説明

重合体微粒子の製造方法

【課題】本発明の目的は、逆相懸濁重合によって、粒径の揃った数μm〜数十μmオーダーの粒子径を有する高品質の重合体微粒子を、粒子同士の凝集などを生ずることなく、良好な分散安定性を維持しながら、生産性良く製造する方法を提供することである。
【解決手段】ビニル系単量体を逆相懸濁重合させて重合体微粒子を製造する方法であって、重合開始剤として油溶性酸化剤と水溶性還元剤を使用し、かつ、水溶性還元剤を供給した後に油溶性酸化剤を供給することを特徴とする重合体微粒子の製造方法である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、重合体微粒子の製造方法に関する。より詳細には、本発明は、ビニル系単量体の逆相懸濁重合によって、粒径の揃った、特定範囲の粒径を有する高品質の重合体微粒子を、粒子同士の凝集などを生ずることなく、スケールアップしても安定した状態で生産性良く製造する方法に関する。
【背景技術】
【0002】
ミクロンサイズの球状重合体微粒子は、化粧品添加剤、各種化学物質の担持体、スペーサー、クロマトグラフィー用のカラム充填剤、光拡散剤、多孔質化剤、軽量化剤、ブロッキング防止剤、記録紙用表面改質剤などに利用されている。
その中でも、親水性の架橋重合体微粒子は、含水ゲル微粒子として利用でき、化粧品添加剤、担持体、多孔質化剤、軽量化剤、記録紙用表面改質剤として有用である。
【0003】
ビニル系単量体の逆相懸濁重合によって重合体粒子を製造することは従来から行われており、逆相懸濁重合によって親水性の架橋重合体粒子を製造する従来技術としては、分散剤として特定のHLBを有する化合物を用い、重合前にモノマーの油中水型微小分散滴を形成しておき、これを滴下しつつ重合させる方法(特許文献1)、吸水性ポリマー粒子、油溶性重合開始剤及び分散剤の存在下、逆相懸濁重合させ、重合中又は重合後に、疎水性ビニルモノマー及び油溶性重合開始剤を添加し重合させる方法(特許文献2)、親水性ビニルモノマーを、1種以上の官能基を有するシリコーン化合物を反応系に存在させ、逆相懸濁重合させる方法(特許文献3)などが知られている。
しかしながら、これらの従来技術による場合は、重合時や重合後の重合体粒子の分散安定性が不十分であったり、得られる重合体粒子の粒径が不揃いであったり、得られる重合体粒子の親水性が低下するなどの問題があった。特に、多官能ビニル系単量体の使用割合を多くして、架橋度の高い親水性架橋重合体粒子を逆相懸濁重合で製造する場合には、重合安定性の低下が大きく、粒子の凝集、得られる重合体粒子の品質低下、生産性の低下などの問題が生じ易いものであった。
上記いずれの製造方法も70℃以上の高温にした反応器に単量体乳化液を1時間以上かけて連続的に供給して重合させる方法であるため、粒子間の凝集などが生じやすく、得られる重合体粒子の粒径が不揃いとなり、また、多官能ビニル系単量体などの架橋剤を多く使用した場合には、未反応の架橋剤の大部分が連続相側に溶出しやすくなり、その状態で重合を続けることにより粒子が凝集し、上記のような重合体粒子の品質低下につながると考えられる。
【0004】
さらに、特定な吸水量を有する吸水性ポリマーの製造において、逆相懸濁重合による吸水性ポリマー粒子をレドックス重合開始剤を用いて製造する例示があり、油溶性酸化剤であるt−ブチルヒドロキシパーオキシドを供給した後に水溶性還元剤である重亜硫酸ナトリウムを供給して重合体微粒子を製造することが記載されている(特許文献4)
この製造方法によれば、前記従来技術に比べて微粒子の粒径制御は精密に行うことが出来る。しかしながら、水溶性還元剤が十分に拡散しない段階で重合反応が起こるため、粒径の揃った、特定範囲の粒径を有する高品質の重合体微粒子を、粒子同士の凝集などを生ずることなく、安定した状態で生産性良く製造する方法としては満足するものではない。
【0005】
【特許文献1】特開平5−222107号公報
【特許文献2】特開2003−301019号公報
【特許文献3】特開2003−34725号公報
【特許文献4】特開2004−262747号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明の目的は、逆相懸濁重合によって、粒径の揃った数μm〜数十μmオーダーの粒子径を有する高品質の重合体微粒子を、粒子同士の凝集などを生ずることなく、良好な分散安定性を維持しながら、生産性良く製造する方法を提供することである。
特に、本発明は、架橋度の高い親水性架橋重合体微粒子を製造する場合であっても、高い重合安定性で、懸濁安定性を維持しながら、粒径の揃った高品質の重合体微粒子を、生産性よく、円滑に製造することのできる逆相懸濁重合方法を提供することである。
【課題を解決するための手段】
【0007】
本発明者らは、前記した目的を達成するために鋭意検討を重ねてきた。特に、ビニル系単量体を逆相懸濁重合させて重合体微粒子を製造するに際し、従来技術に比べて低温で、かつ短時間で重合を行うことが重要と考え、その条件を検討した結果、重合開始剤として油溶性酸化剤と水溶性還元剤を使用し、かつ、水溶性還元剤を供給した後に油溶性酸化剤を供給した逆相懸濁重合を行うと、数μm〜数十μmオーダーの粒径を有し、しかも粒径の揃った、高品質の球状の重合体微粒子を、重合時や重合後に重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく、良好な分散安定性、重合安定性を維持しながら、生産性良く製造できることを見出した。
【0008】
すなわち、上記課題を解決するための本発明は、以下に記載するものである。
第1発明は、ビニル系単量体を逆相懸濁重合させて重合体微粒子を製造する方法であって、重合開始剤として油溶性酸化剤と水溶性還元剤を使用し、かつ、水溶性還元剤を供給した後に油溶性酸化剤を供給することを特徴とする重合体微粒子の製造方法である。
第2発明は、油溶性酸化剤の全量を20秒〜120秒の時間をかけて供給する上記第1発明に記載の重合体微粒子の製造方法である。
