説明

開放型磁気シールド構造及びその磁性体フレーム

磁性材料板1の群を各板1の長さ方向中心軸Cが同一簾面(曲面を含む)F上にほぼ平行に並ぶように所要板間隔dで重ねて磁性簾体2を形成し、複数の磁性簾体2a、2bを隣接する各簾体2a、2bの対応する磁性材料板1の端縁の重ね合わせ又は突き合わせにより列状に結合して磁気シールド面を形成する。好ましくは、3以上の磁性簾体2を閉じたシールド対象面に沿って列状に結合して閉磁路を形成する。更に好ましくは、シールド対象磁場Mに臨ませた磁性簾体2に他の簾体2を各簾体2a、2b内の簾面Fa、Fbがほぼ平行となるように積層し、各簾体2内の磁性材料板1の中心軸Cの向きの選択により磁場Mに対する所要シールド性能を与える。

【発明の詳細な説明】
【技術分野】
本発明は開放型磁気シールド構造に関し、とくに空気や光の透過性がある磁気シールド構造に関する。
【背景技術】
都市部の電鉄変電所等の大電流使用施設では、大電流が周囲へ及ぼす磁気的影響を避けるため、周囲に対し影響を与えないようにする能動的(アクティブ)シールドが求められる。逆に、電鉄や送電線の近傍の建物では、内部の人や機器に対する磁気的影響を避けるため、環境磁気ノイズ(外乱磁場)を遮断して建物の内部を磁気的に清浄な状態に保つ受動的(パッシブ)シールドが求められる。また近年は、例えば医療施設内等においてMRI(Magnetic Resonance Imaging、磁気共鳴画像診断)装置等の強磁気を利用した機器が多く使用されるようになり、周囲の人や機器に対するMRI装置の磁気的影響を避けると共にMRI装置を環境磁気ノイズから保護して正常な動作を保証するため、能動的シールドと受動的シールドとが同時に求められる場合がある。
従来の能動的磁気シールドは、透磁率μの高い磁性体(以下、透磁率μの高い磁性体を単に「磁性材料」ということがある。)の板材を用いて磁束発生源が含まれるシールド対象空間を密閉し、磁束発生源を閉じ込める構成が一般的である。例えば特許文献1は、往ケーブル及び復ケーブルを有する電鉄用の直流電力施設において、両ケーブルの一部分を近接並置して両ケーブルの電流による磁場を相殺し、両ケーブルの近接並置しない部分の所要部を磁性材料板製ダクトで囲み、両ケーブルの電流による施設周囲の磁束密度を抑制する磁気シールド技術を開示する。医療施設等では、MRI装置がペースメーカー装着者や周囲の医療機器に悪影響を及ぼさないように、MRI装置を設置する室(MRI室)の壁・天井・床の全面又は一部に磁性材料板を取り付けてMRI室外の磁場の強さを0.5mT以下に抑えている。
また受動的磁気シールドにおいても従来は、外部からの磁束進入を防止すべきシールド対象空間を磁性材料板で密閉する構成が一般的である。例えば建物内のOA機器を設けた部屋(OA機室)は、スラブ面・壁面等を磁性材料板で覆うことにより建物外や隣接する電気室機器からの磁気ノイズの進入を防止している。OA機室の6方向を磁性材料板で囲うことが原則であるが、例えば下階電気室からの影響を避ける場合にOA機器毎又は特定のエリア毎に磁性材料板を敷く等の部分的な対策でも下階電気室からの影響をある程度改善できる。特許文献2及び3は、磁性材料板の多層化や磁性材料板の継ぎ目への磁性材料目地材の配設により、シールド性能の向上を図る技術を提案している。また特許文献4は、磁気シールドルーム等の開口部周縁に電磁鋼板で閉磁路を形成して漏れ磁束を防止する技術を提案している。
【特許文献1】 特開2001−231161号公報
【特許文献2】 特開平5−327263号公報
【特許文献3】 特開平7−273484号公報
【特許文献4】 特開平8−264350号公報
【特許文献5】 特開平8−288688号公報
【特許文献6】 特開2002−164686号公報
【発明の開示】
【発明が解決しようとする課題】
しかし、従来の能動的又は受動的磁気シールドは何れも、シールド対象空間の壁面と平行な磁性材料板で対象空間を覆う構造(以下、密閉型シールドということがある。)を基本としているので、空気や光の透過性がなく、しかも磁性材料板の材料特性から期待されるようなシールド効果がなかなか得られないという問題点がある。例えば特許文献1の磁性材料板製ダクトをケーブル貫通部以外に開口がない密閉型シールドとすると、夏季に直射日光を受けて内部温度が非常に高くなってケーブルの絶縁劣化の原因となる。また、MRI室やOA機室において壁や床・天井を密閉型シールドにすると、空調等の設計が難しくなる。特許文献5はクリーンルーム等に設置する通気性の磁気シールドユニットを提案しているが、十分に高いシールド性能を得るためには、ユニットの相互間の密閉が必要である旨記載している。
これに対し本発明者は、磁性体の群を磁場内に簾状又はルーバー状に並べ、各磁性体の横断面の面積(Sm)と当該磁性体の比透磁率μsとの積(Sm・μs)が隣接磁性体間の間隙の断面積(Sa)より大きく(Sm・μs/Sa>1)なるように選び、簾状又はルーバー状に並べた磁性体群の対向面間に磁束密度減衰を生じさせる磁気シールド方法を開発し、特許文献6に開示した。この簾状又はルーバー状に並べた磁性体群(以下、磁性簾体という。磁性ルーバー体と言い換えてもよい。)によれば、密閉型シールドと実質上同等で間隙のある磁気シールドが得られる。また、密閉型シールドと実質上同等のシールド効果を得るに当たり磁性材料を節減することができ、磁気シールドの経済的・効率的な設計が期待できる。
最近では、医療施設等において極めて微弱な磁場が計測できるSQUID(Superconducting Quantum Interference Device、超電導量子干渉素子)等の超電導センサ技術を利用した生体磁気測定装置が使用されており、また半導体分野でも微弱な磁場の影響を受けやすい電子ビーム(Electron Beam)露光装置等が開発されており、それら装置の設置室において高いシールド性能と通気性・透光性とを同時に備えた磁気シールド構造が要求される場合がある。上述した磁性簾体を用いて十分に高いシールド性能を得ることができれば、このような要求に応じた磁気シールド構造を経済的・効率的に構築できる。
そこで本発明の目的は、隙間を有しつつ高度なシールド性能が得られる開放型磁気シールド構造及びその磁性体フレームを提供することにある。
【課題を解決するための手段】
本発明者は先ず、列状に結合した磁性簾体(以下、列状簾体16ということがある。)の一方向磁場に対するシールド性能を確認する実験を行った。第1図(A)に示すように厚さ0.35mm、幅25mm、長さ300mmの8枚の短冊状磁性材料板1(板の長手方向を磁化容易方向とした方向性電磁鋼板製)を板厚方向に間隔d=30mmで重ねて3つの磁性簾体2a、2b、2cを作り、各簾体2a、2b、2cを磁性材料板1の長さ方向に列状に結合して同図(B)及び(C)のような断面コ字形の列状簾体16(280mm×280mm×280mmの内容積)を作製した。同図(B)は各簾体2a、2b、2cの対応する磁性材料板1の長さ方向端縁を突き合わせにより結合した列状簾体16、同図(C)は長さ方向端縁を重ね合わせにより結合した列状簾体16である。また比較のため、厚さ0.35mmで幅及び長さが280mm×280mmの3枚の矩形磁性材料板20a、20b、20c(方向性電磁鋼板製)により同図(D)に示すような断面コ字形の密閉型磁気シールド体21を作製した。シールド体21の磁性材料の重量は、同図(B)及び(C)の列状簾体16の磁性材料の重量とほぼ同じである。
第1図(B)〜(D)の列状簾体16及びシールド体21の各々を、第15図(A)に示す環状コイル(例えばヘルムホルツ・コイル)Lの中央部にコイルLの断面と磁性簾体2a又は磁性材料板20aの面とが平行になるように設置した。コイルLへ矢印I向きに交流電流を流し、コイルLの中央部に磁性簾体2a又は磁性材料板20aと交差する矢印向きの一方向磁場Mを形成し、磁場方向から見て磁性簾体2a又は磁性材料板20aの反対側(裏側)に磁気センサ9(例えばガウスメータ)を置いて磁束密度B(μT単位)を測定することにより列状簾体16及びシールド体21の各々のシールド係数S(=シールドがない場合の磁束密度B/シールドがある場合の磁束密度B)を算出した。環状コイルLに電流0.1Aを流したときの実験結果を表1に示す。

