説明

透明基板、透明基板の製造方法、電気光学装置、電気光学装置の製造方法及び画像形成装置

【課題】 発光素子から発光された光の取出し効率を向上し、さらに、形成されるマイクロレンズの発光素子に対する位置精度を向上した透明基板、透明基板の製造方法、電気光学装置、電気光学装置の製造方法及び画像形成装置を提供する。
【解決手段】 ガラス基板30の光取出し面30bに第2整合半径R2の凹部40を形成し、同凹部40内にレジスト等によって隔壁41を形成した。そして、この隔壁41に、第2整合半径R2よりも小さい第1整合半径R1の内径を有する円形孔42を形成した後に、同円形孔42内にマイクロレンズ43を形成した形成の自由度の高いレジスト等によって隔壁41を形成し、その円形孔42にマイクロレンズ43を形成することで、凹部40の半径の大きさによることなく、第1整合半径R1を有したマイクロレンズ43を正確に形成することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、透明基板、透明基板の製造方法、電気光学装置、電気光学装置の製造方法及び画像形成装置に関する。
【背景技術】
【0002】
電子写真方式を用いた画像形成装置には、像担持体としての感光ドラムを露光して潜像を形成する電気光学装置としての露光ヘッドが利用されている。近年では、この露光ヘッドの薄型化と軽量化を図るために、露光ヘッドの発光源として発光素子としての有機エレクトロルミネッセンス素子(有機EL素子)を用いるものが提案されている。
【0003】
なかでも、こうした有機EL素子が、構成材料の選択幅を広くできる利便性から、この種の露光ヘッドにおいては、透明基板の一側面(発光素子形成面)上に有機EL層を形成し、同有機EL層において、発光した光を発光素子形成面と相対向する他側面(光取出し面)から取り出す、いわゆるボトムエミッション構造が採用されている。
【0004】
ボトムエミッション構造では、光取出し面と有機EL層との間に、同有機EL層を発光させるための各種配線等が形成される。このため、有機EL素子の開口率が低下し、露光ヘッドの光取出し効率を低下させる問題があった。
【0005】
そこで、有機EL素子を備えた露光ヘッドでは、こうした光の取出し効率を向上するために、有機EL層から発光された光を集光して結像するレンズ、いわゆるマイクロレンズを光取出し面上に設ける提案がなされている(例えば、特許文献1)。特許文献1では、光取出し面に光吸収性樹脂を塗布してパターニングを行い、有機EL素子と相対向する位置に、同光吸収性樹脂を内側壁とする孔を設けている。そして、同孔内に紫外線硬化性樹脂を噴射して、有機EL素子と相対向する位置にマイクロレンズを形成している。
【特許文献1】特開平2003−291404号広報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1では、発光素子形成面上に有機EL素子を形成し、光取出し面上にマイクロレンズを形成するため、以下の問題を生じる。
すなわち、マイクロレンズは、常に透明基板の厚さに相対する距離だけ有機EL素子(有機EL層)から離間して形成される。換言すれば、有機EL素子に対するマイクロレンズの開口角が、常に透明基板の厚さ分だけ小さくなり、マイクロレンズによる光の光取出し効率が低下する。
【0007】
このため、光取出し効率を確保するために、透明基板の厚さを薄くすることが考えられるが、このようにした場合、透明基板の機械的強度が不足し有機EL素子の形成時や露光ヘッドの組立て時等に、破損等を招く虞がある。
【0008】
本発明は、上記問題を解決するためになされたものであり、その目的は、発光素子から発光された光の取出し効率を向上し、さらに形成されるマイクロレンズの発光素子に対する位置精度を向上した透明基板、透明基板の製造方法、電気光学装置、電気光学装置の製造方法及び画像形成装置を提供することである。
【課題を解決するための手段】
【0009】
本発明の透明基板は、光源から照射される光を、光入射面側から入射し、光取出し面側に設けたマイクロレンズを介して出射する透明基板において、前記光取出し面側に、前記マイクロレンズの直径よりも大きい幅の凹部を形成するとともに、同凹部内に前記マイクロレンズを位置決めする環状の位置決め部を設け、その位置決め部内に前記マイクロレンズを形成した。
【0010】
本発明の透明基板によれば、マイクロレンズは、同マイクロレンズの直径よりも大きい幅の凹部内に設けられるため、マイクロレンズの形成の作業が容易となり製造工程の負荷を軽減することができる。さらに、凹部を形成した分だけ、マイクロレンズを光入射面側に形成することができ、光入射面に対するマイクロレンズの開口角を大きくすることができる。その結果、光入射面から入射した光の利用効率を向上することができる。また、凹部を形成した分だけ、凹部以外の透明基板の厚さを厚くすることによって、同透明基板の機械的強度の劣化を補うことができる。さらに、マイクロレンズは、位置決め部によって光源に対して正確に位置決めされることで、より光入射面から入射した光の利用効率を向上することができる。
【0011】
この透明基板において、前記位置決め部は、前記光源に相対向する位置に、前記マイクロレンズの直径と相対する内径を有する円形孔を備え、同円形孔内に同マイクロレンズを形成した。
【0012】
この透明基板によれば、位置決め部の円形孔がマイクロレンズの直径と相対する内径を備えるため、光取出し面に形成する凹部のサイズによらずに、正確にマイクロレンズが形成される。従って、マイクロレンズは、より正確に発光素子に対して位置決めされるので、発光素子から発光された光の利用効率をより向上することができる。
【0013】
この透明基板において、前記マイクロレンズは、凸形状のレンズである。
【0014】
この透明基板によれば、マイクロレンズが凸形状のレンズで形成されるため、光入射面から入射した光をマイクロレンズによって集光する効率を向上することができる。
【0015】
本発明の透明基板の製造方法は、光源から照射される光を、光入射面側から入射し、光取出し面側に設けられるマイクロレンズを介して出射する透明基板の製造方法において、前記光取出し面に、前記マイクロレンズの直径よりも大きい幅の凹部を形成し、前記凹部内に、前記マイクロレンズを位置決めする環状の位置決め部を形成し、液体噴射装置からレンズ形成樹脂の液滴を前記環状の位置決め部内に噴出した後に、同位置決め部内において、同レンズ形成樹脂を固化させて前記マイクロレンズを形成する。
【0016】
本発明の透明基板の製造方法によれば、マイクロレンズを、同マイクロレンズの直径よりも大きい幅の凹部内に形成するため、マイクロレンズの形成の作業が容易となり製造工程の負荷を軽減することができる。さらに、位置決め部によってマイクロレンズを位置決めさせることで、凹部の大きさによることなく、凹部内にマイクロレンズを正確に形成することができる。従って、マイクロレンズを光源に対して正確に位置決めして形成できるので、形成される透明基板は、より光入射面から入射した光の利用効率を向上することができる。
