説明

送達システム及び方法

分子及び/又はナノ粒子を貯蔵する物質であって、前記分子及び/又はナノ粒子を前記物質に実質的に結合させることにより貯蔵する物質と、前記分子及び/又はナノ粒子を解放するため、前記物質に電界を印加する手段と、前記物質から前記分子及び/又はナノ粒子を表面に移送して実体に送達するため、前記物質に超音波信号を印加する手段とを含む送達システム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、送達システム及び方法に関する。特に、本発明は、薬剤、ペプチド及びホルモンのいずれか一つ若しくは任意の組合せのようなナノ粒子及び/若しくは分子を生体組織に送達し、又は、インク若しくは染料を、紙及び皮膚を含む様々な物質に送達する方法並びに装置に関する。
【背景技術】
【0002】
多数のメカニズム(手法)により、薬剤、ホルモン、ペプチド又は染料のような分子を不活性物質又は生体物質に送達して組入れることができる。不活性物質の場合、送達のコスト及び品質が求められる。動物及び人間のような生体系では、送達の安全性の問題も重要である。動物若しくは人間に薬剤を送達することは、経口的に、又は部位に注射することにより、又は浸透的に行うことができる。所望の治療成果を達成するため、注射を必要とする薬剤が多い。しかし、いくつかの病状及び疾患の場合、注射に伴う危険性はその利益を上回ることがある。注射は高度な技能をも必要とする。感度及び危険性が高い領域に注射するには、滅菌状態及びそれに伴う患者への更なるケアを必要とすることが多い。例えば、老人性黄斑変性を治療するためにステロイド薬を眼底に送達するには、眼内感染及び網膜剥離を引き起こす高い危険性を伴って眼に注射する必要がある。眼内感染及び網膜剥離は、治療薬を眼に直接注射することで起こる最も一般的な副作用である。
【発明の概要】
【発明が解決しようとする課題】
【0003】
前述した困難性の一つ以上を軽減する送達方法及びシステム並びに該システムための送達構成要素を提供すること、又は少なくとも有用な代替案を提供することが望まれている。
【課題を解決するための手段】
【0004】
本発明によれば、
電界を物質に印加して、前記物質内に実質的に結合された分子及び/又は粒子を解放することと、
超音波信号を前記物質に印加して、前記分子及び/又は粒子を前記物質を通して表面に移送し、前記表面と接触して配置された実体に送達することと、
を含む送達方法を提供する。
【0005】
好ましくは、前記物質はポリマー材料又はセラミック材料を含む。
【0006】
好ましくは、前記ポリマー材料は導電性ポリマー及び架橋ポリマーゲルの少なくとも一つを含む。
【0007】
有利には、前記架橋ポリマーゲルをヒドロゲルとすることができる。
【0008】
有利には、前記分子は、生体組織に送達するための一つ以上の薬剤を含むことができる。
【0009】
有利には、前記物質内に実質的に結合された粒子内に、前記分子を含ませることができる。
【0010】
有利には、前記粒子はナノ粒子を含むことができる。
【0011】
好ましくは、前記生体組織は粘膜組織を含む。
【0012】
有利には、前記生体組織は、眼若しくは眼付属器、口腔若しくは歯肉粘膜及び歯、肛門若しくは膣粘膜、又は皮膚を含むことができる。
【0013】
有利には、前記ナノ粒子は、一つ以上の薬剤、ホルモン及び/若しくはペプチド、又は、生体組織に送達するための他の分子を組入れることができる。
【0014】
有利には、前記分子は、外部の前記実体を印刷又はマーキングするインク又は染料を含むことができる。
【0015】
有利には、前記方法は、前記実体における前記印刷又はマーキングの深さを決定する前記超音波信号の強度を制御することを含むことができる。
【0016】
有利には、前記実体は皮膚を含むことができる。
【0017】
有利には、前記方法は、前記電界を印加する前に、前記分子又はナノ粒子を前記物質に供給して前記物質内に前記分子又はナノ粒子を実質的に結合させることを含むことができる。
【0018】
本発明は、前述した方法のいずれか一つの方法のステップを実行する構成要素を有するシステムをも提供する。
【0019】
本発明は、前述した方法のいずれか一つの方法のステップを実行する構成要素を有する装置をも提供する。
【0020】
本発明によれば、
分子及び/又はナノ粒子を貯蔵する物質であって、前記分子及び/又はナノ粒子を前記物質に実質的に結合させることにより貯蔵する物質と、
前記分子及び/又はナノ粒子を解放するため、前記物質に電界を印加する手段と、
前記物質から前記分子及び/又はナノ粒子を表面に移送して実体に送達するため、前記物質に超音波信号を印加する手段と
を含む送達システムをも提供する。
【0021】
好ましくは、前記物質はポリマー材料又はセラミック材料を含む。
【0022】
好ましくは、前記ポリマー材料は導電性ポリマー及び架橋ポリマーゲルの少なくとも一つを含む。
【0023】
有利には、前記架橋ポリマーゲルはヒドロゲルを含むことができる。
【0024】
好ましくは、超音波信号を印加する前記手段は、前記ポリマー材料又はセラミック材料に取り付けられた少なくとも一つの超音波トランスデューサを含む。
【0025】
有利には、前記ポリマー材料は導電性ポリマー及び架橋ポリマーゲルを含むことができ、前記導電性ポリマーは前記架橋ポリマーゲルと前記超音波トランスデューサとの間に配置され、前記分子又はナノ粒子は前記導電性ポリマーから解放され、前記架橋ポリマーゲルの表面に移送されて前記実体に送達される。
【0026】
有利には、前記分子は、一つ以上の薬剤、ホルモン、ペプチド、及び/又は、生体組織に送達するための他の分子を含むことができる。
【0027】
好ましくは、前記生体組織は粘膜組織を含む。
【0028】
有利には、前記生体組織は、眼若しくは眼付属器、口腔若しくは歯肉粘膜及び歯、肛門若しくは膣粘膜、又は、皮膚を含むことができる。
【0029】
好ましくは、前記架橋ポリマーゲルの前記表面を、生体組織に対応する形状に適合するように成形する。
【0030】
有利には、前記実体は眼を含むことができ、架橋ポリマーゲルは、前記眼のまぶたの下に配置される環状スカート部を含むことができる。
【0031】
好ましくは、前記システムは、開口部を規定する環状送達構成要素を含み、環状送達構成要素は、前記環状スカート部に取り付けられた環状ハウジングを含み、少なくとも一つの超音波トランスデューサは、前記環状ハウジングの開口部を中心として配置された一つ以上の圧電トランスデューサ素子を含み、前記開口部は眼の一部を露出するように構成され、前記露出は、前記一部を中心として配置された前記眼の環状部分に前記分子及び/又はナノ粒子を送達する期間に行われる。
【0032】
有利には、前記システムは、前記送達する期間中に露出された眼の一部と接触する光学的に透明な膜を含むことができる。
【0033】
好ましくは、前記物質も前記ハウジング内に配置する。
【0034】
有利には、前記環状送達構成要素を使い捨て可能とすることができる。
【0035】
有利には、前記ナノ粒子は、生体組織に送達するための一つ以上の薬剤、ホルモン及び/又はペプチドを組入れることができる。
【0036】
有利には、使い捨て可能な環状送達構成要素は、薬剤濃度を検出する電極を含むことができる。
【0037】
有利には、電気エネルギーを前記導電性ポリマーに送達するようにも電極を構成することができる。
【0038】
好ましくは、前記システムは、前記使い捨て可能な環状送達構成要素に回転自在に結合されたハンドルを含む。
【0039】