表1の実験結果から、端縁の突き合わせにより結合した第1図(B)の列状簾体16は密閉型シールド体21と同等のシールド性能を示し、端縁の重ね合わせにより結合した同図(C)の列状簾体16は密閉型シールド体21より高いシールド性能を示すことが分かる。列状簾体16は任意のシールド対象面に適用することができる。本発明者は、様々なシールド対象面に列状簾体16を設けてシールド係数Sを求める実験を繰り返し、密閉型シールド構造に比し列状簾体16によるシールド構造によれば、ほぼ同量の磁性材料でより高いシールド性能を得ることが可能であるとの知見を得た。また、第15図(A)のコイルLに直流電流を流して直流磁場Mを形成した場合にも同様の知見が得られた。
次に本発明者は、磁性簾体2の積層によるシールド性能の向上に着目し、一方向磁場に対する磁性簾体2のシールド性能が積層により如何に変化するかを確認する実験を行った。本実験ではPCパーマロイ製の磁性簾体2を用い、4つの磁性簾体2を用いて第3図(A)のように閉じた列状簾体16を作製した。列状簾体16の特定の磁性簾体2aには、第8図(C)に示すように、他の磁性簾体2bを平行に積層可能とした。列状簾体16を第15図(A)の環状コイルLの中央部に磁性簾体2aがコイル断面と平行となるように設置し、矢印I向きの交流電流によりコイルLの中央部に100μTの一方向磁場Mを形成した。列状簾体16の内側の磁気センサ9で磁束密度Bを測定し、先ず列状簾体16のみ(層数1)によるシールド係数Sを求め、更に磁性簾体2bを積層した列状簾体16(層数2)によるシールド係数Sを求めた。この実験結果を表2に示す。

表2では、積層した2つの磁性簾体2a、2bのうち磁場Mと対向する側を外層、その反対側(磁気センサ側)を内層として表わす。また表2における「垂直」とは第8図(A)のように磁性材料板1の中心軸Cの向き(以下、簾体向きということがある。)が垂直な磁性簾体2a、「水平」とは同図(B)のように簾体向きが水平な磁性簾体2bを表わす。表2の実験結果から、磁性簾体2は積層によりシールド性能が向上することが分かる(表2のNo.1〜4欄とNo.5〜8欄との相違を参照)。また、1層の磁性簾体2では簾体向きによりシールド性能の差はないが(表2のNo.1〜4欄参照)、積層した磁性簾体2では各簾体2の簾体向きによりシールド性能が相違することが分かる(表2のNo.5〜6欄とNo.7〜8欄との相違を参照)。
本発明者は外層及び内層の磁性簾体2の簾体向きを変えながらシールド係数Sを求める実験を繰り返し、所定シールド対象磁場Mに対して積層する磁性簾体2の数及び簾体向きを適当に選択すれば、その対象磁場Mに対するシールド性能を最適化ないし最大化できるとの知見を得た(表2のNo.7及び8欄参照)。また、直流磁場Mに対しても同様の知見が得られた。すなわち、上述した磁性簾体2を列状に結合し又は積層して磁気シールド面を形成すれば、隙間を有し且つ所望のシールド性能を与える磁気シールド構造を構築できる。本発明は、この知見に基づく更なる研究開発の結果、完成に至ったものである。
第1図の実施例を参照するに、本発明の開放型磁気シールド構造の一態様は、磁性材料板1の群を各板1の長さ方向中心軸Cが同一簾面F上にほぼ平行に並ぶように所要板間隔dで重ねて磁性簾体2を形成し、複数の磁性簾体2a、2bを隣接する各簾体2a、2bの対応する磁性材料板1の端縁の重ね合わせ又は突き合わせにより列状に結合して磁気シールド面を形成したものである。好ましくは、第3図(A)に示すように、3以上(本例では4)の磁性簾体2を閉じた列状に結合して閉磁路を形成する。
また第8図の実施例を参照するに、本発明の開放型磁気シールド構造の他の態様は、上述した複数の磁性簾体2a、2bを各簾体2a、2b内の簾面Fa、Fbがほぼ平行となり且つシールド対象磁場Mに臨むように積層し、各簾体2内の磁性材料板1の中心軸Cの向きの選択により磁場Mに対する所要シールド性能を与えたものである。好ましくは、同図(C)に示すように、積層した磁性簾体2(以下、積層簾体3ということがある。)内の隣接する簾体2の磁性材料板1の中心軸Cの向き(簾体向き)を相互に交差させる。また同図(D)に示すように、積層簾体3内の隣接する簾体2間に空隙層4を介在させれば、より性能が上がる。
第9図及び第10図に示すように、積層簾体3の複数組を、隣接する各組内の対応する磁性材料板1の端縁の重ね合わせ又は突き合わせによりシールド対象面に沿って列状に結合することができる。この場合、第11図に示すように、3組以上の積層簾体3を閉じた列状に結合して閉磁路を形成することが望ましい。
更に第2図の実施例を参照するに、本発明の開放型磁気シールド構造用の磁性体フレーム6は、磁性材料板1の群又は複数の磁性材料薄板18が積層された磁性材料積層板1(第7図参照)の群を、各板1の板面がほぼ同一平面となるように各板1の長さ方向端縁で隣接させ且つ隣接する各板1の端縁を重ね合わせ又は突き合わせて列状に結合したものである。好ましくは、第4図又は第6図に示すように、3以上の磁性材料板1又は磁性材料積層板1を閉じた列状に結合して閉磁路を形成する。磁性材料積層板1の一例は、第7図に示すように、複数の磁性材料薄板18を積層し、長手方向端縁の少なくとも一方の積層断面に薄板18の突出による凹凸を形成し、端縁の凹凸の嵌合により列状に結合可能としたものである。この場合、長手方向端縁の板幅Wに対する前記凹凸の深さRの比を0.1以上(0.1W≦R)とすることが望ましい。
第2図、第4図又は第6図に示すような磁性体フレーム6の複数を、各フレーム6の板面の法線方向に所要板間隔dで重ねることにより、第1図(B)、同図(C)又は第3図(A)に示すような開放型磁気シールド構造を形成することができる。また、所定板間隔dで重ねた複数の磁性体フレーム6により、電線のダクト又は磁気遮蔽空間を形成することができる。
【発明の効果】
本発明の開放型磁気シールド構造は、磁性材料板の群を所要板間隔で重ねた磁性簾体の複数を、対応する磁性材料板の端縁の重ね合わせ又は突き合わせにより列状に結合し及び/又は簾面がほぼ平行となるように積層して磁気シールド面を形成するので、次の顕著な効果を奏する。
(イ)密閉型シールドと同等以上の高度なシールド性能と空気や光の透過性とを同時に有する磁気シールド構造を構築できる。
(ロ)閉じた列状に磁性簾体を結合して閉磁路を形成することにより、結合部からの磁束漏洩が極めて小さい高性能のシールド構造とすることができる。
(ハ)密閉型シールドと同等以上のシールド効果を得るに当たり磁性材料を節減することができ、所要のシールド性能に応じて経済的に磁気シールド構造を構築できる。
(ニ)所要部位の磁性簾体を積層構造としてシールド性能を更に高めることができ、シールド対象磁場に応じて最適な磁気シールド構造を設計できる。
(ホ)積層した簾体の間に空隙層を介在させることによりシールド性能を更に向上することができ、磁性材料板の使用量を増やさずに高度な磁気シールド構造が実現できる。
(ヘ)通気性のある磁気シールドが実現できるので、温度上昇による材料及び機器の劣化の防止や空調との組み合わせが可能である。
(ト)透視性のある磁気シールドが実現できるので、磁気シールド内部の機器の保守・管理の容易化を図ることができ、更に医療施設等では人に優しい環境を提供できる。
(チ)シールド対象磁場に応じて異なる磁性材料製の磁性簾体を適切に組み合わせてシールド性能を調整することができる。
(リ)従来の密閉型シールドと同程度のシールド性能を少ない磁性材料で実現でき、軽量のシールド構造とすることができる。
【発明を実施するための最良の形態】
第1図(A)は、本発明で用いる磁性簾体2の実施例を示す。図示例の磁性簾体2は、適当な固定用枠体又は支持体(図示せず)を用いて、複数枚の短冊状又は長尺状の磁性材料板1を所要板間隔dで重ね、各板1の長さ方向中心軸Cを同一簾面F上にほぼ平行に並べたものである。磁性材料板1の中心軸Cを曲線とし、簾面Fを曲面としてもよい。磁性材料板1の板間隔dは、磁性簾体2に与えるシールド性能に応じて、各磁性材料板1の横断面積(Sm)と比透磁率μsとの積(Sm・μs)に対する板間隙の断面積(Sa)の割合が小さくなるように適当に選択することができ、例えば(Sm・μs)/Sa>1となるように選択する。磁性簾体2内の板間隔dは必ずしも全て同じである必要はなく、磁性材料板1の位置によって板間隔dが相違してもよい。例えば開口部やドア部に対応する位置では板間隔dを広くすると共に磁性材料板1の横断面積を大きく(厚く)することができる。また各磁性材料板1は中心軸Cが簾面F上にあれば足り、中心軸Cの回りの角度位置は各磁性材料板1毎に異なっていてもよい。
