説明

電極材料及びそれを含む固体酸化物型燃料電池セル

【課題】耐久性に優れ、燃料電池に適用可能な電極材料を提供する。
【解決手段】電極材料は、一般式ABOで表されるペロブスカイト構造を有する複合酸化物を含有し、1つの視野内の10スポットにおいてエネルギー分散型X線分光法により測定されたAサイト内の各元素の原子濃度の標準偏差値が10.3以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電極材料及びそれによって形成された空気極を備える固体酸化物型燃料電池セルに関する。
【背景技術】
【0002】
近年、環境問題及びエネルギー資源の有効利用の観点から、燃料電池に注目が集まっており、燃料電池に関して、いくつかの材料及び構造が提案されている。
【0003】
特許文献1には、固体電解質型燃料電池(SOFC)セルの空気極の原料粉体として、LSCF粉体を用いることが記載されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−32132号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、燃料電池を用いた発電を繰り返すうちに、得られる電圧が低下することがある。本発明者らは、電圧の低下の原因の1つが空気極の劣化によるものであることを新たに見出した。
【0006】
本発明は、このような新たな知見に基づくものであって、新たな電極材料を提供し、またそれを含む固体電解質型燃料電池を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者らは、上述の課題を解決するために鋭意検討した結果、電極材料の成分の濃度の均一性を高めることで、電極の劣化を抑制することができるという新たな知見を得た。
【0008】
すなわち、本発明の第1観点に係る電極材料は、一般式ABOで表されるペロブスカイト構造を有する複合酸化物を含有し、1つの視野内の10スポットにおいてエネルギー分散型X線分光法により測定されたAサイト内の各元素の原子濃度の標準偏差値が10.3以下である。
【0009】
また、本発明の第2観点に係る固体酸化物型燃料電池セルは、電極材料からなる空気極と、燃料極と、空気極と燃料極との間に配置される固体電解質層と、を備える。
【発明の効果】
【0010】
上述の電極材料は、例えば燃料電池の電極を形成する材料として好適である。この電極材料によって形成された電極は、劣化が抑制され、優れた耐久性を示す。
【図面の簡単な説明】
【0011】
【図1】縦縞型燃料電池の要部構成を示す断面図である。
【図2】実施例のNo.1の試料について、1つの視野におけるSEM画像及び濃度マッピングの画像を示す。
【図3】実施例のNo.7の試料について、1つの視野におけるSEM画像及び濃度マッピングの画像を示す。
【図4】横縞型燃料電池の外観を示す斜視図である。
【図5】図4のI−I矢視断面図である。
【発明を実施するための形態】
【0012】
1.電極材料
電極材料は、ペロブスカイト構造を有する複合酸化物を含む。電極材料は、複合酸化物以外の成分を含んでいてもよい。
【0013】
複合酸化物の組成は、一般式ABOで表される。また、Aサイトには、La及びSrの少なくとも一方が含まれてもよい。このような複合酸化物の具体例としては、LSCFつまり(LaSr)(CoFe)O、LSFつまり(LaSr)FeO、LSCつまり(LaSr)CoO、LNFつまりLa(NiFe)O、SSCつまり(SmSr)CoO等の材料が挙げられる。これらの複合酸化物は、酸素イオン伝導性と電子伝導性を併せ持つ物質であり、混合導電材料と呼ばれる。これらの複合化合物は、燃料電池の空気極の材料として適している。
【0014】
電極材料は、複合酸化物を「主成分」として含むことができる。組成物Xが物質Yを「主成分として含む」とは、組成物X全体のうち、物質Yが好ましくは60重量%以上を占め、より好ましくは70重量%以上を占め、さらに好ましくは90重量%以上を占めることを意味する。
【0015】
また、電極材料は、粉体(例えば平均粒径0.1μm〜5μm程度)或いは解砕物(例えば平均粒径5μm〜500μm程度)であってもよいし、解砕物よりも大きな塊であってもよい。
【0016】