第3発明は、油溶性酸化剤を反応液の液面より下部に位置する供給口から反応器に供給する上記第1発明または第2発明に記載の重合体微粒子の製造方法である。
第4発明は、ビニル系単量体由来の重合体の末端にラジカル重合性不飽和基を有するマクロモノマーを分散安定剤として用いる上記第1発明〜第3発明のいずれかに記載の重合体微粒子の製造方法である。
第5発明は、逆相懸濁重合により製造される重合体微粒子が、0.5mol%以上の架橋密度を有する重合体微粒子である上記第1発明〜第4発明のいずれかに記載の重合体微粒子の製造方法である。
【0009】
第6発明は、逆相懸濁重合により製造される重合体微粒子が、水による飽和膨潤状態における平均粒子径が100μm以下であり、かつ水による飽和膨潤状態において150μm以上の粒径を示す粒子の割合が1.0質量%以下の重合体微粒子である上記第1発明〜第5発明のいずれかに記載の重合体微粒子の製造方法である。
第7発明は、逆相懸濁重合により製造される重合体微粒子が、5〜50倍の吸水倍率を有し、水による飽和膨潤状態での平均粒子径が5〜70μmであり、かつ水による飽和膨潤状態において150μm以上の粒径を示す粒子の割合が0.3質量%以下の重合体微粒子である上記第1発明〜第6発明のいずれかに記載の重合体微粒子の製造方法である。
【発明の効果】
【0010】
本発明の製造方法によれば、従来の方法と比較して格段に重合体微粒子の粒径が揃った、高品質の球状の親水性の重合体微粒子を、極めて高い分散安定性、重合安定性を維持しながら、重合時や重合後に重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく生産性良く製造することができる。そして、本発明の製造方法では、多官能ビニル系単量体を多量に用いて架橋度の高い親水性架橋重合体微粒子を製造する場合であっても、重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく、粒径の揃った高品質の親水性架橋重合体微粒子を生産性よく製造することができる。さらに、生産性を高めるために、製造をスケールアップした条件で実施した場合にも、本発明の製造方法は品質の高い重合体微粒子を製造することができる。
【発明を実施するための最良の形態】
【0011】
以下、本発明の実施形態について詳細に説明する。
本発明における「ビニル系単量体の逆相懸濁重合」は、油相を分散媒とし水相を分散質とする逆相懸濁重合を意味する。一般的には、親水性ビニル系単量体を用いて逆相懸濁重合する場合は、油相(疎水性有機溶媒よりなる分散媒)中に水相(親水性ビニル系単量体の水溶液)が水滴状に懸濁したW/O型の逆相懸濁重合で重合体微粒子を製造する。
本発明のビニル系単量体の逆相懸濁重合は、分散安定剤の存在下、油溶性酸化剤と水溶性還元剤を使用してビニル系単量体の逆相懸濁重合を行うものである。
【0012】
本発明の製造方法として好ましい方法は、分散安定剤と疎水性有機溶媒により調製調整した油相を仕込んだ反応液に、予めビニル系単量体(およびその中和物)と水を攪拌して均一に溶解させて調製した単量体混合物を仕込み、水溶性還元剤を供給した後に油溶性酸化剤を供給することで重合を開始させることである。
【0013】
本発明の逆相懸濁重合に用いるビニル系単量体としては、ラジカル重合性の親水性ビニル系単量体であればいずれでもよく、特に制限されない。例えば、カルボキシル基、アミノ基、リン酸基、スルホン酸基、アミド基、水酸基、4級アンモニウム基などの親水性基を有する親水性ビニル系単量体を使用することができる。これらの中でもカルボキシル基、スルホン酸基およびアミド基を有する親水性ビニル系単量体が、親水性が高く、吸水性能、保水性能に優れた重合体微粒子が得られるために好ましい。
【0014】
親水性ビニル系単量体の具体例としては、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸モノブチル、マレイン酸モノブチル、シクロヘキサンジカルボン酸などのカルボキシル基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミドなどのアミノ基を有するビニル系単量体またはそれらの(部分)酸中和物、もしくは(部分)4級化物;N−ビニルピロリドン、アクリロイルモルホリン;アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシプロピルメタクリレート、3−クロロ−2−アシッドホスホオキシプロピルメタクリレートなどのリン酸基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−スルホエチル(メタ)アクリレート、2−(メタ)アクリロイルエタンスルホン酸、アリルスルホン酸、スチレンスルホン酸、ビニルスルホン酸、アリルホスホン酸、ビニルホスホン酸などのスルホン酸基またはホスホン酸基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、N−イソプロピルアクリルアミド、N−メチロール(メタ)アクリルアミド、N−アルコキシメチル(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピルなどのノニオン性親水性単量体を挙げることができ、これらの1種または2種以上を用いることができる。
【0015】
これらの中でも、(メタ)アクリル酸、(メタ)アクリルアミドおよび2−アクリルアミド−2−メチルプロパンスルホン酸の1種または2種以上を用いて逆相懸濁重合を行うことが、重合性に優れる点、および得られた重合体微粒子が吸水特性に優れる点から好ましく、特に好ましくは(メタ)アクリル酸である。
【0016】
また、本発明では、逆相懸濁重合を行なうに当たって、ビニル系単量体として、上記した単官能の親水性ビニル系単量体のうちの1種または2種以上と共に、ラジカル重合性の不飽和基を2個以上有する多官能ビニル系単量体を使用することができる。
したがって、本発明でいう「ビニル系単量体」は、単官能ビニル系単量体および多官能ビニル系単量体の総称である。
【0017】