一態様において本発明は、第1図(B)及び(C)に示すように、複数の磁性簾体2a、2bを対応する磁性材料板1の端縁の重ね合わせ又は突き合わせにより列状に結合して列状簾体16を形成し、列状簾体16をシールド対象磁場Mに臨ませて磁気シールド構造を構築する。この磁気シールド構造は、磁性簾体2a、2bの板間隔dにより空気や光の自由透過を確保できると共に、磁性材料板1を端縁の重ね合わせ又は突き合わせにより磁気的に連続させて結合部からの磁束漏洩を小さく抑えることができる。図示例のように磁性簾体2a、2bの対応する磁性材料板1の板間隔d1、d2を一致させる必要があるが、例えば磁性簾体2bの板間隔d2を磁性材料板2aの板間隔d1のm倍(mは2以上の整数)とし、磁性簾体2aの磁性材料板1をm枚おきに磁性簾体2bの磁性材料板1と結合してもよい。
本発明者は、磁性簾体2内の磁性材料板1の端縁の最適な結合方法を検討するため、第5図(A)のように1枚の磁性材料板1を用いた磁性簾体2、同図(B)のように2枚の磁性材料板1を端面同士で突き合わせた磁性簾体2、同図(C)のように2枚の磁性材料板1の端縁を重ね合わせて面接触させた磁性簾体2、及び同図(D)のように2枚の磁性材料板1を端面同士で突き合わせると共に両端縁上に磁性材料接続板8aを重ね合わせた磁性簾体2をそれぞれ作成し、第15図(A)の環状コイルLの中央部に設置してシールド係数Sを求める実験を行った。その結果、同図(A)の磁性簾体2のシールド係数Sに比し、同図(B)では31%、同図(C)では97%、同図(D)では83%にシールド係数Sが低下することを確認できた。
また、交差する磁性材料板1の最適な接続方法を検討するため、第5図(E)に示すように交差する2枚の磁性材料板1の端縁を重ね合わせて面接触させた磁性簾体2、同図(F)のように交差する2枚の磁性材料板1の板面間にアクリル板等の非磁性部材8bを介在させて面接触させた磁性簾体2、同図(G)のように交差する2枚の磁性材料板1を端面及び側面で突き合わせた磁性簾体2、及び同図(H)のように交差する2枚の磁性材料板1の端縁を突き合わせると共に両端縁間に磁性材料接続板8aを面接触させた磁性簾体2をそれぞれ作り、第15図(A)の環状コイルLの中央部に設置してシールド係数Sを求める実験を行った。その結果、同図(E)に示す接触方法のシールド係数が最も大きく、そのシールド係数Sを100%とした場合に同図(F)では67%、同図(G)では26%、同図(H)では77%にシールド係数Sが低下することを確認できた。
これらの実験結果から、第2図(B)のように磁性簾体2の対応する磁性材料板1の端縁を重ね合わせて面接触させることにより磁束漏洩を小さく抑え、列状簾体16のシールド性能が高まることが分かる。但し、磁性材料板1の端縁の磁気的な連続が確保できれば、表1を参照して上述したように、突き合わせで結合した列状簾体16(第1図(B)参照)でも密閉型シールド体と同等のシールド性能が得られる。高度なシールド性能が要求されない場合は、第2図(A)のように、磁性簾体2の対応する磁性材料板1の端縁を突き合わせにより結合して適切なシールド性能とすることができる。この場合、第2図(C)及び(D)のように、磁性材料板1の端縁の突き合わせ部に両端縁に跨る磁性材料接続板8aを更に重ね合わせることにより、シールド性能の低下を抑えることができる。
第2図(A)〜(D)は、磁性材料板1の群を、各板1の板面がほぼ同一平面となるように各板1の長さ方向端縁で隣接させ且つ隣接する各板1の端縁を重ね合わせ又は突き合わせて列状に結合した列状簾体16用の磁性体フレーム6の一例である。第1図(B)及び(C)に示す列状簾体16は、この磁性体フレーム6を磁性材料板1の法線方向(板厚方向)に所要間隔dで重ねることにより形成してもよい。
列状簾体16は磁気シールド対象空間の任意シールド対象面に適用可能であるが、3以上の磁性簾体2を閉じたシールド対象面に沿って結合して列状簾体16とし、列状簾体16内の一端側における磁性材料板1の未結合端縁を他端側の対応する磁性材料板1の未結合端縁と重ね合わせ又は突き合わせて結合することにより、シールド対象空間を囲む閉磁路を形成することができる。磁気的に閉じた磁気回路を形成することにより、列状簾体16のシールド性能の格段の向上が期待できる。第3図(A)は閉磁路を形成した列状簾体16の一例を示す。
第3図(A)のように閉磁路を形成した列状簾体16は、第4図に示すような環状の磁性体フレーム6を法線方向(板厚方向)に所要間隔dで重ねて形成してもよい。同図(A)は、4つの磁性材料板1を対応する端縁の重ね合わせにより環状に結合し、磁気的に連続した閉磁路を形成した環状の磁性体フレーム6の一例を示す。環状の磁性体フレーム6は、例えば同図(B)のように3つの磁性材料板1を結合して三角形閉磁路とし、同図(C)のように5以上の磁性材料板1を結合して多角形閉磁路とすることができる。以下、環状(多角形状を含む。以下同じ)の磁性体フレーム6を環状磁性材料板6ということがある。
磁性体フレーム6において重要なことは、磁性材料板1の板面とほぼ同一平面で磁気回路を形成できるように磁性材料板1を結合することである。磁気回路は閉磁路が好ましいが、最終的に閉磁路が形成しやすくなる形状であれば、例えば第2図(A)〜(D)のように回路の一部が開いたU字型形状でもよい。また磁気回路を構成する磁性材料板1は一体型である必要はなく、複数の磁性材料板1を結合して磁気回路を形成してもよい。例えば、第23図に示すようにU字型の磁性材料板1とI字型の磁性材料板1とを組み合わせて磁性体フレーム6とすることができるが、C字型、L字型等の磁性材料板1を適当に組み合わせて磁性体フレーム6としてもよい。このように形成した磁気体フレーム6は、単独で用いてもよいが、法線方向に所要間隔dで積層して簾状に配置することにより、少ない材料で開放的な磁気シールド構造を構築できる。
閉磁路を形成した列状簾体16のシールド性能を確認するため、厚さ0.35mm、幅25mm、長さ300mmの8枚の短冊状磁性材料板1(方向性電磁鋼板製)を間隔d=30mmで重ねた4つの磁性簾体2を用い、各簾体2を磁性材料板1の端縁の重ね合わせにより環状に結合して第3図(A)に示すような列状簾体16(280mm×280mm×280mmの内容積)を作製した。また比較のため、厚さ0.35mm、幅及び長さ280mm×280mmの4枚の磁性材料板20(方向性電磁鋼板製)により同図(B)のような立方体構造の密閉型磁気シールド体22を作製した。第3図(A)及び(B)の磁性材料の重量はほぼ同じである。列状簾体16又はシールド体22を第15図(A)の環状コイルLの中央部に設置し、コイルLの中央部に5〜200μTの一方向直流磁場Mを形成し、列状簾体16又はシールド体22の中心部の磁気センサ9で磁束密度Bを測定した。実験結果を表3及び第16図に示す。第16図の横軸はシールド前の磁束密度B=μ・H、縦軸は列状簾体16又はシールド体22の設置後のシールド係数Sを表す。
表3及び第16図の実験結果から、閉磁路を形成した列状簾体16による5〜200μTの一方向直流磁場Mに対するシールド性能は、密閉型磁気シールド体22に比し2〜3倍以上高いことが分かる。このように高いシールド性能が得られる原理の詳細は不明であるが、磁性材料板1を一部重ね合わせつつ環状に結合して閉磁路を形成すると、シールド対象の磁束は閉磁路に集中し、磁束漏洩が極端に少なくなる。このような漏洩の小さい磁気回路で対象空間を囲むことにより、高度なシールド性能が得られるものと考えられる。閉磁路を形成した列状簾体16でシールド対象空間を囲むことにより、所要シールド効果を得るために必要な磁性材料を密閉型磁気シールドに比して節減し、高度な磁気シールド構造を経済的・効率的に構築できる。