好ましくは、前記ハンドルから、前記環状送達構成要素のほぼ両側に位置する対応の開口部へ延在する連結アームにより前記ハンドル及び使い捨て可能な環状送達構成要素を互いに結合する。
【0040】
好ましくは、前記システムは前記少なくとも一つの超音波トランスデューサ用の電源を含み、電源は前記ハンドル内に配置されている。
【0041】
好ましくは、前記連結アームの各自の電極を介して前記電源を前記少なくとも一つの超音波トランスデューサに電気的に結合する。
【0042】
有利には、使い捨て可能な環状送達ヘッドは、電気エネルギーを一つ以上の超音波トランスデューサ素子と導電性ポリマーとに同時に送達する電子回路を含むことができる。
【0043】
有利には、印加される信号のDC成分及びAC成分により電気泳動の量及びソノフォレーシス(超音波導入)の量を独立して制御することができる。
【0044】
有利には、前記分子は、外部の前記実体を印刷又はマーキングするインク又は染料を含むことができる。
【0045】
有利には、前記システムは、前記印刷又はマーキングの深さを決定する前記超音波信号を制御する手段を含むことができる。
【0046】
有利には、前記外部の実体は皮膚を含むことができる。
【0047】
有利には、前記システムは、電気信号を前記環状送達構成要素に供給する手段を含むことができ、前記電気信号はDC成分及びAC成分を有し、前記環状送達構成要素は、前記電気信号から前記DC成分及び前記AC成分を分離する手段と、前記DC成分から前記電界を発生する手段と、前記AC成分から前記超音波信号を発生する手段とを含む。
【0048】
本発明によれば、送達システムと一緒に用いる送達構成要素を提供し、前記送達構成要素は、
分子及び/又はナノ粒子を貯蔵する物質であって、前記分子及び/又はナノ粒子を前記物質に実質的に結合させることにより貯蔵する物質と、
前記分子及び/又はナノ粒子を解放するため、前記物質に電界を印加する手段と、
前記物質から前記分子及び/又はナノ粒子を前記送達構成要素の表面に移送して実体に送達するため、前記物質に超音波信号を印加する手段と
を含む。
【0049】
添付図面を参照して本発明の好適な実施形態を以下に一例として説明する。
【図面の簡単な説明】
【0050】
【図1】第1の好適な実施形態による送達システムの概略図である。
【図2】第2の好適な実施形態による送達システムの概略図である。
【図3】好適な実施形態による送達方法の流れ図である。
【図4】ハンドル構成要素と、使い捨て可能なアプリケータ構成要素又はヘッドとを備える第3の好適な実施形態によるハンドヘルド送達システム又は装置のコンピュータ生成画像である。
【図5】眼の手術を控えて送達装置を患者の眼に適用していることを示すコンピュータ生成画像である。
【図6】送達システムの代替形態のハンドル構成要素を示すコンピュータ生成画像である。
【図7】送達システムのアプリケータ構成要素の分解斜視図である。
【図8】組立られた使い捨て可能なアプリケータ構成要素の斜視図である。
【図9】アプリケータ構成要素の概略的な断面側面図である。
【図10】アプリケータ構成要素の等価電気回路図である。
【図11】導電性ポリマーからの染料分子の送達を測定するのに用いられた電気化学電池の概略図である。
【図12】超音波刺激を用いた場合と用いない場合の解放された染料の量を時間の関数として示すグラフである。
【図13】電界の影響下にあって同時に超音波刺激を用いた場合と用いない場合の解放された染料の量を時間の関数として示すグラフである。
【図14】アバスチン(登録商標)の硝子体内注射後における切片ウサギ眼の蛍光画像(左側パネル)及び光位相コントラスト顕微鏡画像(右側パネル)であって、蛍光画像がアバスチン(登録商標)の存在を示している図である。
【図15】アバスチン(登録商標)の硝子体内注射後における切片ウサギ眼の蛍光画像(左側パネル)及び光位相コントラスト顕微鏡画像(右側パネル)であって、蛍光画像がアバスチン(登録商標)の存在を示している図である。
【図16】アバスチン(登録商標)の硝子体内注射後における切片ウサギ眼の蛍光画像(左側パネル)及び光位相コントラスト顕微鏡画像(右側パネル)であって、蛍光画像がアバスチン(登録商標)の存在を示している図である。
【図17】図14〜図16に類似するが、ヒドロゲルの超音波刺激下における非侵襲的なアバスチン(登録商標)の送達の場合を示す図である。
【図18】図14〜図16に類似するが、ヒドロゲルの超音波刺激下における非侵襲的なアバスチン(登録商標)の送達の場合を示す図である。
【図19】図14〜図16に類似するが、ヒドロゲルの超音波刺激下における非侵襲的なアバスチン(登録商標)の送達の場合を示す図である。
【図20】超音波刺激下で刺激された金ナノ粒子の解放を証明する実験装置の概略図である。
【図21】時間の関数とする光ダイオード出力のグラフであって、金ナノ粒子を移送する機能が超音波信号の印加により高められたことを示すグラフである。
【図22】図4〜図10のアプリケータ構成要素が患者の眼に適用されていることを示す側面図である。
【発明を実施するための形態】
【0051】
図1に示されるように、送達装置又はシステムは、超音波トランスデューサ104が導電性膜105を介して取り付けられた貯蔵物質102を含む。導電性膜105に接続されたDC電圧源106は、貯蔵物質102内に電界を生じさせる。超音波トランスデューサ104に接続された信号発生器108は、超音波トランスデューサ104により発生され貯蔵物質102へ伝播される超音波信号を制御する。
【0052】
貯蔵物質102を導電性ポリマーとするのが好ましいが、架橋ポリマーゲル材料とすることもできる。ポリマーゲル材料は、水を含むヒドロゲルであっても、水を含まなくてもよい。貯蔵物質102を電気収縮性ポリマーとすることができる。
【0053】
以下で説明されるように、送達システムは、図3に示される送達方法を用いて、貯蔵物質102内に貯蔵された分子及び/又は粒子を貯蔵物質102の露出面110に送達して、この面110と接触して配置された実体112に送達する。分子を、薬剤、ホルモン及びペプチドのいずれか一つ若しくは任意の組合せとすること、又は、生体組織に送達するのに適する他の分子とすることができる。また、分子を脂質により被覆することができ、この場合、分子はリポソームと称される。粒子の移送を機能強化するナノスケール寸法から粒子を構成するのが好ましい。したがって、これ以降、粒子はナノ粒子と称される。しかし、当然のことながら、これら粒子の有効束を送達面110に供給するため、以下に説明する方法の使用中、このような粒子が貯蔵物質102を通過するのに充分な移動性を有する場合には、送達方法及びシステムを所望に応じてナノ粒子よりも大きい粒子に適用することができる。特に、Takeuchi H、Yamamoto H及びKawashima Y著,「ペプチド薬剤送達のためのmucoadhesiveナノ粒子システム」(Mucoadhesive nanoparticulate systems for peptide drug delivery),Adv Drug Rev,47:39‐54(2001年)に記載されているようにナノ粒子の送達を用いて薬剤を送達することができる。また、Cui F、Qian F及びYin C著,「mucoadhesiveポリマーに被覆されたナノ粒子の調製と特性」(Preparation and characterisation of mucoadhesive polymer-coated nanoparticles),Int J Pharm.316:154‐161(2006年)には、ポリマー被覆ナノ粒子を形成する方法が記載されている。
【0054】