【0017】
この透明基板の製造方法において、前記位置決め部の表面に前記レンズ形成樹脂の前記液滴を撥液する表面処理をした後に、前記液体噴射装置から同液滴を同位置決め部内に噴射する。
【0018】
この透明基板の製造方法によれば、位置決め部の表面に、例えば撥液性材料を塗付、又
はCFプラズマ処理等の表面処理を行う。これによって、位置決め部内に噴射される液滴は、位置決め部の表面によって撥液されるので、液滴は自身の表面張力によってその表面を曲面形状に形成する。従って、この液滴が固化されて形成されるレンズの表面は、より曲面形状となるので集光性が向上する。即ち、形成される透明基板は、より光入射面から入射した光の利用効率を向上することができる。
【0019】
この透明基板の製造方法において、前記位置決め部は、前記レンズ形成樹脂の前記液滴を撥液する撥液性部材から構成した。
【0020】
この透明基板の製造方法によれば、位置決め部は、例えば、フッ素系樹脂等の撥液性部材から構成される。これによって、位置決め部内に噴射される液滴は、位置決め部の表面によって撥液されるので、液滴は自身の表面張力によってその表面を曲面形状に形成する。従って、この液滴が固化されて形成されるレンズの表面は、より曲面形状となるので集光性が向上する。即ち、形成される透明基板は、より光入射面から入射した光の利用効率を向上することができる。
【0021】
本発明の電気光学装置は、透明基板の発光素子形成面に形成された発光素子から発光された光を、同発光素子形成面と相対向する光取出し面側に設けられたマイクロレンズを介して出射する電気光学装置において、前記光取出し面側に、前記マイクロレンズの直径よりも大きい幅の凹部を形成するとともに、同凹部内に前記マイクロレンズを位置決めする環状の位置決め部を設け、その位置決め部内に前記マイクロレンズを形成した。
【0022】
本発明の電気光学装置によれば、マイクロレンズは、同マイクロレンズの直径よりも大きい幅の凹部内に設けられるため、マイクロレンズの取付けの作業が容易となる。さらに、凹部を形成した分だけ、マイクロレンズを発光素子形成面側に形成することができ、発光素子形成面に対するマイクロレンズの開口角を大きくすることができる。その結果、発光素子形成面から入射した光の利用効率を向上することができる。また、凹部を形成した分だけ、凹部以外の透明基板の厚さを厚くすることによって、同透明基板の機械的強度の劣化を補うことができる。さらに、凹部内に設けられるマイクロレンズは、位置決め部によって位置決めされることで、光源に対して正確に位置決めされるので、この電気光学装置は、より発光素子形成面から入射した光の利用効率を向上することができる。
【0023】
この電気光学装置において、前記位置決め部は、前記発光素子に相対向する位置に、前記マイクロレンズの直径と相対する内径を有する円形孔を備え、同円形孔内に同マイクロレンズを形成した。
【0024】
この電気光学装置によれば、位置決め部の円形孔がマイクロレンズの直径と相対する内径を備えるため、光取出し面に形成する凹部のサイズによらずに、正確にマイクロレンズが形成される。従って、マイクロレンズはより正確に発光素子に対して位置決めされるので、発光素子面から入射した光の利用効率をより向上することができる。
【0025】
この電気光学装置において、前記発光素子は、前記光取出し面側に形成した透明電極と、前記透明電極と相対して形成した背面電極と、前記透明電極と前記背面電極との間に形成した発光層とを備えたエレクトロルミネッセンス素子である。
【0026】
この電気光学装置によれば、エレクトロルミネッセンス素子を備えた電気光学装置の光の利用効率を向上することができる。
【0027】
この電気光学装置において、前記発光層は、有機材料で形成され、前記エレクトロルミネッセンス素子は、有機エレクトロルミネッセンス素子である。
【0028】
この電気光学装置によれば、有機エレクトロルミネッセンス素子を備えた電気光学装置の光の利用効率を向上することができる。
【0029】
この電気光学装置において、複数の前記発光素子を前記発光素子形成面の一方向に沿って配列された前記凹部内にそれぞれ形成した。
【0030】
この電気光学装置によれば、一方向に沿って配列された発光素子の各々に対応して形成されるマイクロレンズが、発光素子から発光された光の利用効率を向上することができる。
【0031】
この電気光学装置において、前記マイクロレンズは、凸形状のレンズであって、前記発光素子から発光された光を集光して前記光取出し面から出射する。
【0032】
この電気光学装置によれば、マイクロレンズが凸形状のレンズで形成されるため、集光機構などを介することなく、透明基板に形成したマイクロレンズによって集光することができる。従って、発光素子から発光された光の集光する効率を向上することができる。
【0033】
本発明の電気光学装置の製造方法は、透明基板の発光素子形成面に形成された発光素子から発光された光を、同発光素子形成面と相対向する光取出し面側に設けられるマイクロレンズを介して出射する電気光学装置の製造方法において、前記光取出し面に、前記マイクロレンズの直径よりも大きい幅の凹部を形成し、前記凹部内に、前記マイクロレンズを位置決めする環状の位置決め部を形成し、液体噴射装置からレンズ形成樹脂の液滴を前記環状の位置決め部内に噴出した後に、同位置決め部内において、同レンズ形成樹脂を固化させて前記マイクロレンズを形成する。
【0034】
本発明の電気光学装置の製造方法によれば、マイクロレンズを、同マイクロレンズの直径よりも大きい幅の凹部内に形成するため、マイクロレンズの形成の作業が容易となり製造工程の負荷を軽減することができる。さらに、位置決め部によって位置決めさせることで、凹部の大きさによることなく、凹部内にマイクロレンズを正確に形成することができる。従って、マイクロレンズを光源に対して正確に位置決めして形成できるので、電気光学装置は、より光入射面から入射した光の利用効率を向上することができる。
【0035】
この電気光学装置の製造方法において、前記位置決め部に、前記発光素子と相対向する位置に、前記マイクロレンズの直径と相対する内径を有する円形孔を形成し、前記円形孔内に前記液体噴射装置から液滴を噴出することによって前記マイクロレンズを形成する。
【0036】
この電気光学装置の製造方法によれば、マイクロレンズは、液体噴射装置の円形孔に噴射する液体によって形成されるため、例えば、レプリカ法等によって形成したマイクロレンズを凹部内取付ける場合に比べ、その製造工程等を軽減することができる。しかも、円形孔のサイズに相対するマイクロレンズを凹部内に確実に形成することができる。その結果、発光素子から発光された光の利用効率と電気光学装置の生産性を向上することができる。
【0037】