多官能ビニル系単量体としては、上記親水性ビニル系単量体とラジカル重合可能な基を2個以上有するビニル系単量体であればいずれでもよく、具体例として、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性物のトリ(メタ)アクリレートなどのポリオール類のジまたはトリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミドなどのビスアミド類、ジビニルベンゼン、アリル(メタ)アクリレートなどを挙げることができ、これらの1種または2種以上を用いることができる。
【0018】
これらの中でも、多官能ビニル系単量体としてはポリエチレングリコールジアクリレートおよびメチレンビスアクリルアミドが、ベースをなす親水性ビニル系単量体および水の混合液に対する溶解度に優れ、高架橋密度を得るために使用量を多くする際に有利であり好ましく用いられ、特に好ましくはポリエチレングリコールジ(メタ)アクリレートである。
【0019】
上記多官能ビニル系単量体の使用割合は、使用するビニル系単量体の種類、得られる重合体微粒子の用途などに応じて異なり得るが、重合体微粒子に架橋特性が必要な場合には、使用される単官能ビニル系単量体の合計100モルに対して0.1〜100モルであることが好ましく、0.2〜50モルであることがより好ましく、0.5〜10モルであることが更に好ましい。
【0020】
本発明の逆相懸濁重合における油相(分散媒)をなす疎水性有機溶媒として、例えば、炭素数6以上の脂肪族炭化水素溶媒、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素溶媒、オクタメチルシクロテトラシロキサンなどのシリコーン系溶媒などを用いることができ、特にヘキサン、シクロヘキサン、およびn−ヘプタンが、ビニル系単量体および水の溶解度が小さく、かつ重合後に除去することが容易であることから好ましく用いられる。
【0021】
本発明の逆相懸濁重合では、親水性ビニル系単量体(およびその中和塩)は水に溶解させて水溶液にして重合系に加えるとよい。親水性ビニル系単量体を溶解した水溶液中における親水性ビニル系単量体の濃度は、5〜80質量%、特に20〜60質量%であることが、逆相懸濁重合が円滑に行われ、かつ生産性も良好であることから好ましい。
逆相懸濁重合に用いる親水性ビニル系単量体が、カルボキシル基やスルホン酸基などの酸性基を有するビニル系単量体である場合は、親水性ビニル系単量体を水に加えた後、アンモニア水、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ水溶液でビニル系単量体中の酸性基を中和すると、親水性ビニル系単量体を良好に溶解した水溶液を調製することができる。
【0022】
本発明の製造方法において、分散安定剤は必須成分である。
分散安定剤の具体例としては、マクロモノマー型分散安定剤、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル等のノニオン性界面活性剤が挙げられる。
これらの中でも、マクロモノマー型分散安定剤を用いることが好ましい。マクロモノマー型分散安定剤は、ビニル系単量体由来の重合体の末端にラジカル重合性不飽和基を有するものである。
【0023】
また、マクロモノマー型分散安定剤とソルビタンモノオレエートおよびソルビタンモノパルミテートなどの、HLBが3〜8である比較的疎水性が高いノニオン性界面活性剤を併用することが好ましく、これらは、1種を併用しても、2種以上を併用しても良い。
【0024】
前記マクロモノマー型分散安定剤として好ましいマクロモノマーは、ビニル系単量体を150〜350℃でラジカル重合して得られる、ビニル系単量体由来の重合体の末端に式(1);HC=C(X)−(式中、Xは1価の極性基)で表されるα置換型ビニル基を有するマクロモノマーおよび/またはビニル系単量体由来の重合体の末端に(メタ)アクリロイル基を有するマクロモノマーが、分散安定剤としての機能に優れていて好適であり、マクロモノマーの重量平均分子量は1000〜30000であることが好ましく、マクロモノマーは親水性ビニル系単量体由来の構造単位と疎水性ビニル系単量体由来の構造単位の両方を有していることが好ましく、その際の疎水性ビニル系単量体由来の構造単位としては、(メタ)アクリル酸の炭素数8以上のアルキルエステルに由来する構造単位が好ましく、親水性ビニル系単量体由来の構造単位としてはカルボキシル基を有するビニル系単量体に由来する構造単位が好ましい。
【0025】
特に、マクロモノマー型分散安定剤を使用して、親水性ビニル系単量体を逆相懸濁重合させて親水性の重合体微粒子を製造する際には、単官能化合物と共に多官能ビニル系単量体を用いることが好ましく、それによって強度や形状保持性の向上した親水性の架橋した重合体微粒子が得られる。
【0026】
分散安定剤は分散媒(油相)である疎水性有機溶媒中に溶解、もしくは均一分散させて重合系に加えることが好ましい。
分散安定剤の使用量は、良好な分散安定性を維持しながら、粒径の揃った親水性重合体微粒子を得るために、ビニル系単量体の合計100質量部に対して、0.1〜50質量部であることが好ましく、0.2〜20質量部であることがより好ましく、0.5〜10質量部であることが更に好ましい。分散安定剤の使用量が少なすぎると、重合系でのビニル系単量体および生成した重合体微粒子の分散安定性が不良になり、生成した重合体微粒子同士の凝集、沈降、粒径のばらつきが生じ易くなる。一方、分散安定剤の使用量が多すぎると、副生微粒子(1μm以下)の生成量が多くなる場合がある。
【0027】
本発明の逆相懸濁重合では、重合系における油相(分散媒):水相(分散質)の質量比が99:1〜20:80、特に95:5〜30:70になるようにして重合を行うことが、生産性と重合時の分散安定性、および重合体微粒子の粒子径制御が両立できる点から好ましい。
【0028】