図3に示されるように、送達方法はステップ302から開始し、送達すべき分子及び/又はナノ粒子を貯蔵物質102内に貯蔵する。標準の注射器を用いて分子及び/若しくはナノ粒子を貯蔵物質102に導入することができ、又は、貯蔵物質102の生成中に貯蔵物質102内に組入れることができる。しかし、別の方法も使用できることは当業者に明らかである。いずれの場合でも、貯蔵物質102内に分子及び/又はナノ粒子を貯蔵することができるが、貯蔵物質102は図1に示されるように構成されているか、又は、以下に説明されるように貯蔵物質102を後で構成することができる。分子及び/又はナノ粒子は、分子及び/又はナノ粒子を貯蔵物質102内に実質的に結合させる正味の電荷を有する。正味の電荷が正であるか負であるかは、使用される特定の導電性ポリマー又はポリマーゲルの性質及び型に依存する。例えば、最も好適な導電性ポリマーは、正に帯電したポリマー母体を有するポリピロールであって、このポリピロールは、負に帯電した分子及び/又はナノ粒子と選択的に結合する。好適なポリマーゲルは、架橋剤の性質及びポリマーゲル母体の極性に応じて、正又は負のどちらかに帯電した分子又はナノ粒子と結合できる架橋メタクリル酸ヒドロキシエチルである。しかし、ナノ粒子の分子の電荷に基づく結合に加えて、ポリマーゲルは多孔質でもあり、これらの孔への物理的な閉じ込めにより結合を可能にできる。電気収縮性ポリマーが貯蔵物質102として用いられる場合、電界は電気収縮性ポリマーの体積を減少させるので、分子及び/又はナノ粒子を移送する機能を電気収縮性ポリマーから更に高める。
【0055】
分子及び/又はナノ粒子が貯蔵物質102内に貯蔵されている場合、貯蔵物質102を後で用いるために貯蔵しておくことができ、別のグループに供給してこのグループの送達システムと一緒に用いることができる。いずれにしても、貯蔵された分子及び/又はナノ粒子を実体に送達するのが望ましい場合、貯蔵物質102は、図1に示されるように構成される(ただし、貯蔵物質102がまだこのように構成されていない場合である)。ステップ304では、一般的に約+1.5VDCまでのDC電圧を発生する電圧源106を用いて貯蔵物質102内に電界を確立する。約150V/mの電界を生じさせる場合、印加されるDC電圧から外部の実体112までの一般的な距離は約10mmである。代替の実施形態では、電界は(一般的に約−0.5Vと+0.6Vとの間で変化する)交流電圧によりパルス印加され、貯蔵された分子及び/又はナノ粒子をパルスにより解放する。交流電圧は、約0.3Hzの周波数を有する3秒間の対称性方形波の形態をとるのが好ましい。どちらの実施形態でも、電界は、貯蔵物質102内に貯蔵された結合した分子及び/又はナノ粒子を解放し、これにより、貯蔵物質102を通して分子及び/若しくはナノ粒子を拡散するか、又は、他の方法で移送するか、或いはその両方を行う。
【0056】
ステップ306では、一般的に信号発生器108が20Vのピーク・ツー・ピーク電圧を超音波トランスデューサ104に供給することにより(一般的に40kHzの)超音波信号を貯蔵物質102内に発生する。超音波トランスデューサ104は約200mWcm-2の音波束を供給する。超音波信号は、解放された分子及び/又はナノ粒子の移動性を著しく増大させて(この現象はソノフォレーシスと称される)、分子及び/又はナノ粒子を貯蔵物質102の送達面110に効果的に移送し、したがって、貯蔵物質102の送達面110により接触された外部の実体112に送達することができる。更に、超音波信号は、貯蔵物質102を通過して実体112の表面に伝播され、これにより、この表面の透過性も高めることができる。
【0057】
電界について、電界が超音波信号の印加前に印加されると前述したが、電界の印加が超音波信号の印加よりも先行する必要はなく、貯蔵された分子及び/又はナノ粒子の解放及び/又は移送を制御するため、電界を超音波信号と同時に印加するか又は別の方法で制御することもできることは当業者に明らかである。
【0058】
図2に示されるように、第2の好適な実施形態では、貯蔵物質202は導電性ポリマーであり、架橋ポリマーゲル材料204は、超音波トランスデューサ104とは反対側にある貯蔵物質202の面に被着されて、生体組織に送達するための生体適合面を形成する。前述した第1の好適な実施形態と同様に、ポリマーゲル材料204は水を含んでも含まなくてもよい。この第2の好適な実施形態では、貯蔵物質202とは反対側にあるポリマーゲル204の面であって、外部の実体112と接触していなければ露出されている面と接触して配置された外部の実体112に分子及び/又はナノ粒子を送達するため、貯蔵物質202から解放された分子及び/又はナノ粒子はポリマーゲル204を通って移送される。様々な方法により導電性ポリマー202及びポリマーゲル204を互いに結合させることができ、これら方法には、接着剤の使用、プラズマを用いるポリマー202,204の処理、ポリマー202,204の架橋を互いに生じさせる化学反応の使用、架橋を生じさせずにポリマーを互いに結合させる化学反応の使用、又は、ポリマーの吸収を互いに生じさせるポリマーの物理的近接及び表面処理が含まれる。当然のことながら、図2は概略的に示されたものであり、ポリマーゲル材料204は、一般的に図示のものよりもかなり薄肉である。
【0059】
内用薬及び外用薬の双方の送達、並びに、生物体若しくは無生物体の印刷、マーキング又は他のラベリングを含む多種多様な用途に送達方法並びにシステムを用いることができる。
【0060】
第3の好適な実施形態では、図4に示されるように、送達システムは、前眼部又は後眼部に分子を非侵襲的に送達するハンドヘルド装置400の形態で提供される。分子は(i)麻酔性化合物、(ii)抗生物質化合物、(iii)非ステロイド性抗炎症薬(NSAID)、(iv)ステロイド薬及び/又は(v)ペプチドを含むことができる。送達装置400は、二つの主要構成要素すなわち、再利用可能なハンドル402及び使い捨て可能なアプリケータヘッド404を有する。ハンドル402は二つの形態で提供され、一方の形態のみをオートクレーブで滅菌することができる。
【0061】
使い捨て可能なアプリケータヘッド404を、バブルパッケージ406内に包装された滅菌形態で分離して提供するのが好ましい。アプリケータヘッド404はほぼ環状の形状を有し、対向する二つの半径方向外向きの円筒状開口部を含み、これら開口部には、ハンドル402に含まれ、開口部に対応するように成形された内向きの突起408が挿入されてアプリケータヘッド404をハンドル402に枢動可能に結合する。この構成は、アプリケータヘッド404を眼に整合しやすくするために固定中の突起408を中心としてアプリケータヘッド404を枢動させる。しかし、アプリケータヘッド404を眼に整合させるため、自由度が追加された関節連結器によってもアプリケータヘッド404をハンドルに結合することができる。アプリケータヘッド404は、ポリマーゲル又は導電性ポリマーの形態をとる貯蔵物質708を含み、貯蔵物質708は、図5に示されるように眼に送達するための所望の分子及び/又はナノ粒子を貯蔵する。貯蔵物質708が導電性ポリマーである場合、ハンドル402内に配置された電圧源により発生された電圧は、貯蔵された分子及び/又はナノ粒子であるかそうでなければ導電性ポリマー708に結合された分子及び/又はナノ粒子に電気化学的な静電解除を生じさせ、又は、電気収縮に基づく解放を生じさせ、或いはその両方を生じさせる。