第8図は本発明の他の態様を示す。同図(A)及び(B)のような複数の磁性簾体2a、2bを各簾体2a、2b内の簾面Fa、Fbがほぼ平行となるように積層して積層簾体3(同図(C)参照)を形成し、簾面Fa、Fbをシールド対象磁場Mに臨ませて磁気シールド構造を構築する。この態様の特徴の1つは、簾体2の積層数及び積層した各簾体2a、2bの簾体向きの選択により、対象磁場Mに対するシールド性能を調節できる点にある。図示例では、垂直向きの簾体2aと水平向きの簾体2bとを相互に直交させて積層しているが、各簾体2a、2bの簾体向きは相互に直行する場合に限らず相互に平行又は適当な角度で交差させてもよい。上述した表2のNo.5〜8に示すように簾体2a、2bを相互に交差又は直交させることによりシールド性能を高めることができるが、要求されるシールド性能が低い場合は簾体2a、2bの簾体向きを平行として適当なシールド性能とすることができる。好ましくは、対象磁場Mに対し最大のシールド性能を与えるように各簾体2a、2bの簾体向きを実験又は数値解析により定める。
積層簾体3も磁気シールド対象空間の任意シールド対象面に適用可能であるが、シールド対象磁場Mに臨む大面積の積層簾体3を形成する場合は、上述した列状簾体16の場合と同様に、比較的小面積の積層簾体3の複数組を各組内の磁性材料板1の端縁の重ね合わせ又は突き合わせにより列状に結合して大面積の積層簾体3とすることができる。第9図は、積層簾体3A内の垂直向きの簾体2Aaと積層簾体3B内の垂直向きの簾体2Baとを、各簾体2Aa、2Baの対応する磁性材料板1の端縁の重ね合わせにより磁気的に連続させて結合した実施例を示す。また第10図は、簾面FA、FBの向きが異なる2組の積層簾体3A、3Bを各組内の対応する磁性材料板1の端縁の重ね合わせにより磁気的に連続させて結合した実施例を示す。この図示例のように積層簾体3の複数組を磁気的に連続させて列状に結合することにより、複数方向のシールド対象磁場Mに対して所要シールド性能を有する開放型磁気シールド構造が構築できる。なお、各積層簾体3内の結合方向の磁性材料板1の板間隔dは一致させる必要があるが、結合方向以外の磁性材料板1の板間隔dは同一である必要はない。
望ましくは、第11図に示すように、3組以上の積層簾体3を閉じたシールド対象面に沿って列状に結合し、積層簾体3の列内における磁性材料板1の一端側端縁を他端側の対応する磁性材料板1の端縁と重ね合わせて又は突き合わせて結合することにより、シールド対象空間を囲む閉磁路を形成する。積層簾体3を環状に結合して閉磁路を形成すれば、開放型磁気シールド構造の磁気シールド性能を更に高めることができる。
積層簾体3を用いた磁気シールド構造のシールド性能は、積層簾体3内の各簾体2a、2bの簾体向きの選択だけでなく、積層簾体3内の磁性簾体2の積層数により調節可能である。本発明者は、3組の磁性簾体2(PCパーマロイ製)を内層・中層・外層として積層した積層簾体3を作り、各層の簾体2の向きを換えながら積層簾体3を第15図(A)の環状コイルLの中央部に設置してシールド係数Sを求める実験を行った。実験結果を表4のNo.15〜18欄に示す。表4のNo.15〜18欄と表2のNo.5〜8欄との比較から、積層簾体3内の磁性簾体2の積層数を増やすことによりシールド性能の向上を図れること、及び磁性簾体2の向きは交互に交差(又は直行)させたときにシールド性能が高くなることが確認できる。また表4は、単独の磁性簾体2の磁気シールドに比し(表2のNo.1〜4)、3層の磁性簾体2を簾体向きが交互に交差(又は直交)するように積層すればシールド性能が4〜5倍程度に高まることを示す。すなわち本発明の磁気シールド構造によれば、単に積層数に応じたシールド性能向上だけでなく、簾体向きとの組み合わせによる相乗的なシールド性能向上が期待できる。
また、本発明者は積層簾体3内の隣接する簾体2の間に空隙層4を介在させることによりシールド性能が向上できることを実験的に見出した。本発明者は、第8図(D)に示すように2組の磁性簾体2(PCパーマロイ製)の間に空隙層4を設けた積層簾体3を作り、各簾体2の向きを換えながら積層簾体3を第15図(A)の環状コイルLの中央部に設置してシールド係数Sを求めた。この実験結果を表4のNo.11〜14欄に示す。表4のNo.11〜14欄と表2のNo.5〜8欄との比較から分かるように、積層簾体3内の隣接する簾体2間に空隙層4を介在させることにより、空隙層4が存在しない場合に比しシールド性能の向上が図れる。空隙層4によるシールド性能の向上は、磁性材料板1の使用量を増やさずにシールド性能の向上を可能とする。すなわち本発明において空隙層4を組み合わせることにより、シールド性能を得るに当たり磁性材料を節減して経済的な磁気シールド構造の構築が可能となる。

こうして、本発明の目的である「隙間を有しつつ高度なシールド性能が得られる開放型磁気シールド構造」の提供が達成できる。
【実施例1】
本発明による開放型磁気シールド構造のシールド性能は、列状簾体16又は積層簾体3内における磁性材料板1の端縁の突き合わせ間隔、重ね合わせ方向の隙間(重ね合わせた両磁性材料板1の間の板厚方向間隔)G、又は重ね合わせ部分5の面積αの大きさ、磁性材料の種類、積層簾体3の層数等により調節可能である。また、磁性材料板1の突き合わせる端縁の形状を適当に成形してシールド性能を調節することも可能である。例えば、磁性材料板1の突き合わせ端縁を45度の角度で切断し、磁性材料板1を45度の切断面同士で突き合わせて結合することができる。
[実験例1]
磁性材料板1の端縁の突き合わせ間隔とシールド性能との関係を検討するため、厚さ0.35mm、幅25mm、長さ300mmの8枚の磁性材料板1(長手方向に圧延方向を揃えた方向性電磁鋼板製)を間隔d=30mmで重ねた磁性簾体2を用い、3つの簾体2の対応する磁性材料板1の端縁を突き合わせて第1図(B)のような列状簾体16を6つ作製した。各列状簾体16において、突き合わせ間隔を0〜5mmの範囲内で相違させた。各列状簾体16を第15図(A)の環状コイルLの中央部に設置し、コイルLの中央部に一方向直流磁場Mを形成し、列状簾体16の反対側に置いた磁気センサ9で磁束密度Bを測定してシールド係数Sを求めた。実験結果を第17図に示す。同図の横軸は突き合わせ間隔、縦軸は列状簾体16の設置後のシールド係数Sを表す。この実験結果から、磁性材料板1の端縁の突き合わせ間隔が広がるほどシールド性能は低下するが、突き合わせ間隔を3mm以下とすれば有意なシールド性能を得られることが確認できた。すなわち、磁性材料板1の端縁の突き合わせにより列状簾体16を形成する場合は、突き合わせ間隔を3mm以下とすることが適切である。
[実験例2]
磁性材料板1の端縁の重ね合わせ方向の隙間Gとシールド性能との関係を検討するため、実験例1と同じ磁性簾体2を4つ用い、各簾体2の対応する磁性材料板1の端縁を重ね合わせて矩形閉磁路とした9つの列状簾体16(第3図(A)参照)を作製した。各列状簾体16において、重ね合わせ方向の隙間Gを0〜5mmの範囲内で相違させた。各列状簾体16を第15図(A)の環状コイルLの中央部に設置し、コイルLの中央部に100μTの一方向磁場Mを形成し、列状簾体16の内側に置いた磁気センサ9で磁束密度Bを測定してシールド係数Sを求めた。本実験の結果を表5及び第18図に示す。表5と表3との比較から、重ね合わせの隙間が5mmであっても密閉型磁気シールド構造より高いシールド効果が得られることが分かる。しかし表5及び第18図は、重ね合わせ方向の隙間Gが広がるほどシールド性能が劣化し、とくに隙間Gが3mmより大きくなると急激にシールド性能が低下することを示している。従って、磁性材料板1の端縁の重ね合わせにより列状簾体16を形成する場合は、隙間Gを3mm以下とするのが適切である。

[実験例3]
更に、厚さ0.35mm、幅25mm、長さ900mmの8枚の磁性材料板1(方向性電磁鋼板製)を間隔d=30mmで重ねた磁性簾体2を用い、対応する磁性材料板1の端縁を重ね合わせて第3図(A)に示す複数の列状簾体16を作製し、実験例2と同様にして各列状簾体16のシールド係数Sを求めた。実験例2では磁性材料板1の列の長さ(閉磁路の長さ)Eが1200mm(300×4)であるのに対し、本実験ではその長さEが3600mm(900×4)である。各列状簾体16の重ね合わせ方向の隙間Gは、実験例2と同様に0〜5mmの範囲内で相違させた。本実験の結果を第19図に、実験例2の実験結果と併せて示す。同図において横軸は磁性材料板1の列の長さEに対する重ね合わせ方向の隙間Gの比(G/E)、縦軸は列状簾体16の設置後のシールド係数S、○印は実験例2の結果、×印は本実験の結果を表す。同図の実験結果から、列の長さ(又は閉磁路の長さ)Eに対する重ね合わせ方向の隙間Gの比が0.0025以下で良好なシールド効果が得られることが分かる。すなわち、磁性材料板1の端縁の重ね合わせにより列状簾体16を形成する場合は、磁性材料板1の列の長さ(又は閉磁路の長さ)Eに対する重ね合わせ方向の隙間Gの比を0.0025以下(G≦0.0025×E)とすることが適切である。