電極材料は、組成分布が高い均一性を有していることが好ましい。具体的には、電極材料における任意の視野内で、10スポットにおいて、EDS(エネルギー分散型X線分光法:Energy Dispersive x-ray Spectroscopy)により、Aサイトに含まれる元素のそれぞれの原子濃度を取得し、その原子濃度の標準偏差値を得たとき、Aサイトにおいて得られる標準偏差値が、10.3以下であることが好ましい。
【0017】
例えば、Aサイトに、A1、A2、A3・・Anのn種の元素が含まれるとする。10スポットで得られた原子濃度に基づいて、各元素の原子濃度の標準偏差値を取得した場合、元素A1についての原子濃度の標準偏差値が、A2〜Anそれぞれについての標準偏差値よりも大きいとき元素A1についての標準偏差値が、10.3以下であることが好ましい。
ここで、任意の視野とは、SEM(走査型電子顕微鏡:Scanning Electron Microscope)やEPMA(電子プローブマイクロアナライザー:Electron Probe Micro Analyzer)などの電子顕微鏡において100倍〜5000倍の倍率で観察される範囲であればよい。また、10スポットそれぞれのサイズは、1μm以下とすることができる。
なお、10スポットの位置は、例えばEPMA(電子プローブマイクロアナライザー:Electron Probe Micro Analyzer)によって測定される原子濃度の分布に基づいて設定される10段階の濃度レベルに応じて選択することができる。このような10段階の濃度レベルは、原子濃度の分布の略全範囲に渡って設定されることが好ましい。例えば、10段階の濃度レベルは、任意の視野内における特性X線強度の最大値と最小値の間を10分割することによって設定することができる。
【0018】
2.電極材料の製造方法
上記1.欄の電極材料の製造方法の例を以下に説明する。
【0019】
製造方法は、具体的には、ペロブスカイト構造を有する複合酸化物を得ることを含む。
【0020】
複合酸化物を得る方法としては、固相法、液相法(クエン酸法、ペチニ法、共沈法等)等が挙げられる。
【0021】
「固相法」とは、構成元素を含む原料(粉末)を所定の比で混合することで得られた混合物を焼成し、その後に粉砕することで目的材料を得る手法である。
【0022】
「液相法」とは、
・構成元素を含む原料を溶液に溶かすこと、
・その溶液から目的材料の前駆体を沈殿等によって得ること、及び
・さらに乾燥、焼成、及び粉砕を行うこと、
の工程によって、目的材料を得る手法である。
【0023】
電極材料における組成分布を制御し得る因子としては、さらに、原料の種類、原料の混合方法、原料の混合条件に加えて、合成温度(900℃〜1400℃、1〜30hr)が挙げられる。
【0024】
また、製造方法は、得られた複合酸化物を粉砕することを含んでいてもよい。粉砕には、例えばボールミルが用いられる。粉砕の前に、解砕を行ってもよい。すなわち、ペロブスカイト構造を有する材料の塊を作製し、これを砕いた後(解砕した後)、さらに細かく粉砕することができる。これらの工程によって、材料の平均粒径は、20μm以下、5μm以下、又は1μm以下に調整される。
【0025】
3.縦縞型燃料電池(固体酸化物型燃料電池)
燃料電池の一例として、固体酸化物型燃料電池(Solid Oxide Fuel Cell:SOFC)を挙げる。特に以下では、主に、複数の燃料電池セルが積層されたセルスタック構造を有するSOFCについて説明する。
【0026】
3−1.燃料電池の概要
図1に示すように、燃料電池10は、燃料電池セル(単に「セル」と称される)1と、集電部材4とを備える。
【0027】
3−2.セル1の概要
セル1はセラミックスの薄板である。セル1の厚みは、例えば30μm〜700μmであり、セル1の直径は、例えば5mm〜50mmである。セル1は、図1に示すように、燃料極11、バリア層13、空気極14、および電解質層(固体電解質層)15を備える。
【0028】
3−3.燃料極
燃料極11の材料としては、例えば、公知の燃料電池セルにおいて燃料極の形成に用いられる材料が用いられる。燃料極11の材料として、より具体的には、NiO‐YSZ(酸化ニッケル‐イットリア安定化ジルコニア)及び/又はNiO‐Y(酸化ニッケル‐イットリア)が挙げられる。燃料極11は、これらの材料を主成分として含むことができる。燃料極11は、アノードとして機能する。