Tyle P及びAgrawala P著,「フォノフォレーシスによる薬剤送達」(Drug Delivery by Phonophoresis),Pharmaceutical Research,6(5):355‐361,(1989年)(“Tyle and Agrawala”)に記載されているように眼自体からの帰還電流が電気回路の一部を形成し、したがって、解放された分子及び/又はナノ粒子をイオントフォレーシス(イオン導入)又はフォノフォレーシス(超音波導入)により眼に送り込めば、この解除/解放は更に高められる。アプリケータヘッド504から眼へ伝播された超音波エネルギーは、貯蔵物質708を通して眼に送達するための分子及び/又はナノ粒子を拡散する機能を高める。更に、超音波は眼自体にも伝播され、これにより、送達中、眼組織の透過性を高める。この現象はソノフォレーシスとして知られている。したがって、眼の前眼部及び後眼部への分子及び/又はナノ粒子の送達は超音波により支援される。貯蔵された分子及び/又はナノ粒子を導電性ポリマー708から電気的に解放させることで、貯蔵物質708に印加される電圧の期間及び大きさを制御することにより、解放され、したがって送達される分子及び/又はナノ粒子の速度及び総量を制御することができる。例えば、送達される分子及び/又はナノ粒子の一定の(又は、選択された)フルーエンス又は投与量に対応して一定の(又は、選択された)期間中に一定の(又は、選択された)DC又はAC電圧をハンドル402上のボタン412の押圧に応答して貯蔵物質708に印加するように送達システム400を構成することができる。
【0062】
図4〜図8に示されるように、使い捨て可能なアプリケータヘッド404は、直径11mmの中央孔410を規定するほぼ環状の形状を有する。アプリケータヘッド404自体は、分子及び/又はナノ粒子を眼の標的部位に送達するように外径15mm〜20mmの範囲内で設けられている。例えば、直径15mmのアプリケータヘッドは、角膜及び縁領域のみに送達するのに用いられるが、直径20mmのアプリケータヘッドは、角膜/縁領域及び外眼筋の付着部の両方を標的とするのに用いられる。眼(角膜及び縁)を麻酔することに加えて、眼の動きを停止させるため、外眼筋を標的とするのが望ましい。
【0063】
図5に示されるように、送達装置400は患者の眼502に適用されており、眼の手術中、麻酔性化合物を眼502の前眼部及び後眼部に送達するのに用いられることができる。アプリケータヘッド404を貫通する中央開口部又は孔410により、執刀医はアプリケータヘッド404の中央開口部を通して角膜及び瞳孔を見えることで、アプリケータヘッド404を角膜及び瞳孔に対して中心付けるように正確に整合し配置することができる。中央開口部410はアプリケータヘッド404を貫通するように示されているが、送達中に眼502と(コンタクトレンズのように)接触する薄肉の光学的に透明なポリマー膜により開口部を送達端で閉じるのが好ましい。
【0064】
アプリケータヘッド404の主要構成要素の分解図を図7に示し、組立図を図8に示す。図7及び図8は、(図面を明確にするため、)装置ハンドル402内に配置されている電源の電気接点のような細部を省略してある。図7に示すように、アプリケータヘッド404は、中央孔410を中心として分散された4つの圧電トランスデューサ素子702を有する圧電トランスデューサを含む。代替の実施形態(図示せず)では、環状形状の圧電トランスデューサ素子は一つしか用いられていない。どちらの実施形態でも、以下で説明されるように、圧電トランスデューサの電気接点は導電性ハウジング712内に含まれている。部分球状の環状金属接点リング704は、接点リング704の表面と接触する貯蔵物質708のために支持体及び電気接点を形成する。したがって、圧電トランスデューサの電気接点は、以下で説明されるように、貯蔵物質708の電気接点から分離され絶縁されている。接点リング704は金属製の二つの位置決めアーム706を含み、位置決めアーム706は、これらの間に貯蔵物質708を位置付けるため、接点リングから垂直に延びている。接点リング704は、圧電素子702と、前述したようにポリマーゲル又は導電性ポリマーのどちらかとすることができる貯蔵物質708との間に配置されている。型成形されたポリマーゲルスカート部710は、眼と接触する生体適合性の送達面を備え、周辺スカート部は、図22に示されるように、使用中、患者のまぶたの下に滑動される。導電性物質からスカート部を形成することにより、又は、スカート部を被覆する導電性面を形成することにより電流の帰還路が設けられる。型成形されたゲルスカート部710の底面又は送達面714は、前眼部の表面に適合するほぼ凹面の形状を有し、好ましくは、前述したように、中央開口部501上に配置された薄肉の光学的に透明なゲルの膜を含む。
【0065】
導電性ハウジング712は圧電素子702、リング接点704及び導電性ポリマー708を収納して、最終的に、図8に示されるように組立てられた一体のアプリケータヘッド504を形成するために設けられている。前述したように、アプリケータヘッド504を送達装置の残りの部分から分離して販売するか、又は別の方法で提供することができる。
【0066】
図8は、様々な構成要素がどのようにして電気的に結合されているのかを示す環状アプリケータヘッド404の断面側面図である。前述したように、使い捨て可能な環状アプリケータヘッドと装置ハンドルとの間の電気界面は、アプリケータヘッド404の円筒状開口部内に配置され、反対の電気極性を有し、半径方向に向けられた二つの電極902,904により形成される。これら二つの電極902,904のうち第1の電極902は円筒状の形状を有し、第1の電極902が電気的に接続された外側のハウジング712から突出している。これら二つの電極902,904のうち第2の電極904は、ハウジング712から突出する外向きの円筒状部分と、ディスク状部分とを含み、ディスク状部分は、ディスク状部分の一方側に位置する圧電トランスデューサ702と、ディスク状部分の他方側に位置する環状ディスク状の電気絶縁体906との間に配置されている。これら電極902,904は、装置ハンドル402の内向き突起408の端部に位置する対応の相手方の電極と電気接続を形成する。
【0067】
電極902,904は、DCでバイアスされた高周波AC信号として電気エネルギーを圧電トランスデューサ702及び貯蔵物質708の両方に同時に供給する。高周波の音響エネルギーは、以下のようにゲルを通って眼に伝播される。すなわち、電極501,502は、(一つ以上の)圧電トランスデューサ702にまたがって直接接続し、高周波ACエネルギーを(一つ以上の)圧電トランスデューサ702に伝播し、(一つ以上の)圧電トランスデューサ702は、この電気エネルギーを音響エネルギーに変換する。結果として得られた音響エネルギーは次に、第2の電極904の環状ディスク状部分、電気絶縁体906及び環状ディスク状中間電極908を介して導電性/ナノ粒子ポリマー708に結合され、架橋ゲル710を介して患者の眼に結合される。圧電トランスデューサ702は電気的に絶縁されているので、これら圧電トランスデューサ702は、DC電流に対していかなる実質的電気路も形成しない。
【0068】
DC電気エネルギーは、以下のようにゲル710を通って眼に伝播される。すなわち、電流は、第2の電極904から抵抗器910を介して中間電極908に導通される。絶縁体906は、交流電流路がトランスデューサ界面を経由しないようにすることに留意されたい。図10の等価回路図から明らかになるように、印加された信号の高周波AC成分は、中間電極908と、(患者の眼502に電気的に結合された)接地されたハウジング712との間で電気的に接続されたキャパシタ912と、抵抗器910とにより形成された低域通過フィルタにより著しく減少される。このフィルタリング効果の結果、第2の電極502に印加された電気信号のDC又は超低周波AC成分をほとんど取り出すことになる。このDC成分は次に、導電性/電気収縮性ポリマー402から架橋ゲル404を介して患者の眼502に流され、上述したように、これと一緒にナノ粒子をイオントフォレーシスにより移送する。患者帰還電流路はハウジング712を経由し、患者帰還電流路では電流が患者のまぶたを介して帰還する。