[実験例4]
磁性材料板1の端縁の重ね合わせ部分5の面積αとシールド性能との関係を検討するため、実験例2と同じ磁性簾体2を4つ用い、各簾体2の対応する磁性材料板1の端縁を異なる面積αで重ね合わせて第3図(A)に示す列状簾体16を作製し、各列状簾体16のシールド係数Sを求めた。本実験の結果を表6及び第20図に示す。同図の横軸は磁性材料板1の端縁の板幅W(=25mm)の二乗Wに対する重ね合わせ部分5の面積αの比(α/W;以下、重なり面積割合という。)、縦軸は列状簾体16の設置後のシールド係数Sを示す。表6から、閉磁路を形成した列状簾体16は、重なり面積割合=0(すなわち、磁性材料板1の端縁を突き合わせた場合)であっても比較的高いシールド性能を示すことが分かる。しかし表6及び第20図は、重なり面積割合が0.1〜0.2より小さくなるとシールド性能が低下することを示している。従って、磁性材料板1の端縁の重ね合わせにより列状簾体16を形成する場合は、重なり面積割合を0.1以上(≧0.1×W)とすることが適切であり、0.2以上(≧0.2×W)とすれば更に望ましい。

【実施例2】
本発明による磁気シールド構造のシールド性能は、列状簾体16又は積層簾体3内の対応する磁性材料板1の重ね合わせ面の数により調節することも可能である。例えば、第2図(C)のように磁性材料板1の端縁の突き合わせ部に磁性材料接続板8aを重ね合わせる場合に、突き合わせ部の表裏両側に接続板8aを重ね合わせることにより重ね合わせ面の数を増やすことができる。また、第6図に示すように磁性材料板1を複数の磁性材料薄板18の積層板とし、対応する磁性材料板1の一方の薄板18を他方の磁性材料板1の薄板18と互い違いに重ね合わせて接合することにより、重ね合わせ面の数を増やすことができる。
[実験例5]
磁性材料板1の端縁の重ね合わせ面の数によるシールド性能の変化を確認するため、厚さ0.35mm、幅25mm、長さ300mmの磁性材料薄板18(方向性電磁鋼板製)が3枚積層された磁性材料積層板1を用い、4つの積層板1a、1b、1c、1dを環状に結合して閉磁路とした磁性体フレーム(環状磁性材料板)6a、6b、6cを形成し、各磁性体フレーム6を間隔d=30mmで8つ重ねて列状簾体(第3図(A)参照、280mm×280mm×280mmの内容積)16a、16b、16cを作製した。第6図(A)は各積層板1a、1b、1c、1dを対応する端縁の重ね合わせ(重ね合わせ面数=1)により結合した環状磁性体フレーム6a、同図(B)は対応する端縁を薄板18の交互の重ね合わせ(重ね合わせ面数=5)により結合した環状磁性体フレーム6b、同図(C)は対応する端縁を突き合わせにより結合した環状磁性体フレーム6cである。また比較のため、厚さ0.35mm、幅及び長さ280mm×280mmの磁性材料薄板18(方向性電磁鋼板製)が3枚積層された磁性材料積層板1を用い、4枚の積層板1により第3図(B)のような密閉型磁気シールド体22を作製した。この磁気シールド体22の磁性材料の重量は、第6図(A)〜(C)の環状磁性体フレームを用いた列状簾体16a、16b、16cの重量とほぼ同じである。
各列状簾体16a、16b、16c又はシールド体22を第15図(A)の環状コイルLの中央部に設置し、コイルLの中央部に5〜200μTの一方向直流磁場Mを形成し、列状簾体16a、16b、16cの内側の磁気センサ9で磁束密度Bを測定してシールド係数Sを求めた。実験結果を表7及び第21図に示す。同図の横軸はシールド前の磁束密度B=μ・H、縦軸は列状簾体16a、16b、16c又はシールド体22の設置後のシールド係数Sを表す。表7と表3との比較から、磁性材料板1を積層板とすることによりシールド性能が向上すること、磁性材料板1の端縁の重ね合わせ面の数を増やすことによりシールド性能が更に向上することを確認できた。

[実験例6]
第7図は、中心軸方向(長さ方向)の端縁の少なくとも一方に凹凸を形成した磁性材料板1の一例を示す。同図(A)及び(B)は、6枚の磁性材料薄板18を板厚方向に積層し、3枚ずつの単位で薄板18の端縁を不揃いとすることにより長手方向の積層断面に薄板18の突出による凹凸構造が形成された磁性材料積層板1である。同図(C)及び(D)の磁性材料積層板1は、8枚の磁性材料薄板18が積層され、2枚ずつの単位で一端縁又は両端縁に凹凸を形成した例である。同図(E)及び(F)の磁性材料積層板1は、7枚の磁性材料薄板18が積層され、1枚毎に薄板18の端縁を不揃いとして凹凸を形成した例である。図示例の磁性材料積層板1は何れも、同図(G)のように、2つの磁性材料板1を端縁の凹凸の嵌合によって列状又は環状に結合することができる。
本発明の開放型シールド構造において優れたシールド性能を得るためには、磁性材料板1の端縁を重ね合わせて面接触させると共に、面接触した結合部からの磁束漏洩を小さく抑えることが重要である。第7図(G)のように2つの磁性材料板1の端縁を凹凸の嵌合によって結合すれば、第2図(B)のように磁性材料板1の端縁面を単に重ね合わせる場合に比し、磁性材料板1の端縁の重ね合わせ面の数を増やして磁束漏洩を小さく抑えることができる。磁性材料板1を構成する薄板18の積層枚数が同じであれば、1つの凹凸を構成する枚数が少ないほど重ね合わせ面の数が増えるので磁束漏洩を小さくできる。但し、凹凸の形状及び数は図示例に限定されない。また本発明者は、磁性材料板1の端縁の板幅Wに対する凹凸の深さ(端部からの薄板18の突出長さ)Rの比を0.1以上(0.1W≦R)とすることが望ましいことを実験的に見出した。板幅Wに対する凹凸の深さRの比が0.1より小さくなると、結合部にできる空隙が磁束漏洩の観点から無視できなくなり、結合部からの磁束漏洩が大きくなり得る。
【実施例3】
以上、主に特定方向の一方向磁場Mに対する磁気シールド構造について説明したが、対象磁場Mの方向が決まっていない部屋等の受動的磁気シールドでは、第3図(A)のように環状に結合した列状簾体16を基本ユニットとする磁気シールド構造が効果的である。但し、第3図(A)のシールド構造の場合、磁気回路の開口した面に垂直な方向の磁場に対してはシールド性能が小さい。あらゆる方向の磁場に対応するには、シールド構造に開口を形成しないことが重要である。本発明によれば、第11図及び第12図のように基本ユニットを積層することにより、あらゆる方向の磁場に対応可能な開放型磁気シールド構造を構築できる。
第12図は、磁気シールド対象空間Qの中心点Oを通る軸線Aと所定角度で交差する所要間隔dの複数のほぼ平行な平面P上に設けた対象空間Qの断面径以下の外径の環状磁性材料板6の組7を基本ユニット(第3図(A)の列状簾体16)とした本発明の磁気シールド構造の実施例を示す。環状磁性材料板6の一例は、第4図に示すように、例えば短冊形の磁性材料板1の群を隣接する磁性材料板1の端縁の重ね合わせ又は突き合わせにより磁気的に連続させて環状に結合した磁性体フレームである。環状磁性材料板6の組7により対象空間Qの4面を囲う閉磁路の列が形成できる。
第13図を参照して、第12図の磁気シールド構造の形成方法を説明する。先ず、磁気シールド対象空間Qの中心点Oを通る第1軸線A1と直交する所要間隔d1の複数の平面P1を想定し、各平面P1上に対象空間Qの断面径以下の外径の第1環状磁性材料板6の組7を配置する。次に第1環状磁性材料板6の組7の中空部に、中心点Oを通る第2軸線A2と直交する所要間隔d2の複数の平面P2を想定し、その平面P2の各々の上に第1環状磁性材料板6の内径以下の外径の第2環状磁性材料板6の組7を配置する。すなわち対象空間Qの周囲に、第1環状磁性材料板6の組7と、その内側の第2環状磁性材料板6の組7とを配置する。