【0029】
また、燃料極11は、セル1に含まれる他の層を支持する基板(支持体と言い換えてもよい)として機能してもよい。つまり、燃料極11の厚みは、セル1に含まれる複数の層の中で、最も大きな厚みを有していてもよい。燃料極11の厚みは、具体的には10μm〜600μmであってもよい。
【0030】
なお、燃料極11は、還元処理(例えばNiOをNiに還元する処理)を受けることで、導電性を獲得することができる。
【0031】
また、燃料極11は、2つ以上の層を有してもよい。例えば、燃料極11は、2つの層、すなわち、基板とその上に形成された燃料極活性層(燃料側電極)とを有してもよい。基板は、電子伝導性を有する物質を含む材料によって構成される。燃料極活性層は、電子伝導性を有する物質と酸化性イオン(酸素イオン)伝導性を有する物質とを含む材料によって構成される。燃料極活性層における“気孔部分を除いた全体積に対する酸化性イオン(酸素イオン)伝導性を有する物質の体積の割合”は、基板における“気孔部分を除いた全体積に対する酸化性イオン(酸素イオン)伝導性を有する物質の体積の割合”よりも大きい。このような基板及び燃料極活性層の材料は、上述した燃料極11の材料から選択可能である。より具体的には、NiO‐Yで構成された基板と、NiO‐YSZで構成された燃料極活性層とが組み合わせられてもよい。
【0032】
3−4.バリア層
バリア層13は、空気極14と燃料極11との間に設けられ、より具体的には、空気極14と電解質層15との間に設けられる。
【0033】
バリア層13は、セリウムを含む。バリア層は、セリウムをセリア(酸化セリウム)として含んでもよい。具体的には、バリア層13の材料として、セリア及びセリアに固溶した希土類金属酸化物を含むセリア系材料が挙げられる。バリア層13は、セリア系材料を主成分として含むことができる。
【0034】
セリア系材料として、具体的には、GDC((Ce, Gd)O:ガドリニウムドープセリア)、SDC((Ce, Sm)O:サマリウムドープセリア)等が挙げられる。セリア系材料における希土類金属の濃度は、好ましくは5〜20mol%である。バリア層13は、セリア系材料の他に、添加剤を含んでいてもよい。
【0035】
バリア層13の厚みは、30μm以下であってもよい。
【0036】
バリア層13は、空気極14から電解質層15へのカチオンの拡散を抑制することができる。すなわち、バリア層13は、出力密度の低下を抑制し、セル1の寿命を長期化することができる。
【0037】
3−5.空気極
空気極14は、上記1.欄で説明した電極材料によって構成されている。空気極14の厚みは、5μm〜50μm程度であってもよい。
【0038】
3−6.電解質層
電解質層15は、バリア層13と燃料極11との間に設けられる。
【0039】
電解質層15はジルコニウムを含む。電解質層15は、ジルコニウムをジルコニア(ZrO)として含んでもよい。具体的には、電解質層15は、ジルコニアを主成分として含むことができる。電解質層15は、ジルコニアの他に、Y及び/又はSc等の添加剤を含むことができる。これらの添加剤は、安定剤として機能することができる。電解質層15における添加剤の添加量は、3〜20mol%程度である。すなわち、電解質層15の材料として、3YSZ、8YSZ及び10YSZ等のイットリア安定化ジルコニア;並びにScSZ(スカンジア安定化ジルコニア);等のジルコニア系材料が挙げられる。
【0040】
電解質層15の厚みは、30μm以下であってもよい。
【0041】
3−7.集電部材
集電部材4は、複数の導電接続部41を備える。
【0042】
図1に示すように、導電接続部41は、集電部材4に設けられた凹部であり、その底部分が導電性接着剤411を介して空気極14に接続されている。導電接続部41の底部は、その周囲と非連続な部分を有している。
【0043】
発電時には、燃料極11に燃料ガスが供給される。空気極14への空気の供給は、セルスタック構造の側面側(例えば図1の紙面手前側)から空気を吹き付けることでなされる。
【0044】
なお、図示しないが、燃料電池10は、セルスタックで発生した電流を外部装置へ送るリード、燃料ガスを改質する触媒等を含んだガス改質部等の部材をさらに備えている。
【0045】
4.燃料電池セルの製造方法