この電気光学装置の製造方法において、前記位置決め部の表面に前記レンズ形成樹脂の前記液滴を撥液する表面処理をした後に、前記液体噴射装置から同液滴を同位置決め部内に噴射する。
【0038】
この電気光学装置の製造方法によれば、位置決め部の表面に、例えば撥液性材料を塗付、又はCFプラズマ処理等の表面処理を行う。これによって、位置決め部内に噴射され
る液滴は、位置決め部の表面によって撥液されるので、液滴は自身の表面張力によってその表面を曲面形状に形成する。従って、この液滴が固化されて形成されるレンズの表面は、より曲面形状となるので集光性が向上する。即ち、本発明の電気光学装置は、発光素子から発光された光の利用効率をより向上することができる。
【0039】
この電気光学装置の製造方法において、前記位置決め部は、前記レンズ形成樹脂の前記液滴を撥液する撥液性部材から構成した。
【0040】
この電気光学装置の製造方法によれば、位置決め部は、例えば、フッ素系樹脂等の撥液性部材から構成される。これによって、位置決め部内に噴射される液滴は、位置決め部の表面によって撥液されるので、液滴は自身の表面張力によってその表面を曲面形状に形成する。従って、この液滴が固化されて形成されるレンズの表面は、より曲面形状となるので集光性が向上する。即ち、本発明の電気光学装置は、発光素子から発光された光の利用効率をより向上することができる。
【0041】
本発明の画像成形装置は、帯電手段によって帯電された像担持体の外周面を露光して潜像を形成する露光手段と、前記潜像に対して着色粒子を供給して顕像を現像する現像手段と、前記顕像を転写媒体に転写する転写手段とを備えた画像形成装置において、前記露光手段は、上記する電気光学装置を備えた。
【0042】
本発明の画像成形装置によれば、帯電した像担持体を露光する露光手段が上記電気光学装置を備えるようになる。従って、画像形成装置の露光における光の利用効率を向上することができる。
【発明を実施するための最良の形態】
【0043】
以下、本発明を具体化した一実施形態を図1〜図10に従って説明する。図1は、画像形成装置としての電子写真方式プリンタを示す概略側断面図である。
(電子写真方式プリンタ)
図1に示すように、電子写真方式プリンタ10(以下単に、プリンタ10という。)は、箱体状に形成される筐体11を備えている。その筐体11内には、駆動ローラ12、従動ローラ13及びテンションローラ14が設けられ、各ローラ12〜14に対して転写媒体としての中間転写ベルト15が張設されている。そして、駆動ローラ12の回転によって、中間転写ベルト15は、図1における矢印方向に循環駆動可能に備えられている。
【0044】
中間転写ベルト15の上方には、4体の像担持体としての感光ドラム16が、中間転写ベルト15の張設方向(副走査方向Y)に回転可能に併設されている。その感光ドラム16の外周面には、光導電性を有する感光層16a(図4参照)が形成されている。感光層16aは、暗中でプラス又はマイナスの電荷を帯電し、所定の波長領域からなる光を照射されると、照射された部位の電荷が消失されるようになっている。すなわち、電子写真方式プリンタ10は、これら4体の感光ドラム16によって構成されるタンデム式のプリンタである。
【0045】
各感光ドラム16の周囲には、それぞれ帯電手段としての帯電ローラ17、露光手段を構成する電気光学装置としての有機エレクロトルミネッセンスアレイ露光ヘッド20(以下単に、露光ヘッド20という。)、現像手段としてのトナーカートリッジ21、転写手段を構成する一次転写ローラ22及びクリーニング手段23が配設されている。
【0046】
帯電ローラ17は、感光ドラム16に密着する半導電性のゴムローラである。この帯電ローラ17に直流電圧を印加して感光ドラム16を回転すると、感光ドラム16の感光層16aが、全周面にわたり所定の帯電電位に帯電するようになっている。
【0047】
露光ヘッド20は、所定の波長領域の光を出射する光源であって、図2に示すように、長尺板状に形成されている。その露光ヘッド20は、その長手方向を感光ドラム16の軸方向(図1において紙面に直交する方向:主走査方向X)と平行にして、感光層16aから所定の距離だけ離間した位置に位置決めされている。そして、露光ヘッド20が印刷データに基づく光を鉛直方向Z(図1参照)に出射して感光ドラム16が回転方向Roに回転すると、感光層16aが、所定の波長領域の光に露光される。すると、感光層16aは、露光された部位(露光スポット)の電荷を消失して、その外周面に静電的な画像(静電潜像)を形成する。ちなみに、この露光ヘッド20の露光する光の波長領域は、感光層16aの分光感度と整合した波長領域である。つまり、露光ヘッド20の露光する光の発光エネルギーのピーク波長は、前記感光層16aの分光感度のピーク波長と略一致するようになっている。
【0048】
トナーカートリッジ21は、箱体形状に形成されて、その内部に直径10μm程度の着色粒子としてのトナーTを収容する。なお、本実施形態における4体のトナーカートリッジ21には、それぞれ対応する4色(黒、シアン、マゼンタ及びイエロ)のトナーTが収容されている。そのトナーカートリッジ21には、感光ドラム16側から順に、現像ローラ21aと供給ローラ21bが備えられている。供給ローラ21bは、回転することによって、トナーTを現像ローラ21aまで搬送するようになっている。現像ローラ21aは、供給ローラ21bとの摩擦等によって、同供給ローラ21bの搬送したトナーTを帯電させるとともに、帯電したトナーTを同現像ローラ21aの外周面に均一に付着するようになっている。
【0049】
そして、感光ドラム16に前記帯電電位と略等しいバイアス電位を印加した状態で、供給ローラ21b及び現像ローラ21aを回転する。すると、感光ドラム16は、前記露光スポットと現像ローラ21a(トナーT)との間に、前記バイアス電位に相対する静電吸着力を付与する。静電吸着力を受けたトナーTは、同現像ローラ21aの外周面から前記露光スポットに移動して吸着する。これによって、各感光ドラム16(各感光層16a)の外周面には、それぞれ静電潜像に対応した単色の可視像(顕像)が形成される(現像される)。
【0050】
中間転写ベルト15の内側面15aであって前記各感光ドラム16と対峙する位置には、それぞれ一次転写ローラ22が設けられている。一次転写ローラ22は、導電性ローラであって、その外周面が中間転写ベルト15の内側面15aに密着しながら回転する。この一次転写ローラ22に直流電圧を印加して感光ドラム16及び中間転写ベルト15を回転すると、感光層16aに吸着したトナーTが、一次転写ローラ22側への静電吸着力よって中間転写ベルト15の外側面15bに順次移動して吸着するようになっている。すなわち、一次転写ローラ22は、感光ドラム16に形成した顕像を中間転写ベルト15の外側面15bに一次転写する。そして、中間転写ベルト15の外側面15bは、各感光ドラム16と一次転写ローラ22によって、単色からなる顕像の一次転写を4回繰り返し、これらの顕像を重ね合わせることによってフルカラーの画像(トナー像)を得る。