本発明の逆相懸濁重合は撹拌下に行なうことが好ましく、攪拌翼やバッフルを設置した反応槽で反応を行なうことが好ましい。攪拌翼としては、アンカー翼およびパドル翼が好ましく、特にパドル翼が好ましい。一般的に懸濁重合は攪拌動力に左右され、攪拌動力が低いと目標とする粒子径の重合体微粒子が得られないか、あるいはモノマー水溶液滴同士の合一を抑えることができず、きれいな球状微粒子が得られない、あるいは凝集粒子が多数発生するなどの問題が起こることがある。
本発明における反応槽における単位体積当たりの攪拌動力は0.5kw/m以上であることが好ましく、特に好ましくは、1.0kw/m以上である。
【0029】
本発明の逆相懸濁重合では、重合開始剤として油溶性酸化剤と水溶性還元剤を使用するレドックス系開始剤を使用する。レドックス反応は低温での重合開始が可能であり、重合反応液中のビニル系単量体濃度を高くすること、また重合速度を大きくすることが可能となるため、生産性、および生成重合体の分子量を高くすることが可能となる。
【0030】
上記のとおり、逆相懸濁重合では分散安定剤を溶解または分散させた疎水性有機溶媒が連続相(油相)として用いられるので、油溶性酸化剤とは、これらの連続相に溶解する酸化剤を意味する。
【0031】
本発明における油溶性酸化剤としては、日本工業規格Z7260−107やOECD TEST Guideline107に定められるオクタノール/水分配係数(logPow)が−1.4以上のものが好ましく、0.0以上のものがさらに好ましく、1.0以上のものが特に好ましい。
【0032】
具体例としてt−ブチルヒドロパーオキサイド(logPow=1.3)、ジ−t−ブチルヒドロパーオキサイド、t−ヘキシルヒドロパーオキサイド、ジ−t−アミルパーオキサイド、クメンヒドロパーオキサイド(logPow=2.2)、ジクミルパーオキサイド(logPow=5.5)、t−ブチルクミルパーオキサイド、t−ブチルパーオキシピバレート、過酸化ベンゾイル(logPow=3.5)、過酸化ラウロイルなどの有機過酸化物が挙げられる。これらの中でもt−ブチルヒドロパーオキサイドおよびクメンヒドロパーオキサイドが好ましく、特に好ましくはクメンヒドロパーオキサイドである。
【0033】
水溶性還元剤としては、レドックス重合開始剤に使用する還元剤として既知の還元剤が使用できるが、これらの中でも、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ハイドロサルファイトナトリウムが好ましく、特に好ましくはハイドロサルファイトナトリウムである。なお、これらの水溶性還元剤は空気と接触することによって徐々に失活するため、所望の重合開始タイミングの数分前に水に溶解し、添加することが好ましい。
【0034】
油溶性酸化剤と水溶性還元剤は、必ず先に水溶性還元剤を反応器に供給した後に、油溶性酸化剤を反応器に供給する必要がある。水溶性還元剤を水溶化して反応器に供給した後、0.5〜15分以内に油溶性酸化剤を供給して重合させるのが好ましく、1〜5分以内に油溶性酸化剤を供給することがより好ましい。
【0035】
また、油溶性酸化剤の全量を20秒〜120秒の時間をかけて反応器に供給することが好ましく、特に好ましくは20秒〜60秒である。
油溶性酸化剤の供給時間が20秒よりも供給時間が短い場合、酸化剤の供給に対して拡散が追いつかず、ラジカルの発生が局部的に起こって凝集物が発生するなどの不具合が起こりやすくなる場合があり、好ましくない。また120秒よりも長い場合、還元剤が別の機構で分解消費されることによって、一部の酸化剤が未反応のまま系内に残ってしまう場合がある。酸化剤が未反応のまま残存すると、後の共沸脱水工程や乾燥工程などで凝集物を発生させるなど、不具合の原因となる場合があるため好ましくない。
水溶性還元剤の供給時間に関しては特に制限は無いが、一般に還元剤は空気などとの接触により分解しやすいため、15分間以内で供給するのが好ましい。
【0036】
また、油溶性酸化剤は反応液の液面より下部に位置する供給口から反応器に供給することが好ましい。一般に重合触媒の投入口は反応器の上部に取り付けられており、この投入口から反応液の液面に重合触媒を一括または連続的に供給するが、本発明においては、重合触媒を反応器側面に接続された配管を通して反応液中に供給する方法が、触媒の均一拡散の観点から好ましい。
供給口の位置は、常時反応液中に浸かる位置にあれば制限は無いが、攪拌翼上端または
下端から垂直方向の高さにして±1m以内の位置にあるのが好ましく、±50cm以内の位置にあるのがより好ましい。
油溶性酸化剤を供給する方法としては、反応液の液面より下部に位置する供給口に通じる配管を通してポンプ、あるいは窒素のような不活性ガスのガス圧で供給する方法が挙げられる。
【0037】
上記重合開始剤の使用量は、使用するビニル系単量体の種類、得られる重合体微粒子の粒径や分子量などに応じて調整することができるが、ビニル系単量体の合計量100モルに対して、油溶性酸化剤の使用量は0.001〜0.15モルであることが好ましく、特に好ましくは0.003〜0.07モルである。
また、油溶性酸化剤と水溶性還元剤の比率は特に限定されないが、モル比率で油溶性酸化剤:水溶性還元剤が1.0:0.25〜15.0であることが好ましく、特に好ましくは1.0:1.0〜10.0である。
上記範囲を外れると、単量体の反応率が低下したり、粒子を構成する重合体の鎖長が短くなったり、重量終了後も触媒が残存するなどによって、凝集物が発生するなどの不具合が生じる恐れがある。
【0038】
本発明の逆相懸濁重合は、重合を開始する際の反応液の温度は0〜40℃とするのが好ましく、5〜30℃とするのがより好ましく、10〜25℃とするのが特に好ましい。反応開始温度が0℃より低い場合は重合設備や反応溶液の凍結が問題となり、また冷却に必要なコストが多大なものとなる。一方、反応開始温度が40℃を超える場合は、安全面から、供給する単量体の量を減少させる必要があり、生産コストが多大なものとなる。
【0039】