4−1.燃料極の形成
燃料極11は、圧粉成形によって形成可能である。すなわち、燃料極11は、燃料極11の材料が混合された粉末を型に入れ、圧縮して、圧粉体を成形することを含んでもよい。
【0046】
燃料極11の材料は、燃料電池セルの構成についての上記説明で述べた通りである。材料としては、例えば、酸化ニッケル、ジルコニア、及び必要に応じて造孔剤が用いられる。造孔剤とは、燃料極中に空孔を設けるための添加剤である。造孔剤としては、後の工程で消失する材料が用いられる。このような材料として、例えばセルロース粉末が挙げられる。
【0047】
材料の混合比は、特に限定されるものではなく、燃料電池に求められる特性等に応じて、適宜設定される。
【0048】
圧粉成形時に粉末にかけられる圧力も、燃料極が充分な剛性を有するように設定される。
【0049】
なお、ガスの流路(図示せず)等の燃料極11の内部構造は、焼成によって消失する部材(セルロースシート等)を粉体の内部に配置した状態で圧粉成形を行い、その後に焼成を行うことによって形成される。
【0050】
4−2.電解質層の形成
燃料電池セルの製造方法は、圧粉成形によって形成された燃料極の成形体上に、電解質層を形成することを含む。
【0051】
電解質の形成方法としては、例えば、シート状に加工された電解質材料を用いるCIP(cold isostatic pressing)若しくは熱圧着、又はスラリー状に調製された電解質材料に燃料極を浸すスラリーディップ法が挙げられる。CIP法において、シートの圧着時の圧力は、好ましくは50〜300MPaである。
【0052】
4−3.焼成
燃料電池セルの製造方法は、圧粉成形された燃料極及び電解質層を、共焼成(共焼結)することを含む。焼成の温度及び時間は、セルの材料等に応じて設定される。
【0053】
4−4.脱脂
上記4−3の焼成の前に、脱脂を行ってもよい。脱脂は、加熱によって実行される。温度及び時間などの条件は、セルの材料等に応じて設定される。
【0054】
4−5.空気極の形成
空気極は、例えば、燃料極、電解質層、及びバリア層の積層体(焼成後)上に、圧粉形成、印刷法等によって空気極の材料の層を形成した後、焼成することで形成される。
【0055】
4−6.他の工程
燃料電池セルの構成に応じて、製造方法は他の工程をさらに含んでもよいし、上述の工程の内容が変更されてもよい。例えば、製造方法は、電解質層と空気極との間に反応防止層を設ける工程を含んでもよいし、2層構造の燃料極を形成する工程(基板を形成する工程及び燃料極活性層を形成する工程)を含んでもよい。
【0056】
5.横縞型燃料電池
上述した燃料電池10は、積み重ねられた複数のセル1と、セル1間を電気的に接続する集電部材4とを備える。すなわち、燃料電池10は、縦縞型燃料電池である。ただし、本発明は、横縞型燃料電池にも適用可能である。横縞型燃料電池について、以下に説明する。
【0057】
横縞型燃料電池(以下、単に「燃料電池」と称する)100は、支持基板102、燃料極103、電解質層104、空気極106、インターコネクタ107、集電部108及びバリア層13を備える。また、燃料電池100はセル110を備える。既に説明した構成要素と同様の構成要素については、同符号を付してその説明を省略することがある。なお、図4では、説明の便宜上、集電部108は図示されていない。
【0058】
燃料電池100は、支持基板102上に配置された複数のセル110と、セル110間を電気的に接続するインターコネクタ107とを備える。セル110は、燃料極103と、その燃料極103に対応する空気極106と、を備える部分である。具体的には、セル110は、支持基板102の厚み方向(y軸方向)に積層された、燃料極103、電解質層104、及び空気極106を備える。燃料極103、電解質層104、及び空気極106は、セル110の発電素子部を構成する。
【0059】
支持基板102は、扁平かつ一方向(z軸方向)に長い形状である。支持基板102は、電気的絶縁性を有する多孔質体である。支持基板102は、ニッケルを含んでいてもよい。支持基板102は、より具体的には、Ni‐Y(ニッケル‐イットリア)を主成分として含有していてもよい。なお、ニッケルは酸化物(NiO)として含有されていてもよい。発電時には、NiOは水素ガスによってNiに還元されてもよい。
【0060】