【0051】
クリーニング手段23は、図示しないLED等の光源とゴムブレードを備え、前記一次転写後の感光層16aに光を照射して帯電した感光層16aを除電するようになっている。そして、クリーニング手段23は、除電した感光層16aに残留するトナーTをゴムブレードによって機械的に除去する。
【0052】
中間転写ベルト15の下側には、記録用紙Pを収容した記録用紙カセット24が配設されている。その記録用紙カセット24の上側には、記録用紙Pを中間転写ベルト15側に給紙する給紙ローラ25が配設されている。その給紙ローラ25の上側にあって駆動ロー
ラ12と相対向する位置には、転写手段を構成する二次転写ローラ26が配設されている。二次転写ローラ26は、前記各一次転写ローラ22と同じく導電性ローラであって、記録用紙Pの裏面を押圧し、同記録用紙Pの表面を中間転写ベルト15の外側面15bに接触させている。そして、この二次転写ローラ26に直流電圧を印加して中間転写ベルト15を回転すると、中間転写ベルト15の外側面15bに吸着したトナーTが、記録用紙Pの表面上に順次移動して吸着する。すなわち、二次転写ローラ26は、中間転写ベルト15の外側面15bに形成されたトナー像を記録用紙Pの表面上に二次転写する。
【0053】
二次転写ローラ26の上側には、熱源を内蔵するヒートローラ27aと同ヒートローラ27aを押圧する押圧ローラ27bが配設されている。そして、二次転写後の記録用紙Pがヒートローラ27aと押圧ローラ27bとの間に搬送されると、記録用紙P上に転写されたトナーTが、加熱によって軟化し、記録用紙P内に浸透して固化する。これによって、記録用紙Pの表面にトナー像が定着する。トナー像を定着させた記録用紙Pは、排紙ローラ28によって筐体11の外側に排出されるようになっている。
【0054】
従って、プリンタ10は、帯電した感光層16aを露光ヘッド20によって露光し、同感光層16aに静電潜像を形成する。次に、プリンタ10は、感光層16aの静電潜像を現像して同感光層16aに単色の顕像を形成する。続いて、プリンタ10は、感光層16aの顕像を中間転写ベルト15上に順次一次転写して同中間転写ベルト15上にフルカラーのトナー像を形成する。そして、プリンタ10は、中間転写ベルト15上のトナー像を記録用紙P上に二次転写し、加熱加圧によってトナー像を定着させて印刷を終了する。
【0055】
次に、上記プリンタ10に備えられた電気光学装置としての露光ヘッド20について以下に説明する。図2及び図3は、それぞれ露光ヘッド20を示す平面図及び正断面図である。図4は、図2に示す一点鎖線A−Aに沿った概略断面図である。
【0056】
図2及び図3に示すように、露光ヘッド20には、透明基板としてのガラス基板30が備えられている。ガラス基板30は、長尺状に形成された基板であって、その長手方向(主走査方向X)の幅が感光ドラム16の軸方向の幅と略同じ大きさで形成されている。そして、本実施形態では、そのガラス基板30について、上面(感光ドラム16側と反対の面)を光入射面としての発光素子形成面30aとし、下面(感光ドラム16側の面)を光取出し面30bとしている。
【0057】
まず、ガラス基板30の発光素子形成面30a側について以下に説明する。
図2及び3に示すように、ガラス基板30の発光素子形成面30aには、千鳥格子状に2次元に配列された複数の画素形成領域31が形成されている。各画素形成領域31には、それぞれ薄膜トランジスタ32(以下単に、TFT32という。)と光源としての発光素子33とからなる画素34が形成されている。TFT32は、印刷データに基づいて生成されたデータ信号によってオン状態となり、そのオン状態に基づいて、発光素子33を発光するようになっている。
【0058】
図4に示すように、TFT32は、その最下層にチャンネル膜Bを備えている。チャンネル膜Bは、発光素子形成面30a上に形成される島状のp型ポリシリコン膜であって、図4における左右両側には、活性化した図示しないn型領域(ソース領域及びドレイン領域)を備えている。つまり、TFT32は、いわゆるポリシリコン形TFTである。
【0059】
チャンネル膜Bの上側中央位置には、発光素子形成面30a側から順に、ゲート絶縁膜D0、ゲート電極Pg及びゲート配線M1が形成されている。ゲート絶縁膜D0は、シリコン酸化膜等の光透過性を有する絶縁膜であって、発光素子形成面30aの略全面に堆積されている。ゲート電極Pgは、タンタル等の低抵抗金属膜であって、チャンネル膜Bの
略中央位置に形成されている。ゲート配線M1は、ITO等の光透過性を有する透明導電膜であって、ゲート電極Pgと図示しないデータ線駆動回路とを電気的に接続している。そして、データ線駆動回路がゲート配線M1を介してゲート電極Pgにデータ信号を入力すると、TFT32は、そのデータ信号に基づいたオン状態となる。
【0060】
チャンネル膜Bであって前記ソース領域及びドレイン領域の上側には、鉛直方向Zに沿って上側に延びるソースコンタクトSc及びドレインコンタクトDcが形成されている。各コンタクトSc,Dcは、チャンネル膜Bとのコンタクト抵抗を低くする金属シリサイド等の金属膜で形成されている。そして、これら各コンタクトSc,Dc及びゲート電極Pg(ゲート配線M1)は、シリコン酸化膜等からなる第1層間絶縁膜D1によってそれぞれ電気的に絶縁されている。
【0061】
各コンタクトSc,コンタクトDcの上側には、それぞれアルミニウム等の低抵抗金属膜からなる電源線M2s及び陽極線M2dが形成されている。電源線M2sは、ソースコンタクトScと図示しない駆動電源とを電気的に接続している。陽極線M2dは、ドレインコンタクトDcと発光素子33とを電気的に接続している。これら電源線M2s及び陽極線M2dは、シリコン酸化膜等からなる第2層間絶縁膜D2によってそれぞれ電気的に絶縁されている。そして、TFT32がデータ信号に基づいたオン状態となると、そのデータ信号に応じた駆動電流が、電源線M2s(駆動電源)から陽極線M2d(発光素子33)に供給される。
【0062】
図4に示すように、第2層間絶縁膜D2の上側には、発光素子33が形成されている。その発光素子33の最下層には、透明電極としての陽極Pcが形成されている。陽極Pcは、ITO等の光透過性を有する透明導電膜であって、その一端が陽極線M2dに接続されている。その陽極Pcの上側外周には、同陽極Pcを囲むように第3層間絶縁膜D3が堆積されている。第3層間絶縁膜D3は、感光性ポリイミドやアクリル等の樹脂膜で形成され、各発光素子33の陽極Pcを電気的に絶縁している。また、第3層間絶縁膜D3は、陽極Pcの上側を略円形孔状に開放して、その内周面からなる隔壁D3aを形成している。その隔壁D3aの陽極Pc側の内径は、後述する第1整合半径R1によって形成されている。
【0063】