【0069】
この実施形態では、導電性ゲルにおける電気泳動/イオントフォレーシス、ソノフォレーシス、及び(電気収縮性ポリマーが貯蔵物質として用いられる場合の)電気収縮の度合いを独立して制御するようにハンドル402内に配置された電源により、使い捨て可能な環状送達ヘッドに印加される電気信号のAC成分及びDC成分を独立して選択又は制御することができる。
【0070】
この構成の別の利点は、低周波AC電圧が第1及び第2の電極902,904に印加された時に流れる合成電流により浮遊状態の自由イオンの量を容易に測定できるため、貯蔵物質708の状態と、貯蔵物質708にとどまる薬剤又は貯蔵された他の種の量とを決定できることである。DCオフセットにより、又は、RC回路網の値によりキャパシタ912にまたがるDCの量を制御することができる。帰還電流路は患者のまぶたを経由するので、患者回路を完成するのに追加の電極を必要としない。
【0071】
図6には、アプリケータヘッド404と一緒に用いられる代替形態のハンドル602を示す。アプリケータヘッド404と共に多種多様な異なるハンドルタイプを用いることができることは明らかである。例えば、異なるタイプのユーザ及び/又は用途によってハンドルを異なる形状及び寸法に形成できるだけでなく、これら異なるハンドル内に異なる電源を設けることもできる。例えば、最も簡単なタイプの電源は、バッテリをアプリケータヘッド404に簡単に直接接続し直接切断するオンオフボタンを用いる簡単なバッテリを含むことができる。これとは反対に、より複雑な電源は再充電可能であり、選択可能及び/又はプログラム可能なDC及び/又はAC電圧を含み、これにより、高度な技術力を持つユーザは、特定の用途に適するように異なる信号の大きさ、周波数及び波形を選択することができる。例えば、薬剤及びポリマーの特定の組合せを有する一つ以上の所定タイプのアプリケータヘッド用に電源を事前設定することができ、これにより、ユーザは、送達すべき薬剤の投与量を選択することができ、装置は適切な信号でアプリケータヘッドを付勢することができ、その後、所望の投与量を送達すべきだった場合、又は、特定タイプの生体組織により吸収されるべきだった場合、装置は指示(例えば、可聴信号)を生成する。
【0072】
前述したハンドヘルド送達装置は、薬剤を眼に非侵襲的に送達する手段を備え、これにより、眼に注射することに伴う危険性を克服する。このハンドヘルド送達装置は、手術中に局所麻酔薬、抗生物質及び抗炎症薬のいずれか一つ又は任意の組合せを眼に送達するための無痛、迅速かつ正確な手段を備える。このハンドヘルド送達装置は、網膜を標的とする安全なかつ比較的快適な薬剤の送達を容易にする。それ以外の場合では、眼の中又は眼の周囲への注射を必要とし、又は、全身的に送達される注射を必要とし、患者を不要な潜在的副作用にさらすことになる。
【0073】
前述したハンドヘルド送達装置400は、薬剤及び他の分子を眼に送達するのに特に適するが、装置の送達面714を環状とする必要はなく、薬剤及び/又は他の分子を送達したい他の身体部位又は生体組織の輪郭に適合するように成形することもできることは明らかである。例えば、口腔若しくは歯肉粘膜及び歯に分子を送達するため、歯及び/若しくは顎骨に適合するように送達面714を成形することができ、又は、肛門若しくは膣粘膜に分子を送達するため、肛門若しくは膣の輪郭に適合するように成形することができ、或いは、分子を経皮的に送達するように成形することができる。更に、送達構成要素又はヘッドは、薬剤濃度を検出する電極を含むことができる。この電極は、電気エネルギーを貯蔵物質に送達するのに用いられた電極と同じ電極とすることができ、又は、別個の電極とすることができる。
【0074】
或いはまた、前述した送達システムを用いて、電荷を有する染料若しくはインクか、又は、電荷を有する粒子に含まれる染料若しくはインクを含む一つ以上の帯電した化合物を送達することができる。染料又はインクが塗布される実体の表面よりも下の所望の深さに染料又はインクを付着させることができる。この実体はほとんどすべての物質を含むことができ、特に、紙、プラスチック又は皮膚を含むことができる。この用途では、付着の深さは超音波信号の強度及び/又は期間により決定され、貯蔵物質に印加される電界を制御することによりインク又は染料の解放を制御することができる。
【0075】
超音波信号が皮膚に印加される場合、超音波信号は皮膚の透過性をも高め、したがって、インク又は染料を皮膚に移送する機能をも高める。例えば、比較的低出力の超音波信号を用いて皮膚における細胞の最外表皮層内にインク又は染料を付着することにより個人の皮膚上に、比較的短い期間持続するテンポラリータトゥを作成することができる。これとは対照的に、比較的高出力の超音波信号を用いて皮膚における細胞の皮層内にインク又は染料を付着することにより、比較的長い期間持続する入れ墨(「パーマネントタトゥ」)を作成することができる。テンポラリータトゥは、例えば化粧品産業の分野を含む様々な分野に有用である。パーマネントタトゥを用いて、家畜又は実験動物を識別する効率的かつ無痛の手段を提供することができる。どちらの場合でも、本明細書に記述された方法の重要な利点は、送達装置又はシステムの一部により皮膚を物理的に刺入することなしにインク又は染料を皮膚内に付着させることができるということである。したがって、この非侵襲的な方法は、感染及び/又は汚染の危険性を減少させる。
【実施例1】
【0076】
図11に示されるように、電気化学電池1100は、プラスチックUVキュベット1102をPBS緩衝液で充填することにより構成された。PBS緩衝液(3ml)は、25℃で〜7.4のpHを有するリン酸緩衝化生理食塩水であり、0.01Mのリン酸緩衝液、0.0027Mの塩化カリウム及び0.137Mの塩化ナトリウムを含む。Ag/AgCl(飽和NaCl)基準電極1104は部分的にPBS緩衝液に挿入された。寸法4×0.8cm2のステンレス鋼メッシュから形成された補助電極1106はキュベットの一方側に取り付けられ、作用電極1108はキュベット1102の他方側に取り付けられた。作用電極1108は、金マイラー基板の一方端に(寸法0.8×0.8cm2の)ポリピロール膜を形成することにより調製された。金マイラー基板は、支持電解質として、0.1MのスルホローダミンB染料を含む水性の0.2Mのピロールから調製された。ポリピロールの量は、6分間、1.0mA/cm2の一定の電流密度を溶液に与えることにより制御された。この調製されたままのポリピロール膜は、次にMilliQ(登録商標)水で完全に洗浄され、その後、風乾された。ステンレス鋼メッシュの一部は、金マイラー基板の他方端で金マイラーと電気接点を形成するのに用いられた。ポリピロールの成長中に消費された総電荷量に応じて、ポリピロール膜内の染料の量は〜198μgと推定された。
【0077】
図示のように、作用電極1108及び超音波トランスデューサ1110はそれぞれプラスチックUVキュベット1102の複数の壁の一つにおける内面及び外面に取り付けられた。超音波トランスデューサ1110には、関数発生器(図示せず)により15Vの(40Hzのピーク・ツー・ピーク)方形波AC電圧が供給された。キュベット1102の底部に位置するマグネチックスターラ1112は〜90rpmで回転した。