本発明の製造方法において、得られる重合体微粒子の平均粒子径は2〜150μmであることが好ましく、2〜100μmであることがさらに好ましく、5〜70μmであることがより好ましい。平均粒子径が2μm未満であると滑り性やブロッキング防止機能が不十分な粒子になる恐れがあり、150μmを超える場合は、大粒子により外観不良や手触り感の悪化、配合した材料の強度低下などの問題が発生する恐れがある。なお、重合体微粒子の大きさが小さくなるほど、連続相と分散相の界面面積が大きくなるため、分散安定剤の安定化効果がより必要となる。
また、重合体微粒子の大きさとしては、使用される条件下での大きさが重要となる。重合体微粒子が水膨潤粒子として応用される場合、水膨潤時の大きさが上記範囲にあることが好ましい。
【0040】
重合体微粒子は架橋されていることが好ましく、前述したように多官能ビニル単量体を共重合することにより微粒子を構成する重合体を架橋構造とすることができる。
なお、官能基を有するビニル単量体を逆相懸濁重合した後、架橋剤を反応させて架橋度を調整することも可能である。例として、カルボキシル基を有する単量体の重合体微粒子をエチレングリコールジグリシジルエーテルにより架橋する方法が挙げられる。
その他、多価金属イオンを介したイオン結合性架橋、放射線の照射等の方法により架橋した共有結合性架橋など公知の方法で重合体を架橋することができる。
【0041】
上記の架橋方法で得られる重合体微粒子が、0.5mol%以上の架橋密度を有する重合体微粒子である場合、先に記載したような各種用途においてその特性を発揮することが出来るため、0.5mol%以上の架橋密度を有する重合体微粒子であることが好ましい。
【0042】
本発明の逆相懸濁重合により重合体微粒子の分散液を得た後、公知の方法により重合体微粒子の乾燥粉末を得ることができる。分散液をそのまま加熱、および減圧処理し揮発分を除去し乾燥粉末を得る方法、また、ろ過や遠心分離により固液分離、洗浄を行い、分散安定剤や未反応単量体等を除去した後、乾燥を行う方法も選択できる。洗浄工程を行うことは、乾燥後の微粒子の一次分散性が向上するため好ましい。
また、逆相懸濁重合の場合、分散相に水を含むため乾燥前にあらかじめ共沸等により水を除去することが好ましい。水をあらかじめ除去することにより乾燥時の粒子間融着を防止でき、乾燥後粒子の一次分散性が向上する。
【0043】
本発明の製造方法において、水で飽和膨潤した状態における平均粒子径が2〜100μmであり、かつ水で飽和膨潤した状態において150μm以上の粒径を示す粒子の割合が1.0質量%以下である重合体微粒子が円滑に製造できる。このような重合体微粒子は各種用途においてその特性を著しく発揮することが出来る。
さらに、5〜50倍の吸水倍率を有し、水で飽和膨潤した状態での平均粒子径が5〜70μmであり、かつ水で飽和膨潤した状態において150μm以上の粒径を示す粒子の割合が0.3質量%以下である重合体微粒子も製造することが可能であり、この重合体は各種用途において、極めて優れた特性を発現する重合体微粒子となる。
【0044】
なお、本明細書における重合体微粒子の吸水倍率、水による飽和膨潤状態での平均粒径、および水による飽和膨潤状態における150μm以上の粒径を有する粒子の割合は、以下の実施例の項に記載する方法で測定または求めた値をいう。
【実施例】
【0045】
以下、実施例に基づいて本発明を具体的に説明する。以下の記載において「部」は質量部を意味し、「%」は質量%を意味する。
【0046】
製造例1:マクロモノマー組成物UM−1、およびUM−1HPの製造
オイルジャケットを備えた容量1000mlの加圧式攪拌槽型反応器のオイルジャケットの温度を240℃に保った。
単量体としてラウリルメタクリレート(以下、LMA)75.0部、アクリル酸(以下、AA)25.0部、重合溶媒としてメチルエチルケトン(以下、MEK)10.0部、重合開始剤としてジターシャリーブチルパーオキサイド(以下、DTBP)0.45部の比率で調整された単量体混合液を原料タンクに仕込んだ。
原料タンクの単量体混合液を反応器に供給を開始し、反応器内の重量が580g、平均滞留時間が12分となるように、単量体混合液の供給と反応混合液の抜き出しを行った。反応器内温度は235℃、反応器内圧は1.1MPaとなるように調整を行った。反応器より抜き出した反応混合液は、20kPaに減圧され、250℃に保たれた薄膜蒸発機に連続的に供給し、単量体や溶剤等が留去されたマクロモノマー組成物として排出された。留去した単量体や溶剤等はコンデンサーで冷却し、留出液として回収した。
単量体混合液の供給開始後、反応器内温が235℃に安定してから60分後を回収開始点とし、これから48分間反応を継続してマクロモノマー組成物UM−1を回収した。この間、単量体混合液は反応器に2.34kg供給され、薄膜蒸発機より1.92kgのマクロモノマー組成物が回収された。また留出タンクには0.39kgの留出液が回収された。
【0047】
留出液をガスクロマトグラフにて分析したところ、留出液100部に対して、LMA31.1部、AA16.4部、その他溶剤等が52.5部であった。
単量体混合液の供給量および組成、マクロモノマー組成物の回収量、留出液の回収量および組成より、単量体の反応率は90.2%、マクロモノマー組成物UM−1の構成単量体組成比は、LMA:AA=76.0/24.0(質量比)と計算された。
【0048】
また、溶離液にテトラヒドロフランを用いたゲルパーミションクロマトグラフ(以下、GPC)により、マクロモノマー組成物UM−1の分子量を測定したところ、ポリスチレン換算での重量平均分子量(以下、Mw)および数平均分子量(以下、Mn)は、それぞれ、3800、および1800であった。またマクロモノマー組成物のH−NMR測定より、マクロモノマー組成物中の末端エチレン性不飽和結合の濃度を測定した。H−NMR測定による末端エチレン性不飽和結合の濃度、GPCによるMn、および構成単量体組成比より、マクロモノマー組成物UM−1の末端エチレン性不飽和結合導入率(以下、F値)を計算した結果、97%であった。
製造したマクロモノマー組成物UM−1を適当量のn−ヘプタンに加温溶解した後、固形分30.0±0.5%となるようにn−ヘプタン加え、マクロモノマー組成物UM−1のn−ヘプタン溶液UM−1HPを製造した。なお、固形分は150℃、1時間加熱後の加熱算分率により測定した。