陽極Pcの上側にあって隔壁D3aの内側には、有機材料からなる有機エレクトロルミネッセンス層(有機EL層)Oeが形成されている。有機EL層Oeは、正孔輸送層と発光層の2層からなる有機化合物層である。その有機EL層Oeの上側には、アルミニウム等の光反射性を有する金属膜からなる背面電極としての陰極Paが形成されている。陰極Paは、発光素子形成面30a側全面を覆うように形成され、各画素34が共有することによって各発光素子33に共通する電位を供給するようになっている。
【0064】
すなわち、発光素子33は、これら陽極Pc、有機EL層Oe及び陰極Paによって形成される有機エレクトロルミネッセンス素子(有機EL素子)であって、その発光面(有機EL層Oe)の内径が第1整合半径R1で形成されている。
【0065】
陰極Paの上側には、樹脂等のコーティング材で形成され、各種金属膜や有機EL層Oeの酸化等を防止するための封止部P1が形成されている。
そして、データ信号に応じた駆動電流が陽極線M2dに供給されると、有機EL層Oeは、その駆動電流に応じた輝度で発光する。この際、有機EL層Oeから陰極Pa側(図4における上側)に向かって発光された光は、同陰極Paによって反射される。そのため、有機EL層Oeから発光された光は、その殆どが、陽極Pc、第2層間絶縁膜D2、第1層間絶縁膜D1、ゲート絶縁膜D0及びガラス基板30を通過して光取出し面30b側(感光ドラム16側)に照射される。
【0066】
次に、ガラス基板30の光取出し面30b側について以下に説明する。
図3に示すように、ガラス基板30の光取出し面30bには、各発光素子33と相対向する位置に凹部40が形成されている。凹部40は、光取出し面30bから鉛直方向Z上方(感光ドラム16側)に向かって開口された円形孔であって、その中心軸が有機EL層Oeの中心軸上に位置するように形成されている。また、凹部40は、その深さが距離Hd(図4参照)で形成され、かつ内径が有機EL層Oeの第1整合半径R1よりも大きい第2整合半径R2で形成されている。
【0067】
各凹部40の底面40aには、位置決め部として円環状の隔壁41が形成されている。隔壁41は、その中心部に円形孔42が形成されている。円形孔42は、その中心軸が有機EL層Oeの中心軸上に位置するように形成され、その内径が有機EL層Oeの内径と同じ第1整合半径R1で形成されている。そして、各凹部40内であって、各円形孔42内には、それぞれマイクロレンズ43が形成されている。マイクロレンズ43は、有機EL層Oe(図4参照)の発光波長に対して十分な透過率を有する凸形状のレンズである。
【0068】
マイクロレンズ43は、図4に示すように、鉛直方向Zに沿った光軸Aを有する軸対象のレンズであって、同光軸A方向から見て有機EL層Oeと相対向する位置に形成されている。また、マイクロレンズ43の開口径は、隔壁41の円形孔42(有機EL層Oe)の内径、すなわち第1整合半径R1と同じ大きさで形成される。従って、凹部40は、マイクロレンズ43の直径よりも大きく形成され、隔壁41の円形孔42はマイクロレンズ43の直径と同じ大きさに形成されている。これによって、マイクロレンズ43の周辺部における結像性能を劣化させることなく、有機EL層Oeから発光された光を集光して光取出し面30b側に出射できるようになっている。さらにまた、マイクロレンズ43は、図4に示すように、その下側曲面(出射面43a)の頂点と感光ドラム16の感光層16aとの間の距離を、マイクロレンズ43の像側焦点距離Hfにしている。つまり、マイクロレンズ43は、有機EL層Oeから光軸Aに沿って発光された光線(平行光線束L1)と光軸Aとの交点(像側焦点F)を感光層16a上に位置させるようになっている。これによって、マイクロレンズ43から出射された光は、感光層16aに、所望するサイズの露光スポットを形成するようになっている。
【0069】
そして、マイクロレンズ43の出射面43aは、凹部40の底面40aから曲面形状に形成されている。つまり、マイクロレンズ43は、光取出し面30bから、距離Hd分だけ有機EL層Oe側に近接されている。
【0070】
従って、図5に示すように、光軸A上の有機EL層Oeからマイクロレンズ43の直径に対して張る角度、すなわち開口角θ1は、同マイクロレンズ43を光取出し面30b上に形成したとき(図5に示す2点鎖線43i)の開口角θ2に比べ、距離Hd分だけ増加する。そして、有機EL層Oeから所定の波長領域の光が発光されると、マイクロレンズ43は、その開口角θ1に相対する光量の光を集光し、感光層16a上に出射して同感光層16aを露光する。その結果、マイクロレンズ43は、その開口角θ1を増加した分だけ、感光層16aを露光するための光量を増加する。
【0071】
(露光ヘッドの製造方法)
次に、露光ヘッド20の製造方法について以下に説明する。図6及び図7は、凹部40の形成方法を説明する説明図である。
図6に示すように、まず、ガラス基板30の光取出し面30b全面に、サンドブラスト用のマスク剤Mkを塗布する。次に、同マスク剤Mkに、前記光軸Aを中心として、内径が第2整合半径R2となる円形孔Mhをパターニングする。続いて、公知のサンドブラスト装置によって、無機酸化物等のサンドSbを光取出し面30bに向かって吹きつけ、円
形孔Mh内の光取出し面30b(ガラス基板30)を所定の深さ(距離Hd)まで削り取る。そして、光取出し面30b上からマスク剤Mkを除去する。これによって、図7に示すように、光取出し面30bに、内径が第2整合半径R2であって、深さが距離Hdからなる円形孔(凹部40)を形成する。
【0072】
凹部40を形成すると、続いて、発光素子形成面30a上に画素34を形成する。図8は、画素34の形成方法を説明する説明図である。
まず、発光素子形成面30a全面に、ジシラン等を原料ガスにするCVD法等によってアモルファスシリコン膜を堆積する。次に、エキシマレーザ等によって同アモルファスシリコン膜に紫外光を照射し、発光素子形成面30a全面に結晶化したポリシリコン膜を形成する。続いて、フォトリソグラフィ法及びエッチング法等によって同ポリシリコン膜をパターニングし、各凹部40に対応するチャンネル膜Bを形成する。
【0073】
チャンネル膜Bを形成すると、シラン等を原料ガスにするCVD法等によってチャンネル膜B及び発光素子形成面30aの上側全面にシリコン酸化膜等を堆積してゲート絶縁膜D0を形成する。ゲート絶縁膜D0を形成すると、スパッタ法等によって同ゲート絶縁膜D0の上側全面にタンタル等の低抵抗金属膜を堆積し、同低抵抗金属膜をパターニングすることによって、ゲート絶縁膜D0の上側にゲート電極Pgを形成する。ゲート電極Pgを形成すると、同ゲート電極Pgをマスクにしたイオンドーピング法によって、チャンネル膜Bにn型領域(ソース領域及びドレイン領域)を形成する。続いて、スパッタ法等によってゲート電極Pg及びゲート絶縁膜D0の上側全面にITO等の光透過性を有する透明導電膜を堆積し、同透明導電膜をパターニングすることによって、ゲート電極Pgの上側にゲート配線M1を形成する。