【0078】
電池1100は、島津製作所により製造されたMultiSpec‐1501 UV‐VIS分光光度計内に配置された。MultiSpec‐1501 UV‐VIS分光光度計は、0.1分の収集時間間隔で500nmから800nmまでのUV‐VISスペクトルを収集するのに用いた。結果として得られたUV‐VISスペクトルは、ポリピロール膜から解放された染料の量を決定するのに用いられた。
【0079】
図12は、様々な条件下で分単位の時間の関数としてμgの単位でスルホローダミンB染料の量を示すグラフである。曲線1202は、電気刺激又は超音波刺激を用いない、すなわち自然拡散によるポリピロールからの染料の解放を示す。これとは対照的に、一番上の曲線1204は、超音波刺激を用いた染料の解放を示す。超音波刺激の使用は明らかに解放の速度を約2倍に増大させる。最初の数分にわたる初期の線形領域では、自然拡散下にある場合、解放の速度は約0.2μg/分であり、超音波を用いた場合、0.33μg/分であった。180分後、解放された染料の総量は、5.2μg及び9.9μgであった。超音波の効果は中間の曲線1206により確認された。中間の曲線1206では、染料は初期に自然拡散下で解放され、約50分の時点で超音波トランスデューサ1110が付勢され、これにより、図12の矢印1208が示すように解放の速度を著しく増大させた。しかし、場合ごとに解放された染料の最終量は、いずれの場合にもポリマー膜内の染料の総量の5%未満であった。
【0080】
染料の解放に与えるパルス電界の効果は、(Ag/AgClに対して)−500mV〜+600mVの範囲内にある3秒間の対称性方形波AC信号を印加することにより証明された。図13における下側のデータセット1302は、前述した電気刺激中における染料の解放の速度を示している。図12と比較して、電気刺激は、ポリピロールから染料を解放する機能を著しく高めることは明らかである。最初の5分間、解放の速度は〜4.4μg/分であった。第2のデータセット1304により示されるように、電気刺激が超音波刺激と組合された場合にも解放の速度に著しく影響が与えられている。電気刺激のみにより生じられた解放(データセット1302)の初期の速度は、両方の刺激が適用された場合よりも大きいが、時間が経つにつれてこの解放の速度が急速に減少することは明らかである。これに対し、電気刺激及び超音波刺激の組合せの下にある場合(データセット1304)、解放の速度は、少なくとも最初の400分にわたってほぼ線形に保たれ、8時間にわたって解放の速度は0.19μg/分であり、ポリマーから解放された染料の最終量は約100μgであり、ポリマー内の染料の総量の約50%である。
【0081】
ポリピロールが、アニオン性の染料分子でドープされたポリカチオン性の母体であることを考慮すると、イオン交換は染料とPBS内のアニオンとの間で生じる。染料が比較的大きい(Mw:580.7)ので、染料分子の大部分は物理的にポリマー母体に閉じ込められることがあり、これにより、染料分子のごくわずか(〜2.5%)しか解放されなかった。超音波は、孔を広げることにより解放の速度を増大させることができる。
【0082】
図13に示されるデータは、電気刺激が解放の速度及び量を著しく高めることを証明している。還元電位において、ポリピロール鎖に沿った正電荷は中和され、アニオン性の染料はポリマー母体から解放された。酸化電位において、ポリピロールは正に帯電し、補助電極からアニオンを取り込んだ。反復的なパルス電位の発生はアニオン交換を促進させ、短期間に解放の速度を高めた。
【実施例2】
【0083】
前述したように、送達システム又は装置を用いて分子及び/又はナノ粒子を患者の眼に送達することができる。眼の表面に送達された後、分子及び/又はナノ粒子は眼の外面を貫通し、眼の後眼部へ拡散することができる。例えば、図14〜図19は、微分干渉コントラスト(DIC)位相コントラスト撮像及び蛍光撮像により取得された切片ウサギ眼の光学顕微鏡画像であり、眼の様々な部位に対するモノクローナル抗体・アバスチン(登録商標)の分布を示す。6つの図面の各々は、蛍光画像を示す左側パネルと、白色光DIC位相コントラスト画像を示す右側パネルとを有する二つのパネルを含む。図14〜図16は、硝子体内注射により送達されたアバスチン(登録商標)の分布を示し、図17〜図19は、5分間のソノフォレーシスによりヒドロゲルから送達されたアバスチン(登録商標)の分布を示している。蛍光画像の赤色は、アバスチン(登録商標)に結合された2次抗体を表す。したがって、赤色は、眼の組織におけるアバスチン(登録商標)の位置を表す。
【0084】
切片処理により網膜/脈絡膜を強膜から分離させた。硝子体内注射を用いた眼(RE)では、硝子体液は豊富なアバスチン(登録商標)の存在(赤染色)により見える。超音波アクチュエータを用いた眼(LE)では、硝子体液は、目に見えるほど染色されなかった。このことは、アバスチン(登録商標)が網膜から拡散されなかったことを示す。
【0085】
硝子体内注射後の眼において毛様体及び虹彩も著しく染色されている。このことは、硝子体液の役割がアバスチン(登録商標)の拡散の原因をもたらすことであるとすれば当然のことである。しかし、超音波を用いてゲルから送達された後の眼において毛様体はそれほど染色されない。角膜及び強膜、特に外部縁の領域における細胞の層の透過性を増大させる作用をする超音波エネルギーにより角膜及び強膜における細胞の脂質構造を可逆的に変更することによりアバスチン(登録商標)が眼の表面における細胞の最外層を通過すると考えられている。アバスチン(登録商標)は角膜及び強膜に浸透した後、ぶどう膜での拡散、又は、硝子体液と網膜の内境界膜との間の潜在的な空間での拡散により網膜に到達した。眼における正確なメカニズムは分かっていないが、Tyle及びAgarwalaは、キャビテーション効果又は、皮膚の角質層の脂質構造に与える効果のどちらかによるものとして、皮膚への薬剤の浸透に与える超音波の効果に関連する理論について述べている。
【0086】
硝子体液は、「白色光」DIC画像では見えない。その理由は、共焦点顕微鏡検査中、カバースリップ及び切片を安定化するため、90%グリセリン溶液を用いて切片がスライド上に装着されているためである。グリセリンは、硝子体液と類似の屈折率を有する。DIC処理は位相コントラスト光学系に依存し、したがって、構造は、屈折率が異なる場合のみに見える。
【0087】
図17〜図19は、アバスチン(登録商標)が非侵襲的に脈絡膜及び網膜に送達されたことを明らかに証明している。
【実施例3】
【0088】
前述したように、ナノ粒子を実体に送達するのにも送達システムを用いることができる。図20には、超音波刺激下、金ナノ粒子を光学的に透明なゲル2004に送達することを証明する実験装置を示す。貯蔵物質2002は、約70〜90℃に加熱されたアガロース溶液に金ナノ粒子を追加することにより形成された。次に、アガロース溶液を4℃の環境で冷却することにより固化することができた。その結果として、懸濁分散状態の金ナノ粒子を含む直径13mm高さ10mmの円柱形固体ゲルを得た。次に、この貯蔵物質2002は透明なゲル2004と超音波トランスデューサ102との間に挟み込まれた。超音波トランスデューサ102は、信号発生器108により供給された40Hzの20Vのp‐p(ピーク・ツー・ピーク)信号により駆動され、これにより約200mWcm−2の音響刺激を生じさせる。光検出器2008が、透明なゲル2004を通過するレーザビームの光伝送を測定し、これにより、透明なゲル2004への金ナノ粒子の移送を推測するため、HeNeレーザ2006により生成されたビームは透明なゲル2004を通過して光検出器2008により受信されるように指向されている。アナログデジタル変換器(ADC)カードを有する標準のコンピュータシステム2010は、光検出器2008により発生されたアナログ信号をその後の分析及びユーザへの表示のために処理した。