図示例では、第1環状磁性材料板6及び第2環状磁性材料板6を矩形閉磁路とし、第1軸線A1と第2軸線A2とを直交させているので、天井面と床面とに2層の磁性簾体2が相互に直交向きに配置され、他の壁面には1層の磁性簾体2が配置された開放型シールド構造が構築できる。第1軸線A1と第2軸線A2とを平行にすれば、天井面と床面と2つの壁面とに2層の磁性簾体2が相互に平行向きに配置された開放型シールド構造が構築できる。軸線A1、A2に対する平面P1、P2の交差角度を直交以外とすることより、積層する磁性簾体2の簾体向きを任意に選択することも可能である。このように第12図のシールド構造において、第1軸線A1と第2軸線A2との向きの選択と軸線A1、A2に対する平面P1、P2の交差角度の選択とにより、磁気シールド対象空間Qの各面に対するシールド性能を調節できる。
好ましくは、第13図に示すように、第2環状磁性材料板6の組7の中空部に、磁気シールド対象空間Qの中心点Oを通り第1及び第2軸線A1、A2と直交する第3軸線A3、その第3軸線A3と直交する所要間隔d3の複数の平面P3を想定し、その平面P3の各々の上に第2環状磁性材料板6の内径以下の外径の第3環状磁性材料板6の組7を配置する。この配置により、対象空間Qの天井面・床面・壁面の6面全体に相互に直交向きの2層の磁性簾体2が配置された開放型シールド構造を構築し、表2のNo.7〜8欄に示すシールド性能を対象空間Qの6面全体に付与できる。また、第1環状磁性材料板6の組7と第2環状磁性材料板6の組7との間、及び第2環状磁性材料板6の組7と第3環状磁性材料板6の組7との間に空隙層4を介在させることにより、表4のNo.13〜14欄に示すシールド性能を対象空間Qの6面全体に付与できる。
第12図及び第13図は環状磁性材料板6iの組7iによる3層の入れ子式シールド構造を示すが、第3環状磁性材料板6の組7の中空部に更に、中心点Oを通る第n軸線Anと所定角度で交差(例えば直交)する所要間隔dnの複数の平面Pnを想定し、その平面Pnの各々の上に第(n−1)環状磁性材料板6(n−1)の内径以下の外径の第n環状磁性材料板6の組7を配置することが可能である。この配置により、磁気シールド対象空間Qの周囲に第1環状磁性材料板6の組7から第n環状磁性材料板6の組7までのn層が配置される。例えば、高度な磁気シールドが要求される生体磁気測定装置の設置室等では、環状磁性材料板6iの組7iを20層程度の入れ子式構造とすることも考えられる。
第14図は、第13図の開放型シールド構造を用いたシールド対象空間Qの実施例を示す。本発明の磁気シールド構造の利点は、高いシールド性能を有しつつ通気性や透光性、透視性、放熱性を有する点にあり、第14図に示すように各環状磁性材料板6iの組7iに通気孔11を設けることにより多層の入れ子式構造にも拘わらず対象空間Qとコンプレッサー12とを連通する空気流路を形成することができ、従来の空調設計手法を容易に適用できる。また、各環状磁性材料板6iの間隙に断熱材10を配置することも可能であり、清浄恒温室等への適用も期待できる。
[実験例7]
PCパーマロイ製の短冊形磁性材料板1を環状方向に一部重ね合わせつつ結合して環状磁性材料板6(第4図(A)参照)を作成し、その環状磁性材料板6の組7を用いて第13図に示す3層の入れ子式開放型シールド構造体を試作した。この開放型シールド構造体を第15図(A)の環状コイルLの中央部に設置し、構造体の内側に磁気センサ9を置き、コイルLに直流又は交流電流を流して所定磁束密度の磁場Mを印加することにより本発明の開放型シールド構造の性能を確認する実験を行った。また、PCパーマロイ製の磁性材料板を用いて第3図(B)のような密閉型磁気シールド体22を作成し、本発明の開放型シールド構造とシールド性能を比較した。シールド体22に用いた磁性材料の重量は、開放型シールド構造体に用いた磁性材料の重量と同じとした。この実験結果を表8に示す。
表8の実験結果から、第13図に示す3層の入れ子式開放型シールド構造体は、同じ重量の磁性材料を用いたシールド体22に比し、直流磁場及び交流磁場の何れにおいても高いシールド性能を示すことが確認できた。とくに直流磁場に対しては5〜8倍程度の高いシールド性能を示し、磁場の磁束密度が大きくなるほど密閉型シールド構造とのシールド性能の差は大きくなる。この実験結果から本発明の開放型シールド構造は、従来の密閉型シールド構造に比し、高い磁束密度の磁場に対しても高度な磁気シールドを経済的に実現できることが確認できた。

【実施例4】
本発明の開放型磁気シールド構造は、受動的シールドだけでなく、能動的シールドへの適用も期待できる。また本発明のシールド構造により、能動的シールドと受動的シールドとを同時に実現することも期待できる。MRIやNMR等の設置室では、上述した磁束漏洩の抑制が求められると共に、外乱磁場の影響をなくしてゆらぎの小さな磁場環境を作ることが求められる。従来の1層式の密閉型シールド構造では、内部磁場の能動的シールドにより磁性材料板が飽和してしまい、外乱磁場の受動的シールドが十分に機能しない場合がある。本発明の開放型シールド構造は複数の磁性簾体を積層することができ、必要に応じて磁性簾体の積層数を増やすことができるので、主に内側の磁性簾体による内部磁場の能動的シールドと主に外側の磁性簾体による外乱磁場の受動的シールドとを同時に実現することが可能であり、電鉄や送電線、電気室等の外乱ノイズの大きな場所でのMRI室等への適用が期待できる。
[実験例8]
本発明の開放型シールド構造が、受動的シールドだけでなく能動的シールドにも適用可能であることを確認するため、ケイ素鋼板製の磁性材料板を用いて第13図に示す3層の入れ子式開放型シールド構造体を作製し、第15図(B)に示すようにシールド構造体の中央部に環状コイルLを設置し、コイルLに矢印I向きにMRI装置と同程度の直流電流を流して直流磁場Mを形成し、構造体外側における漏洩磁束を磁気センサ9で測定する実験を行った。磁気センサ9を移動させながら構造体外側の複数の位置でそれぞれ三軸方向の磁束密度を測定し、三軸方向の合成値を算出して構造体外側の磁束密度分布図を作成し、シールド構造体がない場合の磁束密度分布図と比較することにより本発明の開放型シールド構造の能動的シールド性能を検討した。また、実験例7と同様にしてケイ素鋼板製の密閉型磁気シールド体22を作成し、そのシールド体22についても同様に磁束密度分布図を作成し、本発明の開放型シールド構造と能動的シールド性能を比較した。
第22図(A)はシールド構造がない場合のコイルL周囲の磁束密度分布図、同図(B)は密閉型シールド体22の外側の磁束密度分布図、同図(C)は本発明の開放型シールド構造の外側の磁束密度分布図を示す。同図(A)には、シールド構造(シールド壁)の設置部位を併せて示す。同図(B)から分かるように密閉型シールド体22では外部漏洩磁束が壁面近くで0.20mT程度存在するのに対し、同図(C)に示すように本発明の開放型シールド構造では外部漏洩磁束を壁面近くで0.08mT程度まで低減することができた。また、密閉型シールド体22では磁性材料板の直角接合部からの磁束漏洩が存在するのに対し(同図(B)参照)、開放型シールド構造では磁性材料板の接合部からの磁束漏洩は存在しなかった。この接合部からの磁束漏洩の相違は、密閉型シールド体22では第5図(B)及び(I)のように磁性材料板を突き合わせにより接続せざるを得ない線接合なのに対し、本発明の開放型シールド構造では第5図(A)及び(E)のように磁性材料板を板面で重ね合わせて面接続させたことも原因であると考えられる。
医療機関等におけるMRI室では、外部のペースメーカー装着者や他の医療機器等に悪影響を及ぼさないように、外部漏洩磁場を0.5mT以下、好ましくは0.1mT程度に抑えることが望まれている。第22図の実験結果から、本発明による開放型シールド構造は同じ重量の磁性材料を用いた密閉型シールド構造より高度な能動的シールドを実現でき、MRI室等の磁気シールドに適しているということができる。
【実施例5】