【0074】
ゲート配線M1を形成すると、TEOS(テトラエトキシシラン)等を原料にするCVD法によってゲート配線M1及びゲート絶縁膜D0の上側全面にシリコン酸化膜等を堆積して第1層間絶縁膜D1を形成する。第1層間絶縁膜D1を形成すると、フォトリソグラフィ法やエッチング法等によって、ソース領域及びドレイン領域から鉛直方向Zに沿って第1層間絶縁膜D1の上側までを開放する一対の円形孔(コンタクトホールH1,H2)を形成する。コンタクトホールH1,H2を形成すると、スパッタ法等によって同コンタクトホールH1,H2内を金属シリサイド等で埋め込みながら第1層間絶縁膜D1の上側全面に金属膜を堆積する。そして、エッチング法等によって同コンタクトホールH1,H2内以外の金属膜を除去し、ソースコンタクトSc及びドレインコンタクトDcを形成する。
【0075】
各コンタクトSc,Dcを形成すると、スパッタ法等によって同コンタクトSc,Dc及び第1層間絶縁膜D1の上側全面にアルミニウム等の金属膜を堆積し、同金属膜をパターニングして各コンタクトSc,Dcに接続する電源線M2s及び陽極線M2dを形成する。次に、TEOS(テトラエトキシシラン)等を原料にするCVD法によって、これら電源線M2s、陽極線M2d及び第1層間絶縁膜D1の上側全面にシリコン酸化膜等を堆積して第2層間絶縁膜D2を形成する。続いて、フォトリソグラフィ法やエッチング法等によって、陽極線M2dの一部から鉛直方向Zに沿って第2層間絶縁膜D2の上側まで開放する円形孔(ビアホールHv)を形成する。ビアホールHvを形成すると、スパッタ法等によって、同ビアホールHv内を埋め込みながら第2層間絶縁膜D2の上側全面にITO等の光透過性を有する透明導電膜を堆積する。そして、この透明導電膜をパターニングして、凹部40と相対向する位置周辺にビアホールHvを介して陽極線M2dと接続する陽極Pcを形成する。
【0076】
陽極Pcを形成すると、同陽極Pc上であって凹部40と相対向する位置にレジスト等のマスクを形成して、同陽極Pc及び第2層間絶縁膜D2の上側全面に感光性ポリイミド
やアクリル等の樹脂膜を堆積する。そして、前記レジスト等を剥離して、第1整合半径R1を有する隔壁D3aを備えた第3層間絶縁膜D3を形成する。次に、第3層間絶縁膜D3を形成すると、インクジェット法等によって、隔壁D3aに囲まれた陽極Pc上に正孔輸送層の構成材料の液滴を噴射し、その構成材料を乾燥及び固化することによって正孔輸送層を形成する。さらに、インクジェット法等によって、同正孔輸送層上に発光層の構成材料の液滴を噴射し、その構成材料を乾燥及び固化することによって発光層を形成する。これによって、内径を第1整合半径R1にする正孔輸送層と発光層とを備えた有機EL層Oeを形成する。
【0077】
有機EL層Oeを形成すると、スパッタ法等によって、同有機EL層Oe及び第3層間絶縁膜D3の上側全面にアルミニウム等の金属膜を堆積して陰極Paを形成する。陰極Paを形成すると、CVD法等によって、陰極Paの上側全面に樹脂等のコーティング材を堆積して封止部P1を形成する。これによって、図8に示すように、発光素子形成面30a上であって凹部40と相対向する位置に、発光素子33を備えた画素34を形成する。
【0078】
画素34を形成すると、続いて、凹部40内にマイクロレンズ43を形成する。図9及び図10は、マイクロレンズ43の形成方法を説明する説明図である。
まず、隔壁41を形成する。図9に示すように、凹部40内に、その底面40aの全体にレジスト等によって形成層50を形成する。次に、形成層50及び発光素子形成面30aの上側全体に、樹脂又は金属等からなるマスク51を形成する。マスク51には、各凹部40に対応する露光用円形孔52がそれぞれ貫通形成されている。露光用円形孔52は、その内径が第1整合半径R1にて形成されていて、その中心軸が有機EL層Oeの中心軸と一致するようになっている。そして、露光用円形孔52を介して形成層50を露光し、エッチングして同形成層50に有機EL層Oeに相対向する位置に第1整合半径R1の前記円形孔42を形成する。これによって、各凹部40内には、各形成層50によって、円形孔42を備えた隔壁41がそれぞれ形成される。そして、マスク51は、隔壁41が形成されると、形成層50から除去される。
【0079】
次に、このように形成された隔壁41の円形孔42内に、液体噴射装置によってマイクロレンズ43を形成する。以下、マイクロレンズ43を形成するための液体噴射装置の構成について説明する。
【0080】
図10に示すように、マイクロレンズ43を形成する際には、ガラス基板30の光取出し面30bの上側に、液体噴射装置を構成する液体噴射ヘッド55が配置される。液体噴射ヘッド55は、その基体56には、その下側(光取出し面30b側)にノズルプレート57が設けられている。ノズルプレート57のノズル形成面57a(光取出し面30bと相対向する面)には、複数のノズルNが鉛直方向Zに沿って形成されている。各ノズルNは、基体56に形成された複数の供給室58にそれぞれ連通し、図示しない収容タンクから各供給室58を介して、紫外線硬化性樹脂Puがそれぞれ供給されるようになっている。基体56の上側には、各供給室58に相対向するように振動板59が配設されている。振動板59は、鉛直方向Zに沿って往復振動して供給室58内の容積を拡大縮小するようになっている。振動板59の上側であって各供給室58と相対向する位置には、それぞれ鉛直方向Zに沿って伸縮動して振動板59を振動させる圧電素子60が配設されている。
【0081】
圧電素子60は、図示しない駆動回路から入力される駆動信号に応じて伸縮動し、振動板59を介して供給室58の容積を拡大縮小する。そして、供給室58の容積を縮小することで、縮小した容積分の紫外線硬化性樹脂Puを、各ノズルNから液滴Dsとして噴射させ、反対に、供給室58の容積を拡大することで、拡大した容積分の紫外線硬化性樹脂Puを前記収容タンクから供給室58内に供給させる。つまり、液体噴射ヘッド55は、駆動信号に応じて、所定の容量の紫外線硬化性樹脂Puを各ノズルNから噴射するように
なっている。そして、このように構成された液体噴射ヘッド55に対して、ガラス基板30は、光取出し面30bをノズル形成面57aと平行にし、かつ各凹部40内の隔壁41の円形孔42を、その中心軸がそれぞれノズルNの中心軸と一致するように位置決めされる。
【0082】
次に、上記した液体噴射装置によるマイクロレンズ43の形成方法について説明する。
まず、液体噴射ヘッド55にマイクロレンズ43を形成するため駆動信号を駆動回路(図示しない)から入力する。そして、図10に示すように、液体噴射ヘッド55の各ノズルNから液滴Dsを、対応する凹部40の隔壁41の円形孔42内に噴射させる。円形孔42内に噴射された紫外線硬化性樹脂Puは、その表面張力等によって曲面を備えた凸形状に凝集する。
【0083】