なお、単量体、重合溶剤、および重合開始剤等の各原料については、市販の工業用製品を精製等の処理を行うことなく、そのまま使用した。
【0049】
実施例1:重合体微粒子T−1の製造
重合反応には、ピッチドパドル型攪拌翼および2本垂直バッフルからなる撹拌機構を有し、さらに温度計、還流冷却器、窒素導入管を備えた、容量250lの反応器を用いた。なお窒素導入管は反応器の外でふたつに分岐しており、一方からは窒素を、もう一方からはポンプを用いて重合触媒を供給できるようになっている。また、窒素導入管は攪拌翼上端とほぼ同じ高さの反応器壁面に接続されている。また、反応液の総体積が220lとなるように仕込みを行った。詳細を下記に述べる。
【0050】
反応器内に分散安定剤として、製造例1で製造したUM−1HP 4.7部(UM−1の純分として1.4部)およびソルビタンモノオレエート(花王製レオドールAO−10)2.0部、更に重合溶媒としてn−ヘプタン400.3部を仕込み、溶液の温度を40℃に維持しながら攪拌混合して油相調整した。油相は、40℃で30分間攪拌した後20℃まで冷却した。
一方、別の容器にてAA100.0部、アロニックスM−243(東亞合成製、ポリエチレングリコールジアクリレート、平均分子量425)13.0部(単官能単量体に対して2.2mol%に相当)、およびイオン交換水95.0部を仕込み、攪拌、均一溶解させた。さらに混合液の温度を40℃以下に保つように冷却しながら、25%アンモニア水70.8部をゆっくり加えて中和し単量体混合液を得た。
【0051】
攪拌回転数を130rpmに設定した後、得られた単量体混合液を反応器内に仕込み、単量体混合液が油相に分散した分散液を調整した。この際攪拌動力を測定したところ、1.36kW/m3であった。反応器内温を20℃に保持し、分散液に窒素を吹き込むことで反応器内の酸素を除去した。単量体混合物の仕込みから、1時間40分経過した時点で、ハイドロサルファイトナトリウム(Na)0.045部とイオン交換水0.72部の水溶液を反応器上部に据え付けられた添加口から添加した。その3分後、パークミルH80(日本油脂製、クメンハイドロパーオキサイドの80%溶液)0.039部をn−ヘプタン3.1部で希釈した溶液を、窒素導入管を通じてポンプで供給した。なお供給は30秒間で行った。供給開始時点から直ちに反応器内温が上昇し、重合が開始したことが確認された。内温の上昇は約2分間でピークに達し、その温度は66.0℃であった。その後、反応液を室温まで冷却し、重合体微粒子T−1の油中分散液を得た。
【0052】
T−1の油中分散液を反応器から抜き出す際、分散液は目開き75μmのフィルターを用いて濾過を行った。濾過性は良好で、濾過完了後のフィルターには目立った付着物は見られなかった。また、抜き出し終了後に反応器内壁面への樹脂付着程度を確認したところ、重合時の液面付近にわずかに付着が認められる程度であり、重合体微粒子T−1が安定に製造できることが確認された。
【0053】
T−1の油中分散液を一部サンプリングし、デジタルマイクロスコープ(ハイロックス製、KH−3000)にて倍率420倍で観察したところ、10〜20μm付近を中心とした分布を有する球状微粒子群が確認された。写真を図1に示す。複数の粒子が合一した凝集粒子群は観察されなかった。
また、油中分散液を110℃、1時間乾燥させたサンプルについて吸水倍率(重合体微粒子の分析条件(2)、参照)を測定した結果、20.4倍であった。乾燥サンプルを大過剰のイオン交換水に分散し飽和膨潤させた後、倍率420倍で観察したところ、30〜40μm付近を中心とした分布を有する球状微粒子群が確認された。写真を図2に示す。
【0054】
また、水飽和膨潤させた重合体微粒子T−1について、レーザー回折/散乱式粒度分布計を用いて粒度分布測定(重合体微粒子の分析条件(3)、参照)を行った。得られた粒度分布は単一ピークであり、水飽和膨潤粒子径は38.9μmであった。重合体微粒子T−1は吸水性能を有し、かつ吸水膨潤時にも球状を保ち、水中で一次分散することが確認された。更にT−1をオイルバスにて加熱し、粒子内に含まれる水とヘプタンとを共沸させることによって脱水率95%まで脱水した後に脱溶剤し、粉末化させたサンプルについて湿式篩残渣量(重合体微粒子の分析条件(4)、参照)を測定した結果、0.004%であった。重合体微粒子T−1は、共沸脱水後に水飽和膨潤させた状態においても150μmを超えるような粗大粒子が含まれていないことが確認された。結果を表1に示す。
【0055】
表1において、「壁面付着状態」は反応終了後の反応器内面壁面への樹脂の付着を目視で観察した結果であり、○:ほとんど付着なし、△:液面部分に付着あり、×:全体に著しい付着あり、を示す。
また、「重合スラリー濾過性」は反応分散液を目開き75μmのフィルターで濾過を行った際の濾過性を観察した結果であり、○:フィルターの閉塞なし、△:1〜2回閉塞した、×:75μmで濾過できない、を示す。
また、「共沸脱水後の湿式篩残渣外観」は脱水して粉末化させたサンプルの湿式篩残渣を観察した結果であり、凝集物とは粒子が凝集した凝集物が存在することを示す。
【0056】
実施例2:重合体微粒子T−2の製造
油溶性酸化剤パークミルH80の供給時間を10秒とした以外は実施例1と同様の操作で製造を行った。結果を表1に示す。
【0057】
実施例3:重合体微粒子T−3の製造
油溶性酸化剤パークミルH80の供給時間を120秒とした以外は実施例1と同様の操作で製造を行った。結果を表1に示す。
【0058】
実施例4:重合体微粒子T−4の製造
油溶性酸化剤パークミルH80の供給時間を180秒とした以外は実施例1と同様の操作で製造を行った。結果を表1に示す。
【0059】
実施例5:重合体微粒子T−5の製造
単量体混合物の仕込みから1時間40分経過した時点でハイドロサルファイトNaの水溶液を反応器上部の添加口から添加し、その3分後にパークミルH80のn−ヘプタン溶液を、反応器上部に取り付けられた別の投入口からポンプを用いて30秒間で供給した以外は、実施例1と同様の操作で製造を行った。結果を表1に示す。