【0089】
この特定の装置では、貯蔵物質2002及び透明なゲル2004は両方とも、MilliQ(登録商標)水で0.5%(w/v)のアガロースを溶解させることにより形成されたポリマーゲルであった。直径15〜20ナノメートルの金ナノ粒子は、アガロースの加熱された(70〜90℃の)MilliQ(登録商標)水溶液に追加され、ポリマーゲルを形成するアガロースの凝固中、金ナノ粒子は貯蔵物質2002に組入れられた。
【0090】
図21は、時間の関数とする光ダイオード出力2102のグラフである。最初、透明なゲル2004の光伝送は一定であった。図示のように、実験開始から約8分の時点で40kHzの超音波信号は超音波トランスデューサ102により発生され、貯蔵物質2002に伝播された。この特定の装置では、レーザビームは、透明なゲル2004と貯蔵物質2002との間の界面よりも1mm下の地点に位置決めされた。約2分後に、レーザビームの伝送は、約8分にわたって急速に降下し、その後、一定のレベルで飽和し始めた。図示のように、約29分の時点で超音波信号はスイッチオフされた。このデータは、金ナノ粒子を透明なゲル2004に移送するのに40kHzの超音波信号が極めて効果的であったことを明らかに証明している。透明なゲル2004の走査電子顕微鏡検査は金ナノ粒子の存在を明らかにし、金ナノ粒子が貯蔵物質2002から移送されたことを裏付けた。制御実験は、金ナノ粒子を用いず、全く同じ貯蔵物質を用いて実行され、超音波信号の有無により影響を受けない一定の光伝送を示した。
【0091】
添付図面を参照して前述した本発明の範囲から逸脱することなく、多くの部分的変更ができることは、当業者に明らかである。

【特許請求の範囲】
【請求項1】
電界を物質に印加して、前記物質内に実質的に結合された分子及び/又は粒子を解放するステップと、
超音波信号を前記物質に印加して、前記物質から前記分子及び/又は粒子を表面に移送して、前記表面と接触して配置された実体に送達するステップと
を含む送達方法。
【請求項2】
請求項1に記載の方法において、前記物質はセラミック材料を含む方法。
【請求項3】
請求項1に記載の方法において、前記物質はポリマー材料を含む方法。
【請求項4】
請求項3に記載の方法において、前記ポリマー材料は架橋ポリマーゲルを含む方法。
【請求項5】
請求項3又は4に記載の方法において、前記ポリマー材料は導電性ポリマーを含む方法。
【請求項6】
請求項4又は5に記載の方法において、前記架橋ポリマーゲルは、含水ゲルポリマーヒドロゲルを含む方法。
【請求項7】
請求項3〜6のいずれか一項に記載の方法において、前記ポリマー材料は電気収縮性ポリマーを含む方法。
【請求項8】
請求項1〜7のいずれか一項に記載の方法において、前記分子は、生体組織に送達するための活性剤分子である方法。
【請求項9】
請求項1〜7のいずれか一項に記載の方法において、前記粒子は、生体組織に送達するための活性剤を含む方法。
【請求項10】
請求項8又は9に記載の方法において、前記活性剤は、一つ以上の薬剤、ホルモン、抗体、リポソーム及び/又はペプチドを含む方法。
【請求項11】
請求項8〜10のいずれか一項に記載の方法において、前記生体組織は粘膜組織を含む方法。
【請求項12】
請求項8〜11のいずれか一項に記載の方法において、前記生体組織は、眼若しくは眼付属器、口腔若しくは歯肉粘膜及び歯、肛門若しくは膣粘膜、又は、皮膚を含む方法。
【請求項13】
請求項1〜12のいずれか一項に記載の方法であって、前記電界を印加する前に、前記分子及び/又は粒子を前記物質に導入して前記物質内に前記分子及び/又は粒子を実質的に結合させるステップを含む方法。
【請求項14】
請求項1〜13のいずれか一項に記載の方法であって、前記実体を前記表面と接触させて前記分子及び/又は粒子を前記実体に送達するステップを含む方法。
【請求項15】
請求項14に記載の方法において、前記超音波信号は前記実体を貫通して、前記分子及び/又はナノ粒子を前記実体に送達する機能を高める方法。
【請求項16】
請求項13又は14に記載の方法において、前記電界はイオントフォレーシスによる前記送達を支援する方法。
【請求項17】
請求項1〜16のいずれか一項に記載の方法において、前記実体は人間又は動物であり、前記方法は、前記人間又は動物の隔膜を前記表面と接触させて、前記分子及び/又は粒子を前記人間又は動物に送達するステップを含み、前記超音波信号は前記実体の前記隔膜の透過性を高めて、前記分子及び/又はナノ粒子を前記人間又は動物に送達する機能を高める方法。
【請求項18】
請求項17に記載の方法において、前記隔膜は、皮膚、眼の被膜、粘膜又は耳の鼓膜を含む方法。
【請求項19】
請求項18に記載の方法において、前記眼の前記被膜は、角膜、強膜、ぶどう膜又は網膜を含む方法。
【請求項20】
請求項18又は19に記載の方法において、前記粘膜は、胃腸管、膣、直腸、口又は鼻腔の内側を覆う膜を含む方法。
【請求項21】
請求項1〜20のいずれか一項に記載の方法において、前記粒子はナノ粒子である方法。
【請求項22】
請求項1〜21のいずれか一項に記載の方法において、前記分子は、外部の前記実体を印刷又はマーキングするインク又は染料を含む方法。
【請求項23】
請求項22に記載の方法であって、前記実体における前記印刷又はマーキングの深さを決定する前記超音波信号の強度を制御するステップを含む方法。
【請求項24】
請求項23に記載の方法において、前記実体は皮膚を含む方法。
【請求項25】
請求項1〜24のいずれか一項の前記ステップを実行する構成要素を有するシステム又は装置。
【請求項26】
分子及び/又はナノ粒子を貯蔵する物質であって、前記分子及び/又はナノ粒子を前記物質に実質的に結合させることにより貯蔵する物質と、
前記分子及び/又はナノ粒子を解放するため、前記物質に電界を印加する手段と、
前記物質から前記分子及び/又はナノ粒子を表面に移送して実体に送達するため、前記物質に超音波信号を印加する手段と
を含む送達システム。
【請求項27】
請求項26に記載のシステムにおいて、前記物質はセラミック材料を含むシステム。
【請求項28】
請求項26に記載のシステムにおいて、前記物質はポリマー材料を含むシステム。
【請求項29】
請求項28に記載のシステムにおいて、前記ポリマー材料は架橋ポリマーゲルを含むシステム。
【請求項30】
請求項28又は29に記載のシステムにおいて、前記ポリマー材料は導電性ポリマーを含むシステム。
【請求項31】
請求項29又は30に記載のシステムにおいて、前記架橋ポリマーゲルは、含水ゲルポリマーを含むシステム。
【請求項32】
請求項29〜31のいずれか一項に記載のシステムにおいて、前記ポリマー材料は電気収縮性ポリマーを含むシステム。
【請求項33】
請求項26〜32のいずれか一項に記載のシステムにおいて、前記分子は、生体組織に送達するための活性剤分子であるシステム。
【請求項34】
請求項26〜31のいずれか一項に記載のシステムにおいて、前記粒子は、生体組織に送達するための活性剤を含むシステム。
【請求項35】
請求項33又は34に記載のシステムにおいて、前記活性剤は、一つ以上の薬剤、ホルモン、抗体、リポソーム及び/又はペプチドを含むシステム。
【請求項36】
請求項33〜35のいずれか一項に記載のシステムにおいて、前記生体組織は粘膜組織を含むシステム。