本発明による開放型磁気シールド構造のシールド性能は、磁性材料板1の材料によって変わり得る。優れたシールド性能を得るためには、磁性材料板1を透磁率μの高い軟磁性材料製とすることが好ましい。軟磁性材料の種類により高い透磁率μが得られる磁場の強さが異なるので、例えば方向性電磁鋼板、無方向性電磁鋼板、パーマロイ、軟磁性鋼板、アモルファス合金、液体急冷箔帯を結晶化させた微結晶磁性材料等のうち1種又は2種以上組み合わせて磁性材料板1とすることにより、広範な磁場の強さに対応できる磁気シールド構造が得られる。更に本発明者は、遮蔽対象の磁束方向に磁化容易方向が一致した方向性磁性材料製(例えば方向性電磁鋼板製)を用いることにより、磁気シールド構造の大きなシールド効果が得られることを実験的に確認した。磁性簾体2内に異なる材料製の磁性材料板1を含め、シールド対象磁場に応じて異なる材料を含む磁性簾体2を適切に組み合わせてシールド性能を調整することも可能である。
【実施例6】
本発明の開放型磁気シールド構造は、電力ケーブル、電流ケーブル等の電線から発生する交流・直流磁場による周囲への影響(OA機器のモニター画面の乱れ等)を防止し、電線周囲の磁場環境を整備するために有効である。電線の配線ダクトは放熱が必要であるため、密閉型磁気シールドで全体を覆ってしまうと放熱対策が別途必要となる。配線ダクトを開放型磁気シールド構造とすれば、特段の放熱対策が必要なくなると共に、構造の簡素化と使用材料の節約が図れる。また、設備増強等のため電線を増設する必要が生じた場合に、従来の密閉型ダクトでは電線の追加敷設に手間がかかるのに対し、本発明の開放型ダクトによれば追加敷設が極めて容易である。
第23図(A)は、開放型磁気シールド構造の配線ダクトの一例を示す。図示例のダクトは、電線24とほぼ直交する面上に電線を囲うように磁性体フレーム6を所要間隔dで配置し、磁性体フレーム6で囲われた部分をシールドする。具体的には、例えば第3図(A)又は第13図のような構造で電線24を囲む。実際の施工に際して、例えば第2図(A)〜(D)のようなU字型の磁性材料板(U字板)1uとこの部品の開口辺を閉じる形のI字型の磁性材料板(I字板)1iとを一組の単位とし、U字板1u及びI字板1iで電線24を囲って第4図のような磁性体フレーム(環状磁性材料板)6を形成する。U字板1uとI字板1iとの接合部は、相互に重ね合わせ又は突き合わせにより密着させる。好ましくは、接合部に組み込んだ弾性体により又は磁性材料板1自体の弾性により、接合部を相互に重ね合わせて密着させる。U字板1u及びI字板1iからなる磁性体フレーム6を電線24の長さ方向に所要間隔dで配設することにより、第23図(A)のような開放型磁気シールド構造の配線ダクトが完成する。
第23図(A)の配線ダクトは、電線24を支持する電線ラック23と、電線24及び電線ラック23を囲むように配設した複数の磁性体フレーム6とを有する。但し、電線24が支持できれば複数の磁性体フレーム6のみによって開放型磁気シールド構造の配線ダクトを形成することができ、電線ラック23は省略可能である。また、磁性材料板6はU字板1u及びI字板1iの組合せに限らず、例えば第23図(A)のダクト下側の磁気シールドのみが必要である場合はI字板1iを省略してもよい。更に第23図(B)に示すように、4枚又は3枚のI字板1iからなる磁性体フレーム6を用いて配線ダクトを形成してもよい。
なお、第23図の実施例は開放型磁気シールド構造の内部に磁界発生源が存在する場合であるが、高圧線の近傍等では、同図と同じ方式で建物や部屋等を複数の磁性体フレーム6で囲うことにより、外部の磁界発生源に影響されない磁気遮蔽空間を作ることも可能である。
【産業上の利用可能性】
本発明の開放型磁気シールド構造は、建築関係、土木関係その他の技術分野に広く適用可能である。例えば医療施設等におけるMRI装置や超電導センサ装置、半導体工場や研究所等における加速器や核融合等の強磁場施設、EB(Electron Beam、電子ビーム)装置、電子顕微鏡、NMR(Nuclear Magnetic Resonance、核磁気共鳴)設備、変電所における電力幹線やトランス、建築物のコンピュータルームや電気室等に対して受動的及び/又は能動的磁気シールドを付与する場合に広く適用できる。また、電鉄の防音壁、床版、ボックスカルバート、型枠リブ、駅舎、き電線カバー、地下送電線の共同溝等に磁気シールド機能を付与する場合にも広く適用できる。ディスプレイカバー等の機器部材としての利用も期待でき、吸音材と組み合わせた防音・磁気シールド壁、断熱材と組み合わせた断熱・磁気シールド壁等のハイブリッド型の建具への応用も期待できる。
【図面の簡単な説明】
第1図は、磁性簾体が列状に結合され本発明の列状簾体の実施例の説明図である。
第2図は、本発明による磁気シールド用磁性体フレームの実施例の説明図である。
第3図は、本発明による閉磁路を形成した列状簾体の実施例の説明図である。
第4図は、閉磁路を形成した磁性体フレーム(環状磁性材料板)の一例の説明図である。
第5図は、磁性材料板の端縁の接続方法によるシールド性能の相違を示す説明図である。
第6図は、閉磁路を形成した磁性体フレームの作製方法の一例を示す図である。
第7図は、複数の磁性材料薄板が積層され長手方向端縁に薄板の突出による凹凸が形成された積層板を用いた磁性体フレームの説明図である。
第8図は、磁性簾体が積層された本発明の積層簾体の実施例の説明図である。
第9図は、積層簾体を垂直方向に列状に結合した実施例の説明図である。
第10図は、積層簾体を水平方向に列状に結合した実施例の説明図である。
第11図は、閉磁路を形成した列状簾体の2組を用いた本発明の開放型磁気シールド構造の説明図である。
第12図は、閉磁路を形成した列状簾体の3組を用いた本発明の開放型磁気シールド構造の説明図である。
第13図は、第12図の磁気シールド構造を形成する方法の説明図である。
第14図は、第12図の磁気シールド構造を用いた実施例の説明図である。
第15図は、本発明の磁気シールド構造のシールド性能を確認する実験装置の説明図である。
第16図は、第12図の磁気シールド構造のシールド性能を示すグラフである。
第17図は、磁性材料板を端縁の突き合わせで結合した場合の突き合わせ間隔とシールド性能との関係を示すグラフである。
第18図は、磁性材料板を端縁の重ね合わせで結合した場合の重ね合わせの間隔とシールド性能との関係を示すグラフである。
第19図は、磁性材料板を端縁の重ね合わせで結合した場合における、結合後の磁性材料板列の長さEに対する重ね合わせの隙間の比とシールド性能との関係を示すグラフである。
第20図は、磁性材料板を端縁の重ね合わせで結合した場合における、端縁の板幅Wの二乗Wに対する重ね合わせ部分の面積の比とシールド性能との関係を示すグラフである。
第21図は、第6図の方法で磁性材料板を結合した列状簾体のシールド性能を示すグラフである。
第22図は、第12図の磁気シールド構造のシールド性能を示す図である。
第23図は、電気の配線ダクトを磁気シールドする構造体を示す図である。
【符号の説明】
1…磁性材料板 2…磁性簾体
3…積層簾体 4…空隙層
5…重ね合わせ部分
6…磁性体フレーム又は環状磁性材料板
7…環状磁性材料板の組 8a…接続板
8b…非磁性部材 9…磁気センサ
10…断熱材 11…通気孔
12…空調装置 13…空気流路
14…壁体 16…列状簾体
18…磁性材料薄板 20…磁性材料板
21、22…(密閉型)磁気シールド体
23…電線ラック 24…電線(配線ケーブル)
A…軸線 C…中心軸
d…間隔 D…径
F…簾面 I…電流
L…電流担体(コイル) M…磁場
O…中心点 P…平面
Q…シールド対象空間 W…板幅
E…磁性材料板の列の長さ
R…磁性材料板の端縁の凹凸の深さ
S…シールド係数
G…重ね合わせ方向の隙間
α…重ね合わせ部分の面積
【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【図23】


【特許請求の範囲】
【請求項1】
磁性材料板の群を各板の長さ方向中心軸が同一簾面上にほぼ平行に並ぶように所要板間隔で重ねて磁性簾体を形成し、複数の前記簾体を隣接する各簾体の磁性材料板の端縁の重ね合わせ又は突き合わせにより列状に結合して磁気シールド面を形成してなる開放型磁気シールド構造。
【請求項2】
請求項1の磁気シールド構造において、3以上の前記磁性簾体を閉じた列状に結合して閉磁路を形成してなる開放型磁気シールド構造。
【請求項3】
請求項1又は2の磁気シールド構造において、前記磁性材料板の端縁を3mm以下の隙間を介して重ね合わせてなる開放型磁気シールド構造。