【0060】
実施例6:重合体微粒子T−6の製造
UM−1HP 4.7部(純分1.4部)/ソルビタンモノオレエート2.0部を使用する代わりに、ソルビタンモノオレエート3.4部を使用し、更に重合溶媒としてn−ヘプタン403.6部を使用した以外は実施例1と同様の操作で製造を行った。結果を表1に示す。
【0061】
実施例7:重合体微粒子T−7の製造
油溶性酸化剤として、パークミルH80の代わりにパーブチルH69(PBH)(日本油脂製、t−ブチルヒドロパーオキサイドの69%溶液)を使用した以外は実施例1と同様の操作で製造を行った。結果を表1に示す。
【0062】
比較例1:重合体微粒子T−8の製造
500mlビーカーにアクリル酸100g、アロニックスM−243(東亞合成製、ポリエチレングリコールジアクリレート、平均分子量425)13.0g(単官能単量体に対して2.2mol%に相当)、及びイオン交換水95.0gを仕込み、攪拌、均一溶解させた。さらに混合液の温度を40℃以下に保つように冷却しながら、25%アンモニア水70.8gをゆっくり加えて中和し単量体混合液を得た。更に、ここに過硫酸アンモニウム塩0.33gとイオン交換水4.9gとの水溶液を加え、均一に混合した。
次に、2lビーカーにショ糖脂肪酸エステル(三菱食品化学製、S−570とS−770との等量混合物)5g、及びシクロヘキサン490.2gとを加え、攪拌しながら加温してショ糖脂肪酸エステルを溶解させた後、この溶液をピッチドパドル型攪拌翼及び2本垂直バッフルからなる撹拌機構を有する、容量2lのフラスコに加えた。ここに前述の単量体水溶液を加え、600rpmで1時間攪拌し、油中水型分散液を作成した(反応液A)。
一方、ピッチドパドル型攪拌翼及び2本垂直バッフルからなる撹拌機構を有し、さらに温度計、還流冷却器、及び窒素導入管を備えた、容量2lの別の反応器を用意し、これにショ糖脂肪酸エステル(三菱食品化学製、S−570とS−770との等量混合物)5g、及びシクロヘキサン490.2gとを加えた。攪拌しながら80℃に加温してショ糖脂肪酸エステルを溶解させ、更に、内部を窒素置換しながら溶液温度を80℃に維持した(反応液B)。
反応液A、反応液B共に600rpmで攪拌しながら、反応液Aを反応液Bへ滴下し、重合を開始させた。反応液Aの全量を1時間で滴下する予定であったが、滴下開始から20分程経過した時点からバッフル、及び反応器内壁に樹脂の付着が確認されるようになり、以後、時間の経過と共に付着ゲルが大きくなっていく様子が観察された。
モノマー水溶液の滴下を完了した後、60分間そのまま加熱攪拌を続けた。得られたT−6の油中分散液を反応器から抜き出す際、目開き75μmのフィルターを用いて濾過を試みたが、すぐに閉塞し、濾過することができなかった。T−6の油中分散液を取り出して観察したところ、大部分が巨大な凝集塊となっており、目標とするような微粒子は得られないことがわかった。
【0063】
比較例2:重合体微粒子T−9の製造
単量体混合物の仕込みから1時間40分経過した時点でパークミルH80のn−ヘプタン溶液をホッパーから添加し、その3分後にハイドロサルファイトNaの水溶液を窒素導入管を通じてポンプで30秒間で供給した以外は実施例1と同様の操作で製造を行った。
ハイドロサルファイトNa水溶液の供給を開始した時点から直ちに反応器内温が上昇し、約2分間で反応液の温度が40℃に達したが、その時点で反応液の液面に大きなゲル塊が目視確認された。結果を表1に示す。
【0064】
【表1】

【0065】
参考試験:スケールアップ適性の確認
実施例および比較例において、250l反応器で試験を行った結果を示した(T−8のみ2l反応器)。更に、実施例1〜7および比較例1〜2の条件で製造スケールを変えて試験を行った結果を次の表2に示す。表2における評価条件は、上記表1と同様である。
【0066】
【表2】

【0067】
上記実施例における、重合体微粒子の分析条件(1)〜(4)は以下に記載のとおりである。
(1)固形分
測定サンプル約1gを秤量(a)し、次いで、無風乾燥機150℃、60分間乾燥後の残分を測定(b)し、以下の式より算出した。測定には秤量ビンを使用した。その他の操作については、JIS K 0067−1992(化学製品の減量及び残分試験方法)に準拠した。
固形分(%)=(b/a)×100
【0068】
(2)吸水倍率
吸水倍率は以下の方法によって測定した。測定装置を図3に示す。
測定装置は図3における<1>〜<3>から構成される。
<1> 空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3およびポリテトラフルオロエチレンチューブ4から成る。
<2> ロート5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。
<3> 重合体微粒子の試料6は2枚の試料固定用濾紙7に挟まれ、試料固定用濾紙は粘着テープ9によって固定される。なお、使用する濾紙は全てADVANTEC No.2 内径55mmである。
<1>と<2>とはシリコンチューブ3によって繋がれる。
また、ロート5および支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリテトラフルオロエチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている(図3中の点線)。
【0069】
測定方法について以下に説明する。
<1>にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態とする。次いで、ピンチコック2を閉じ、ビュレット枝管にゴム栓で接続されたポリテトラフルオロエチレンチューブ4から空気を除去する。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とする。
次に、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録する。