そして、円形孔42内に所定の容量の紫外線硬化性樹脂Puを噴射すると、同円形孔42内に向かって紫外光を照射し、円形孔42内に凝集する紫外線硬化性樹脂Puを硬化する。これによって、開口径を第1整合半径R1として凸型状の出射面43aを備えるマイクロレンズ43が、ガラス基板30を介して発光素子33(有機EL層Oe)に相対向して凹部40内に形成される。
【0084】
次に、上記のように構成した本実施形態の効果を以下に記載する。
(1)本実施形態によれば、ガラス基板30の光取出し面30bに、有機EL層Oeの内径の第1整合半径R1より大きい幅を有するように第2整合半径R2の凹部40を形成し、同凹部40内にレジスト等によって隔壁41を形成した。そして、この隔壁41に、第2整合半径R2よりも小さい第1整合半径R1の内径を有する円形孔42を形成した後に、同円形孔42内にマイクロレンズ43を形成した。このように、凹部40内に形成の自由度の高いレジスト(形成層50)等によって隔壁41を形成し、その円形孔42にマイクロレンズ43を形成することで、凹部40の半径の大きさによることなく、所望の開口径(第1整合半径R1)を有したマイクロレンズ43を正確に形成することができる。換言すれば、ガラス基板30に形成される凹部40の大きさの制限を軽減することができるので、その製造工程の負荷を軽減することができる。この結果、信頼性の高い露光ヘッド20を容易に製造することができ、この露光ヘッド20を備えたプリンタ10の信頼性を向上することができる。
【0085】
(2)本実施形態では、隔壁41の円形孔42を発光素子33に対して中心軸が一致するように形成し、その円形孔42内にマイクロレンズ43を形成した。隔壁41は、レジスト(形成層50)等の形成の自由度が高い部材から構成されるので、円形孔42の加工が容易である。従って、ガラス基板30に第1整合半径R1の内径を有する凹部40を形成し、そこに直接にマイクロレンズ43を形成する場合や、レプリカ法等によって形成されたマイクロレンズを凹部40内に取付ける場合に比べて、容易かつ正確にマイクロレンズ43を形成することができる。従って、発光素子33に対するマイクロレンズ43の位置精度を向上させることができ、露光ヘッド20(プリンタ10)は、感光層16aを露光するための光量のバラツキを低減して、かつ発光素子33から発光された光の取出し効率を向上することができる。
【0086】
(3)本実施形態によれば、ガラス基板30に形成した凹部40内の隔壁41の円形孔42にマイクロレンズ43を形成した。そして、マイクロレンズ43の開口角θ1が、同マイクロレンズ43を光取出し面30b上に形成したときの開口角θ2に比べ、距離Hd分だけ増加するようにした。
【0087】
従って、露光ヘッド20(プリンタ10)は、感光層16aを露光するための光量を距離Hd分だけ増加することができ、発光素子33から発光された光の取出し効率を向上す
ることができる。
【0088】
しかも、ガラス基板30の厚さを薄くしないで凹部40を形成し、その凹部40内にマイクロレンズ43を形成したので、その分だけガラス基板30を厚くでき、ガラス基板30の機械的強度を強く保つことができる。
【0089】
尚、上記実施形態は以下のように変更してもよい。
・上記実施形態では、隔壁41の形状を円環状に形成したが、これに限らず、マイクロレンズ43の発光素子33に対しての位置精度が確保できれば、適宜変更してもよい。
・上記実施形態では、透明基板をガラス基板30として具体化したが、これに限らず、例えばポリイミド等のプラスチック基板であってもよく、有機EL層Oeから発光された光を透過する透明基板であればよい。
・上記実施形態では、ガラス基板30に画素34を形成したが、この限りではなく、別途設けた透明基板に画素34を形成した後、同透明基板をガラス基板30に取付けてもよい。
・上記実施形態では、凹部40の形状を円形孔として具体化したが、これに限らず、凹部40内に隔壁41を形成することができれば、その形状を適宜変更してもよい。
・上記実施形態では、マイクロレンズ43を液体噴射装置によって形成する構成にしたが、これに限らず、例えばレプリカ法等によって形成したマイクロレンズ43を凹部40内の隔壁41の円形孔42に取付ける構成にしてもよい。
・上記実施形態では、凹部40をサンドブラスト法によって形成した。これに限らず、凹部40を形成する方法は、例えば、エキシマレーザやフェムト秒レーザ等によるレーザ加工であってもよく、発光素子33と相対向する位置に凹部40を形成できる方法であれば特に限定されるものではない。
・上記実施形態では、凹部40を形成した後にサンドブラスト用のマスク剤Mkを除去するようにした。これを変更して、同マスク剤Mkを除去すること無く、光取出し面30b上に残す構成にしてもよい。
・上記実施形態では、隔壁41の内径及びマイクロレンズ43の開口径をそれぞれ第1整合半径R1に整合した。これに限らず、例えば各内径及び開口径が異なる大きさで形成されてもよく、マイクロレンズ43の周辺部における結像性能を劣化させることなく、有機EL層Oeから発光された光を集光して光取出し面30b側に所望するサイズの露光スポットを形成するものであればよい。
・上記実施形態では、マイクロレンズ43を、紫外線硬化性樹脂Puの表面張力によって曲面形状を形成するようにした。これに限らず、例えば隔壁41を、撥液性部材としてフッ素系樹脂等の撥液性を有するレジスト等によって形成し、円形孔42内に噴射された紫外線硬化性樹脂Puが曲面形状を形成するようにしてもよい。また、例えば隔壁41の表面に撥液性材料を塗付、又はCFプラズマ処理等の表面処理を行って円形孔42内に噴射された紫外線硬化性樹脂Puが曲面形状を形成するようにしてもよい。
・上記実施形態では、マイクロレンズ43を凸レンズとして具体化したが、これに限らず例えば凹レンズとして具体化してもよい。
・上記実施形態では、マイクロレンズ43を紫外線硬化性樹脂Puによって形成する構成にしたが、これに限らず、熱硬化性樹脂等で形成してもよい。
・上記実施形態では、各画素34に対してTFT32を1個備える構成にしたが、これに限らず、例えば、2個以上備える構成にしてもよく、あるいはTFT32をガラス基板30に備えない構成にしてもよい。
・上記実施形態では、電気光学装置を露光ヘッド20として具体化したが、これに限らず、例えば液晶パネルに装着されるバックライト等であってもよく、あるいは平面状の電子放出素子を備え、同素子から放出された電子による蛍光物質の発光を利用した電界効果型ディスプレイ(FEDやSED等)であってもよい。
【図面の簡単な説明】
【0090】
【図1】本発明を具体化した画像形成装置の構成を示す概略側断面図。
【図2】画像形成装置の露光ヘッドの構成を示す概略平面図。
【図3】同じく、露光ヘッドの構成を示す概略正断面図。
【図4】同じく、露光ヘッドの構成を示す拡大断面図。
【図5】同じく、露光ヘッドのマイクロレンズの作用を説明する断面図。