【請求項4】
請求項1又は2の磁気シールド構造において、前記磁性材料板の列の長さEに対する当該磁性材料板の端縁の重ね合わせ方向の隙間Gの比を0.0025以下(G≦0.0025×E)としてなる開放型磁気シールド構造。
【請求項5】
請求項1又は2の磁気シールド構造において、前記磁性材料板端縁の板幅Wの二乗Wに対する重ね合わせ部分の面積αの比を0.1以上(α≧0.1×W)としてなる開放型磁気シールド構造。
【請求項6】
請求項1又は2の磁気シールド構造において、前記磁性材料板の端縁を3mm以下の間隔で突き合わせてなる開放型磁気シールド構造。
【請求項7】
請求項1又は2の磁気シールド構造において、前記磁性材料板の端縁の突き合わせ部に両端縁に跨る磁性材料接続板を更に重ね合わせてなる開放型磁気シールド構造。
【請求項8】
請求項1又は2の磁気シールド構造において、前記磁性材料板を複数の磁性材料薄板の積層板とし、前記磁性材料積層板の端縁を前記薄板の交互の重ね合わせにより結合してなる開放型磁気シールド構造。
【請求項9】
請求項1又は2の磁気シールド構造において、前記磁性材料板の端縁に中心軸方向の凹凸を形成し、前記磁性材料板を端縁の凹凸の嵌合により列状に結合してなる開放型磁気シールド構造。
【請求項10】
請求項9の磁気シールド構造において、前記磁性材料板の端縁の板幅Wに対する前記凹凸の深さRの比を0.1以上(0.1W≦R)としてなる開放型磁気シールド構造。
【請求項11】
磁性材料板の群を各板の長さ方向中心軸が同一簾面上にほぼ平行に並ぶように所要板間隔で重ねて磁性簾体を形成し、複数の前記簾体を各簾体内の簾面がほぼ平行となり且つシールド対象磁場に臨むように積層し、前記各簾体内の磁性材料板の中心軸向きの選択により前記磁場に対する所要シールド性能を与えてなる開放型磁気シールド構造。
【請求項12】
請求項11の磁気シールド構造において、前記積層簾体内の隣接する簾体の磁性材料板の中心軸向きを相互に交差させてなる開放型磁気シールド構造。
【請求項13】
請求項11又は12の磁気シールド構造において、前記積層簾体内に磁性簾体を3層以上積層してなる開放型磁気シールド構造。
【請求項14】
請求項11又は12の磁気シールド構造において、前記積層簾体内の隣接する簾体間に空隙層を介在させてなる開放型磁気シールド構造。
【請求項15】
請求項11の磁気シールド構造において、前記積層簾体の複数組を、隣接する各組内の対応する磁性材料板の端縁の重ね合わせ又は突き合わせによりシールド対象面に沿って列状に結合してなる開放型磁気シールド構造。
【請求項16】
請求項15の磁気シールド構造において、3組以上の前記積層簾体を閉じた列状に結合して閉磁路を形成してなる開放型磁気シールド構造。
【請求項17】
磁気シールド対象空間の中心点を通る第1軸線と所定角度で交差する所要間隔の複数のほぼ平行な平面上に設けた前記対象空間の断面径以下の外径の第1環状磁性材料板の組、及び前記中心点を通る第2軸線と所定角度で交差する所要間隔の複数のほぼ平行な平面上に設けた前記第1環状磁性材料板の内径以下の外径の第2環状磁性材料板の組を備え、前記対象空間の周囲に前記第1環状磁性材料板の組とその内側の第2環状磁性材料板の組とを配置してなる開放型磁気シールド構造。
【請求項18】
請求項17の磁気シールド構造において、前記第1軸線と第2軸線とを交差させてなる開放型磁気シールド構造。
【請求項19】
請求項17の磁気シールド構造において、前記第1環状磁性材料板の組と第2環状磁性材料板の組との間に空隙層を介在させてなる開放型磁気シールド構造。
【請求項20】
請求項17の磁気シールド構造において、前記中心点を通る第n軸線と所定角度で交差する所要間隔の複数のほぼ平行な平面上に第(n−1)環状磁性材料板の内径以下の外径の第n環状磁性材料板の組を設け、前記対象空間の周囲に前記第1環状磁性材料板の組から第n環状磁性材料板の組までのn層を配置してなる開放型磁気シールド構造。
【請求項21】
請求項20の磁気シールド構造において、前記第n軸線と第(n−1)軸線とを相互に交差させてなる開放型磁気シールド構造。
【請求項22】
請求項20又は21の磁気シールド構造において、前記第n環状磁性材料板の組と第(n−1)環状磁性材料板の組との間に空隙層を介在させてなる開放型磁気シールド構造。
【請求項23】
請求項17又は20の磁気シールド構造において、前記環状磁性材料板を、短冊形磁性材料板の群を隣接する磁性材料板の端縁の重ね合わせ又は突き合わせにより環状に結合したものとしてなる開放型磁気シールド構造。
【請求項24】
請求項1、2、11、12、15、16、17又は20の磁気シールド構造において、前記磁性材料板を、方向性電磁鋼板、無方向性電磁鋼板、パーマロイ、軟磁性鋼板、アモルファス合金、液体急冷薄帯を結晶化させた微結晶磁性材料のうち1種又は2種以上の材料製としてなる開放型磁気シールド構造。
【請求項25】
請求項24の磁気シールド構造において、前記磁性簾体内に異なる材料製の磁性材料板を含めてなる開放型磁気シールド構造。
【請求項26】
磁性材料板の群又は複数の磁性材料薄板が積層された磁性材料積層板の群を、各板の板面がほぼ同一平面となるように各板の長さ方向端縁で隣接させ且つ隣接する各板の端縁を重ね合わせ又は突き合わせて列状に結合した開放型磁気シールド構造用の磁性体フレーム。
【請求項27】
請求項26の磁性体フレームにおいて、3以上の前記磁性材料板又は磁性材料積層板を閉じた列状に結合して閉磁路を形成した開放型磁気シールド構造用の磁性体フレーム。
【請求項28】
請求項26又は27の磁性体フレームにおいて、前記磁性材料板又は磁性材料積層板の端縁を3mm以下の隙間を介して重ね合わせた開放型磁気シールド構造用の磁性体フレーム。
【請求項29】
請求項26又は27の磁性体フレームにおいて、前記磁性材料板又は磁性材料積層板の列の長さEに対する当該磁性材料板又は磁性材料積層板の端縁の重ね合わせ方向の隙間Gの比を0.0025以下(G≦0.0025×E)とした開放型磁気シールド構造用の磁性体フレーム。
【請求項30】
請求項26又は27の磁性体フレームにおいて、前記磁性材料板又は磁性材料積層板の端縁の板幅Wの二乗Wに対する重ね合わせ部分の面積αの比を0.1以上(α≧0.1×W)とした開放型磁気シールド構造用の磁性体フレーム。
【請求項31】
請求項26又は27の磁性体フレームにおいて、前記磁性材料板の端縁を3mm以下の間隔で突き合わせた開放型磁気シールド構造用の磁性体フレーム。
【請求項32】
請求項26又は27の磁性体フレームにおいて、前記磁性材料板又は磁性材料積層板の端縁の突き合わせ部に両端縁に跨る磁性材料接続板を更に重ね合わせた開放型磁気シールド構造用の磁性体フレーム。
【請求項33】
請求項26又は27の磁性体フレームの複数を、各フレームの板面の法線方向に所要板間隔で重ねることにより形成した開放型磁気シールド構造。
【請求項34】
請求項33の磁性シールド構造において、前記所定板間隔で重ねた複数の磁性体フレームにより電線の配線ダクトを形成した開放型磁気シールド構造。
【請求項35】
請求項33の磁性シールド構造において、前記所定板間隔で重ねた複数の磁性体フレームにより磁気遮蔽空間を形成した開放型磁気シールド構造。
【請求項36】
複数の磁性材料薄板を積層し、長手方向端縁の少なくとも一方の積層断面に前記薄板の突出による凹凸を形成し、前記端縁の凹凸の嵌合により列状に結合可能とした開放型磁気シールド構造用の磁性材料積層板。
【請求項37】
請求項36の磁性材料積層板において、前記長手方向端縁の板幅Wに対する前記凹凸の深さRの比を0.1以上(0.1W≦R)とした開放型磁気シールド構造用の磁性材料積層板。

【国際公開番号】WO2004/084603
【国際公開日】平成16年9月30日(2004.9.30)
【発行日】平成18年6月29日(2006.6.29)
【国際特許分類】
【出願番号】特願2005−503685(P2005−503685)
【国際出願番号】PCT/JP2004/003457
【国際出願日】平成16年3月16日(2004.3.16)
【出願人】(000001373)鹿島建設株式会社 (1,387)
【出願人】(000006655)新日本製鐵株式会社 (6,474)
【Fターム(参考)】