測定試料の乾燥粉末0.1〜0.2gを秤量し、<3>にある様に、試料固定用濾紙7の中央部に均一に置く。もう1枚の濾紙でサンプルを挟み、粘着テープ9で2枚の濾紙を留め、サンプルを固定する。サンプルが固定された濾紙を<2>に示される装置用濾紙10上に載置する。
次に、装置用濾紙10上に蓋11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録する。
測定試料の吸水量と2枚の試料固定用濾紙7の吸水量の合計(c)は(a−b)で求められる。同様の操作により、吸水性ポリマー試料を含まない、2枚の濾紙7のみの吸水量を測定する(d)。
上記操作を行い、吸水倍率を以下の式より計算した。なお、計算に使用する固形分は、(1)の方法により測定した値を使用した。
【0070】
【化1】

【0071】
(3)水膨潤粒子径
測定サンプル0.02gにイオン交換水20mlを加え、十分に振り混ぜて、サンプルを均一分散させた。また粒子を水飽和膨潤状態とするために、30分以上分散させた分散液について、レーザー回折散乱式粒度分布計(日機装製、MT−3000)を用いて、超音波1分照射後に粒度分布測定を行った。測定時の循環分散媒にはイオン交換水を使用し、分散体の屈折率は1.53とした。測定により得られた体積基準での粒度分布よりメジアン径(μm)を計算し、水膨潤粒子径とした。
【0072】
(4)水膨潤粒子径が150μm以上の粒子量の測定(湿式ふるい残渣法)
JIS K 0069−1992(化学製品のふるい分け試験方法)に準拠して測定した。
固形分として50gに相当するサンプルを計り取り、同量のエタノールを加えて良くほぐした後、3.0lのイオン交換水に、攪拌下ゆっくり注ぎ、30分間攪拌してサンプルの水膨潤分散液を調整する。次いで、均一分散していることを確認した後、分散液を径70mm、目開き150μmの篩に注いで通過させ、ふるい上の残渣を篩からこぼれないように注意して十分な量の水で洗う。次いで、測定後の篩を、通風乾燥機150℃、30分で乾燥した後、デシケータ内で放冷し、乾燥後のふるい重量(ふるい+残渣重量)を測定する。
下記式により計算される、湿式ふるい残渣(%)を水膨潤粒子径が150μm以上の粒子量とした。上記以外の操作はJIS K 0069−1992(化学製品のふるい分け試験方法)に準拠した。
【0073】
【化2】

【0074】
以上の結果より、本発明の製造方法は、重合反応に伴う反応器内壁への樹脂付着もなく、また、重合スラリーの濾過性も良好であるので、粒子径の揃った重合体微粒子を生産性よく、粒子同士の凝集もなく製造できることがわかった。これに対して従来技術である比較例1および2は、生産性が悪く、特に実機レベルでは、粒子径の揃った重合体微粒子を生産できないことがわかった。
【産業上の利用可能性】
【0075】
本発明の製造方法によれば、従来の方法と比較して格段に重合体微粒子の粒径が揃った、高品質の球状の親水性の重合体微粒子を、極めて高い分散安定性、重合安定性を維持しながら、重合時や重合後に重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく生産性良く製造することができる。そして、本発明の製造方法では、多官能ビニル系単量体を多量に用いて架橋度の高い親水性架橋重合体微粒子を製造する場合であっても、重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく、粒径の揃った高品質の親水性架橋重合体微粒子を生産性よく製造することができる。
【図面の簡単な説明】
【0076】
【図1】重合体微粒子T−1のマイクロスコープ写真(重合後、油中分散液)
【図2】重合体微粒子T−1のマイクロスコープ写真(重合後、水中分散液)
【図3】重合体微粒子の吸水倍率の測定に用いる装置を示す図である。
【符号の説明】
【0077】
1 ビュレット
2 ピンチコック
3 シリコーンチューブ
4 ポリテトラフルオロエチレンチューブ
5 ロート
6 試料(重合体微粒子)
7 試料(重合体微粒子)固定用濾紙
8 支柱円筒
9 粘着テープ
10 装置用濾紙
11 蓋
12 イオン交換水




【特許請求の範囲】
【請求項1】
ビニル系単量体を逆相懸濁重合させて重合体微粒子を製造する方法であって、重合開始剤として油溶性酸化剤と水溶性還元剤を使用し、かつ、水溶性還元剤を供給した後に油溶性酸化剤を供給することを特徴とする重合体微粒子の製造方法。
【請求項2】
油溶性酸化剤の全量を20秒〜120秒の時間をかけて供給することを特徴とする請求項1記載の重合体微粒子の製造方法。
【請求項3】
油溶性酸化剤を反応液の液面より下部に位置する供給口から反応器に供給することを特徴とする請求項1または請求項2記載の重合体微粒子の製造方法。
【請求項4】
ビニル系単量体由来の重合体の末端にラジカル重合性不飽和基を有するマクロモノマーを分散安定剤として用いることを特徴とする請求項1〜請求項3のいずれかに記載の重合体微粒子の製造方法。
【請求項5】
逆相懸濁重合により製造される重合体微粒子が、0.5mol%以上の架橋密度を有する重合体微粒子である請求項1〜請求項4のいずれかに記載の重合体微粒子の製造方法。
【請求項6】
逆相懸濁重合により製造される重合体微粒子が、水で飽和膨潤した状態における平均粒子径が2〜100μmであり、かつ水で飽和膨潤した状態において150μm以上の粒子径を有する粒子の割合が1.0質量%以下である重合体微粒子である請求項1〜請求項5のいずれかに記載の重合体微粒子の製造方法。
【請求項7】
逆相懸濁重合により製造される重合体微粒子が、5〜50倍の吸水倍率を有し、水で飽和膨潤した状態における平均粒子径が5〜70μmであり、かつ水による飽和膨潤状態において150μm以上の粒径を示す粒子の割合が0.3質量%以下の重合体微粒子である請求項1〜請求項5のいずれかに記載の重合体微粒子の製造方法。



























【図1】
image rotate

【図2】
image rotate

【図3】
image rotate