【請求項37】
請求項33〜36のいずれか一項に記載のシステムにおいて、前記生体組織は、眼若しくは眼付属器、口腔若しくは歯肉粘膜及び歯、肛門若しくは膣粘膜、又は、皮膚を含むシステム。
【請求項38】
請求項26〜37のいずれか一項に記載のシステムにおいて、前記分子及び/又は粒子は前記物質内に実質的に結合されているシステム。
【請求項39】
請求項26〜38のいずれか一項に記載のシステムにおいて、前記システムが前記実体と接触すると、前記超音波信号が、前記分子及び/又はナノ粒子を前記実体に送達する機能をソノフォレーシスにより高めるように構成されているシステム。
【請求項40】
請求項38又は39に記載のシステムにおいて、前記電界は、前記分子及び/又はナノ粒子を前記実体に送達する機能をイオントフォレーシスにより高めるシステム。
【請求項41】
請求項26〜40のいずれか一項に記載のシステムにおいて、前記粒子はナノ粒子であるシステム。
【請求項42】
請求項26〜40のいずれか一項に記載のシステムにおいて、前記分子は、外部の前記実体を印刷又はマーキングするインク又は染料を含むシステム。
【請求項43】
請求項42に記載のシステムであって、前記実体における前記印刷又はマーキングの深さを決定する前記超音波信号を制御する手段を含むシステム。
【請求項44】
請求項26〜43のいずれか一項に記載のシステムにおいて、前記実体は皮膚を含むシステム。
【請求項45】
請求項26〜44のいずれか一項に記載のシステムにおいて、超音波信号を印加する前記手段は、前記物質に結合された少なくとも一つの超音波トランスデューサを含むシステム。
【請求項46】
請求項1〜45のいずれか一項に記載のシステムにおいて、前記表面は、生体組織に対応する形状に適合するように成形されているシステム。
【請求項47】
請求項26〜46のいずれか一項に記載のシステムであって、ハンドヘルド装置であるシステム。
【請求項48】
請求項1〜47のいずれか一項に記載のシステムであって、前記物質を組入れる取り外し可能な送達構成要素を含むシステム。
【請求項49】
請求項48に記載のシステムにおいて、前記送達構成要素も一つ以上の超音波トランスデューサを含むシステム。
【請求項50】
請求項48又は49に記載のシステムにおいて、前記送達構成要素は前記システムの1回使用型の使い捨て可能な構成要素であるシステム。
【請求項51】
請求項50に記載のシステムにおいて、前記送達構成要素は、薬剤濃度を検出する電極を含むシステム。
【請求項52】
請求項51に記載のシステムにおいて、前記電極は、電気エネルギーを前記物質に送達するようにも構成されているシステム。
【請求項53】
請求項48〜52のいずれか一項に記載のシステムにおいて、前記送達構成要素は、電気エネルギーを前記一つ以上の超音波トランスデューサ素子と前記物質とに同時に送達するように構成されているシステム。
【請求項54】
請求項53に記載のシステムにおいて、前記送達構成要素に供給される電気信号のDC成分及びAC成分により電気泳動の量及びソノフォレーシスの量を独立して制御することができるシステム。
【請求項55】
請求項48〜54のいずれか一項に記載のシステムにおいて、前記システムは、電気信号を前記送達構成要素に供給する手段を含み、前記電気信号はDC成分及びAC成分を有し、前記送達構成要素は、前記電気信号から前記DC成分及び前記AC成分を分離する手段と、前記DC成分から前記電界を発生する手段と、前記AC成分から前記超音波信号を発生する手段とを含むシステム。
【請求項56】
請求項48〜55のいずれか一項に記載のシステムであって、前記実体との整合を容易にするために前記送達構成要素に回転自在に結合されたハンドルを含むシステム。
【請求項57】
請求項56に記載のシステムにおいて、前記ハンドル及び前記送達構成要素は、前記ハンドルから、前記送達構成要素のほぼ両側に位置する対応の開口部へ延在する連結アームにより互いに結合されているシステム。
【請求項58】
請求項56又は57に記載のシステムにおいて、前記システムは、前記送達構成要素内に配置された少なくとも一つの超音波トランスデューサ用に電源を含み、前記電源は前記ハンドル内に配置されているシステム。
【請求項59】
請求項58に記載のシステムにおいて、前記電源は、前記連結アームの電極を介して前記少なくとも一つの超音波トランスデューサに電気的に結合されているシステム。
【請求項60】
請求項24〜46のいずれか一項に記載のシステムにおいて、前記物質は、導電性又は電気収縮性ポリマーと架橋ポリマーゲルとを含み、前記導電性又は電気収縮性ポリマーは前記架橋ポリマーゲルと前記超音波トランスデューサとの間に配置され、前記分子又はナノ粒子は前記導電性又は電気収縮性ポリマーから解放され、前記架橋ポリマーゲルの表面に移送されて前記実体に送達されるシステム。
【請求項61】
請求項60に記載のシステムにおいて、前記実体は眼であり、前記架橋ポリマーゲルは、前記眼のまぶたの下に配置される環状スカート部を含むシステム。
【請求項62】
請求項61に記載のシステムにおいて、前記システムは、開口部を規定する環状送達構成要素を含み、前記環状送達構成要素は、前記環状スカート部に取り付けられた環状ハウジングを含み、前記環状ハウジングの開口部を中心として一つ以上の圧電トランスデューサ素子が配置され、前記開口部は眼の一部を露出するように構成され、前記露出は、前記一部を中心として配置された前記眼の環状部分に前記分子及び/又はナノ粒子を送達する期間に行われるシステム。
【請求項63】
請求項62に記載のシステムにおいて、前記開口部は、前記送達する期間中に露出された前記眼の前記一部と接触する光学的に透明な膜により被覆されているシステム。
【請求項64】
請求項62又は63に記載のシステムにおいて、前記物質も前記ハウジング内に配置されているシステム。
【請求項65】
送達システムと一緒に用いる送達構成要素であって、
分子及び/又はナノ粒子を貯蔵する物質であって、前記分子及び/又はナノ粒子を前記物質に実質的に結合させることにより貯蔵する物質と、
前記分子及び/又はナノ粒子を解放するため、前記物質に電界を印加する手段と、
前記物質から前記分子及び/又はナノ粒子を前記送達構成要素の表面に移送して実体に送達するため、前記物質に超音波信号を印加する手段と
を含む送達構成要素。
【請求項66】
請求項65に記載の送達構成要素において、前記物質は、前記物質内に実質的に結合された前記分子及び/又は前記ナノ粒子を含む送達構成要素。
【請求項67】
請求項65に記載の送達構成要素において、前記物質は、生体組織に送達するための前記物質内に実質的に結合された薬剤、ホルモン、抗体、リポソーム及び/又はペプチドを含む送達構成要素。
【請求項68】
請求項65〜67のいずれか一項に記載の送達構成要素であって、前記送達システムの1回使用型の使い捨て可能な構成要素である送達構成要素。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公表番号】特表2009−539508(P2009−539508A)
【公表日】平成21年11月19日(2009.11.19)
【国際特許分類】
【出願番号】特願2009−514597(P2009−514597)
【出願日】平成19年6月15日(2007.6.15)
【国際出願番号】PCT/AU2007/000843
【国際公開番号】WO2007/143796
【国際公開日】平成19年12月21日(2007.12.21)
【出願人】(508366732)シーガル アイピー ピーティーワイ リミテッド (1)
【Fターム(参考)】