【図6】同じく、露光ヘッドの製造工程を説明する説明図。
【図7】同じく、露光ヘッドの製造工程を説明する説明図。
【図8】同じく、露光ヘッドの製造工程を説明する説明図。
【図9】同じく、露光ヘッドの製造工程を説明する説明図。
【図10】液体噴射装置によるマイクロレンズの形成方法を説明する説明図。
【符号の説明】
【0091】
10…画像形成装置としてのプリンタ、15…転写媒体としての中間転写ベルト、16…像担持体としての感光ドラム、17…帯電手段としての帯電ローラ、20…露光手段を構成する電気光学装置としての有機ELアレイ露光ヘッド、21…現像手段としてのトナーカートリッジ、22…転写手段を構成する一転写ローラ、26…転写手段を構成する二次転写ローラ、30…透明基板としてのガラス基板、30a…光入射面としての発光素子形成面、30b…光取出し面、33…光源としての発光素子、40…凹部、41…位置決め部としての隔壁、42…円形孔、43…マイクロレンズ、45…液体噴射装置を構成する液体噴射ヘッド、Ds…液滴、Oe…発光層及びEL層としての有機EL層、Pa…背面電極としての陰極、Pc…透明電極としての陽極、R1…マイクロレンズの直径を構成する第1整合半径、R2…幅としての第2整合半径、T…着色粒子としてのトナー、X…一方向としての主走査方向。

【特許請求の範囲】
【請求項1】
光源から照射される光を、光入射面側から入射し、光取出し面側に設けたマイクロレンズを介して出射する透明基板において、
前記光取出し面側に、
前記マイクロレンズの直径よりも大きい幅の凹部を形成するとともに、同凹部内に前記マイクロレンズを位置決めする環状の位置決め部を設け、その位置決め部内に前記マイクロレンズを形成したことを特徴とする透明基板。
【請求項2】
請求項1に記載の透明基板において、
前記位置決め部は、前記光源に相対向する位置に、前記マイクロレンズの直径と相対する内径を有する円形孔を備え、同円形孔内に同マイクロレンズを形成したことを特徴とする透明基板。
【請求項3】
請求項1又は2に記載する透明基板において、
前記マイクロレンズは、凸形状のレンズであることを特徴とする透明基板。
【請求項4】
光源から照射される光を、光入射面側から入射し、光取出し面側に設けられるマイクロレンズを介して出射する透明基板の製造方法において、
前記光取出し面に、前記マイクロレンズの直径よりも大きい幅の凹部を形成し、
前記凹部内に、前記マイクロレンズを位置決めする環状の位置決め部を形成し、
液体噴射装置からレンズ形成樹脂の液滴を前記環状の位置決め部内に噴出した後に、同位置決め部内において、同レンズ形成樹脂を固化させて前記マイクロレンズを形成することを特徴とする透明基板の製造方法。
【請求項5】
請求項4に記載の透明基板の製造方法において、
前記位置決め部の表面に前記レンズ形成樹脂の前記液滴を撥液する表面処理をした後に、前記液体噴射装置から同液滴を同位置決め部内に噴射することを特徴とする透明基板の製造方法。
【請求項6】
請求項4に記載の透明基板の製造方法において、
前記位置決め部は、前記レンズ形成樹脂の前記液滴を撥液する撥液性部材から構成したことを特徴とする透明基板の製造方法。
【請求項7】
透明基板の発光素子形成面に形成された発光素子から発光された光を、同発光素子形成面と相対向する光取出し面側に設けられたマイクロレンズを介して出射する電気光学装置において、
前記光取出し面側に、
前記マイクロレンズの直径よりも大きい幅の凹部を形成するとともに、同凹部内に前記マイクロレンズを位置決めする環状の位置決め部を設け、その位置決め部内に前記マイクロレンズを形成したことを特徴とする電気光学装置。
【請求項8】
請求項7に記載する電気光学装置において、
前記位置決め部は、前記発光素子に相対向する位置に、前記マイクロレンズの直径と相対する内径を有する円形孔を備え、同円形孔内に同マイクロレンズを形成したことを特徴とする電気光学装置。
【請求項9】
請求項7又は8に記載する電気光学装置において、
前記発光素子は、前記光取出し面側に形成した透明電極と、前記透明電極と相対して形成した背面電極と、前記透明電極と前記背面電極との間に形成した発光層とを備えたエレ
クトロルミネッセンス素子であることを特徴とする電気光学装置。
【請求項10】
請求項9に記載する電気光学装置において、
前記発光層は、有機材料で形成され、前記エレクトロルミネッセンス素子は、有機エレクトロルミネッセンス素子であることを特徴とする電気光学装置。
【請求項11】
請求項7〜10のいずれか1つに記載する電気光学装置において、
複数の前記発光素子を前記発光素子形成面の一方向に沿って配列された前記凹部内にそれぞれ形成したことを特徴とする電気光学装置。
【請求項12】
請求項7〜11のいずれか1つに記載する電気光学装置において、
前記マイクロレンズは、凸形状のレンズであって、前記発光素子から発光された光を集光して前記光取出し面から出射することを特徴とする電気光学装置。
【請求項13】
透明基板の発光素子形成面に形成された発光素子から発光された光を、同発光素子形成面と相対向する光取出し面側に設けられるマイクロレンズを介して出射する電気光学装置の製造方法において、
前記光取出し面に、前記マイクロレンズの直径よりも大きい幅の凹部を形成し、
前記凹部内に、前記マイクロレンズを位置決めする環状の位置決め部を形成し、
液体噴射装置からレンズ形成樹脂の液滴を前記環状の位置決め部内に噴出した後に、同位置決め部内において、同レンズ形成樹脂を固化させて前記マイクロレンズを形成することを特徴とする電気光学装置の製造方法。
【請求項14】
請求項13に記載する電気光学装置の製造方法において、
前記位置決め部に、前記発光素子と相対向する位置に、前記マイクロレンズの直径と相対する内径を有する円形孔を形成し、
前記円形孔内に前記液体噴射装置から液滴を噴出することによって前記マイクロレンズを形成することを特徴とする電気光学装置の製造方法。
【請求項15】
請求項13又は14に記載の電気光学装置の製造方法において、
前記位置決め部の表面に前記レンズ形成樹脂の前記液滴を撥液する表面処理をした後に、前記液体噴射装置から同液滴を同位置決め部内に噴射することを特徴とする電気光学装置の製造方法。
【請求項16】
請求項13又は14に記載の電気光学装置の製造方法において、
前記位置決め部は、前記レンズ形成樹脂の前記液滴を撥液する撥液性部材から構成したことを特徴とする電気光学装置の製造方法。
【請求項17】
帯電手段によって帯電された像担持体の外周面を露光して潜像を形成する露光手段と、前記潜像に対して着色粒子を供給して顕像を現像する現像手段と、前記顕像を転写媒体に転写する転写手段とを備えた画像形成装置において、
前記露光手段は、請求項7〜12のいずれか1つに記載する電気光学装置を備えたことを特徴とする画像形成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate