デバイス20の一例の概要平面図であり、図4(B)は図4(A)における4B−4B線に沿った断面図である。図4(A)及び図4(B)に示されるように、マイクロチャネル11を有するポリマーシート13を、送液装置1の上面に積重させる。この際、ポリマーシート13のマイクロチャネル11を送液チューブ7の開口部9と位置合わせさせる。マイクロチャネル11の一端にはポート15が形成されている。従って、送液装置1の送液チューブ7の送液ポンプ接続方向から液体が加圧送液されてくると、送液チューブ7の開口部9からポリマーシート13のマイクロチャネル11内に流れ込み、ポート15から液体を取り出すことができる。このようなマイクロチャネル11及びポート15を有するポリマーシート13は公知慣用の方法により製造することができる。合成樹脂層5がPDMSから形成されている場合、ポリマーシート13はPDMS製であることが好ましい。PDMS同士は容易に自己吸着し高度な密閉性が容易に得られるからである。
【0032】
図5(A)は本発明の送液装置を有するマイクロ流体デバイス20Aの別の例の概要平面図であり、図5(B)は図5(A)における5B−5B線に沿った断面図である。図5(A)のマイクロ流体デバイス20Aは図4(A)のマイクロ流体デバイス20と基本的構造自体は同一である。図4(A)のマイクロ流体デバイス20との相違点は、ポリマーシート13の位置である。図5(A)のマイクロ流体デバイス20Aでは、ポリマーシート13は左側に寄せて下部の送液装置1の上面に積重されている。その結果、図4(A)のマイクロ流体デバイス20に比べて、送液装置1の送液チューブ7の開口部9と、ポリマーシート13のポート15までのチャネル距離が短くなる。このように、本発明の送液装置1と、マイクロチャネル11を有するポリマーシート13とを組み合わせて使用することにより、ポート15との距離を自由に変更することができ、分析の柔軟性が確保される。
【実施例1】
【0033】
(1)送液装置の製造
厚さ1mm、縦76cm、横52cmのサイズのガラス支持基板を準備した。このガラス支持基板の一方の面を純水で洗浄し、次いで、イソプロピルアルコールで洗浄し、風乾した後、エキシマUV光を表面に照射することにより清浄化させた。この清浄面上に外径2mm、内径1mmのシリコーンチューブ(長さ20cm)を載置し、その後、PDMSプレポリマー混合液として、米国のダウ・コーニング社製のSYLGARD 184 SILICONE ELASTOMERを厚さ約3mmになるように流し込み、脱気、加温(65℃、4時間)した。4時間経過後、オーブンから取り出し、PDMS層を形成した。PDMS層の上面からシリコーンチューブに直径1mmの穴を穿設し、開口部を形成した。
(2)ポリマーシートの製造
先ず、4インチウエハ基板を準備した。プロセスの信頼性を得るために、レジストを使用する前にウエハ基板を洗浄・乾燥する必要があり、本実施例では、ピラニア・エッチング/クリーン(HSOおよびH)処理後、蒸留水でリンスした。その後、シリコンの表面酸化膜を除去するため、BHF(バッファード弗酸)に15分間浸し、蒸留水でリンスした。その後、表面の脱水のため、対流式のオーブン中で60℃、30分間程度ベークした。この表面処理済ウエハ上にSU−8ネガティブフォトレジストを1000rpmの回転速度で約25秒間塗布し、溶媒を蒸発させ、膜を高密度化するためにソフトベークを65℃で30分間(STEP1)、95℃で90分間(STEP2)処理した。クーリング後、このレジスト膜上に、チャネル幅100μmのパターンを有するマスクを被せ、露光装置(ユニオン光学製 PEM−800)で密着露光した。その後、レジスト膜の露光された部分の架橋を行うため65℃で15分間(STEP1)、95℃で25分間(STEP2)加温し、クーリング後、1−メトキシ−2−プロピル酢酸現像液で現像し、現像後、基板は短時間イソプロピルアルコール(IPA)でリンスした。その後、65℃で30分間乾燥後、150℃で5分間かけてハードベークし、レジスト厚200μmのマスターを完成させた。
このマスターの表面をフルオロカーボン(CHF)の存在下で反応性イオンエッチングシステムにより処理し、表面にCHF剥離膜を形成した。マスターの剥離膜形成面上に、PDMSプレポリマー混合液として、米国のダウ・コーニング社製のSYLGARD 184 SILICONE ELASTOMERを厚さ約2mmになるように流し込み、脱気、加温(65℃、4時間)した。4時間経過後、オーブンから取り出し、PDMSポリマーシートをマスターから剥離した。得られたPDMSポリマーシートのマイクロチャネルの一端に貫通孔を形成した。
(3)マイクロ流体デバイスの製造
前記(1)で得られた送液装置の上面に前記(2)で得られたポリマーシートを積重し、両者を自己吸着させた。この際、送液装置上面の送液チューブ開口部の位置とポリマーシートのマイクロチャネルの位置が整合するように両部材を自己吸着させた。
(4)送液テスト
前記(3)で得られたマイクロ流体デバイスの送液チューブの一端に送液ポンプを接続し、圧力5kPaで液体を圧送すると、液体は送液チューブの開口部からマイクロチャネル内に流れ込み、マイクロチャネル端部の大気連通ポートから取り出すことができた。
ポリマーシートの自己吸着位置を変えて、送液チューブの開口部とマイクロチャネルのポートとの間の距離を様々に変化させて同様な送液テストを行ったが、何れの事例でもポートから液体を取り出すことができた。
【産業上の利用可能性】
【0034】
本発明の送液装置はマイクロチャネルなどに液体を送液する必要がある様々なマイクロ流体デバイスで使用することができる。
【図面の簡単な説明】
【0035】
【図1】本発明の送液装置の一例の部分概要平面図である。
【図2】図1におけるII-II線に沿った断面図である。
【図3】本発明の送液装置の製造方法の一例を説明する工程図である。
【図4】(A)は本発明の送液装置を有するマイクロ流体デバイスの一例の概要平面図であり、(B)は(A)における4B−4B線に沿った断面図である。
【図5】(A)は本発明の送液装置を有するマイクロ流体デバイスの別の例の概要平面図であり、(B)は(A)における5B−5B線に沿った断面図である。
【図6】(A)は従来のマイクロ流体チップの一例の概要平面図であり、(B)は(A)におけるB−B線に沿った概要断面図である。
【図7】図6に示された従来のマイクロ流体チップのポートに送液チューブを接続する態様の一例の部分概要断面図である。
【図8】図6に示された従来のマイクロ流体チップのポートに送液チューブを接続する態様の別の例の部分概要断面図である。
【符号の説明】
【0036】
1 本発明の送液装置
3 支持基板
5 合成樹脂層
7 送液チューブ
9 開口部
11 マイクロチャネル
13 マイクロチャネル
15 アクセスポート
100 従来のマイクロ流体デバイス
101 ポリマーシート
102 マイクロチャネル
103,104 入出力(アクセス)ポート
105 支持基板
107 送液チューブ
109 接着剤
111 ソケット

【特許請求の範囲】
【請求項1】
合成樹脂層と、該合成樹脂層内に埋設された送液チューブとからなり、前記送液チューブはその合成樹脂層埋設部分に少なくとも1個の大気に連通した開口部を有することを特徴とする送液装置。
【請求項2】
前記合成樹脂層が支持基板上に担持されていることを特徴とする請求項1記載の送液装置。
【請求項3】
前記合成樹脂層がポリジメチルシロキサン(PDMS)から形成されていることを特徴とする請求項1又は2記載の送液装置。
【請求項4】
合成樹脂層と、該合成樹脂層内に埋設された送液チューブとからなり、前記送液チューブはその合成樹脂層埋設部分に少なくとも1個の大気に連通した開口部を有する送液装置と、一方の面側に所定の深さと幅のマイクロチャネルが形成され、該マイクロチャネルの一端に大気に連通するアクセスポートを有するポリマーシートとからなり、該ポリマーシートは、そのマイクロチャネルが前記送液チューブの開口部と位置が合致するように、前記合成樹脂層面上に積重されていることを特徴とするマイクロ流体デバイス。
【請求項5】
前記合成樹脂層が支持基板上に担持されていることを特徴とする請求項4記載のマイクロ流体デバイス。
【請求項6】
前記合成樹脂層及びポリマーシートがポリジメチルシロキサン(PDMS)から形成されていることを特徴とする請求項4又は5記載のマイクロ流体デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2006−175387(P2006−175387A)
【公開日】平成18年7月6日(2006.7.6)
【国際特許分類】
【出願番号】特願2004−372769(P2004−372769)
【出願日】平成16年12月24日(2004.12.24)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.テフロン
【出願人】(000000527)ペンタックス株式会社 (1,878)
【出願人】(502338454)フルイドウェアテクノロジーズ株式会社 (11)
【Fターム(参考)】