図4及び図5に示すように、支持基板102の内部には、流路123が設けられる。流路123は、支持基板102の長手方向(z軸方向)に沿って延びている。発電時には、流路123内に燃料ガスが流され、支持基板102の有する孔を通って、後述の燃料極103へ燃料ガスが供給される。
【0061】
燃料極103は、支持基板102上に設けられる。1個の支持基板102上に、複数の燃料極103が、支持基板102の長手方向(z軸方向)において並ぶように配置される。つまり、支持基板102の長手方向(z軸方向)において、隣り合う燃料極103の間には、隙間が設けられている。
【0062】
燃料極103の組成としては、燃料極11と同様の組成が適用可能である。
燃料極103は、燃料極集電層及び燃料極活性層を有していてもよい。燃料極集電層は支持基板102上に設けられ、燃料極活性層は燃料極集電層上に、インターコネクタ107とは重ならないように設けられる。
【0063】
燃料極103は、燃料極集電層及び燃料極活性層を有していてもよい。燃料極集電層は支持基板102上に設けられ、燃料極活性層は燃料極集電層上に設けられる。燃料極集電層及び燃料極活性層の組成については、上述した通りである。
【0064】
電解質層104は、固体電解質層とも呼ばれる。図5に示すように、電解質層104は、燃料極103上に設けられる。支持基板102上において燃料極103が設けられていない領域では、電解質層104は、支持基板102上に設けられていてもよい。
【0065】
電解質層104は、支持基板102の長手方向(z軸方向)において非連続な箇所を有している。つまり、複数の電解質層104が、z軸方向において、間隔をもって配置されている。言い換えると、1個の支持基板102には、支持基板102の長手方向(z軸方向)に沿って、複数の電解質層104が設けられる。
z軸方向において隣り合う電解質層104は、インターコネクタ107によって接続される。言い換えると、電解質層104は、あるインターコネクタ107から、支持基板102の長手方向(z軸方向)においてそのインターコネクタ107と隣り合うインターコネクタ107まで、連続するように設けられる。インターコネクタ107と電解質層104とは、支持基板102及び燃料極103と比べて緻密な構造を有する。よって、インターコネクタ107と電解質層104とは、燃料電池100において、z軸方向において連続する構造を有することで、空気と燃料ガスとを切り分けるシール部として機能する。
【0066】
電解質層104の組成については、上述の電解質層15と同様の組成が適用可能である。
【0067】
バリア層13の構成については、縦縞型燃料電池セルにおいて説明した通りである。バリア層13は、電解質層104と空気極106との間に設けられる。
【0068】
空気極106は、バリア層13上に、バリア層13の外縁を越えないように配置される。1個の燃料極103には、1個の空気極106が積層される。つまり、1個の支持基板102には、支持基板102の長手方向(z軸方向)に沿って、複数の空気極106が設けられる。
【0069】
空気極106は、上述の空気極14と同様に、上記1.欄で説明した電極材料によって構成されている。
【0070】
インターコネクタ107は、上述したように、セル110間を電気的に接続するように配置される。図5において、インターコネクタ107は、燃料極103上に積層される。
【0071】
本明細書において、「積層」とは、2つの要素が接するように配置されている場合、及び接しないがy軸方向に重なるように配置されている場合を包含する。
【0072】
図5において、上述のように、インターコネクタ107は、電解質層104間を、支持基板102の長手方向(z軸方向)において繋ぐように配置される。これによって、支持基板102の長手方向(z軸方向)において隣り合うセル110同士が、電気的に接続される。
【0073】
インターコネクタ107は、複数のセル110どうしを互いに電気的に接続するために用いられる電極を構成している。具体的に、図5に図示されているインターコネクタ107は、図5中右側に配置されるセル110の電極として機能している。
このように、電極を構成するインターコネクタ107は、上述の空気極106と同様に、上記1.欄で説明した電極材料によって構成されている。
すなわち、インターコネクタ107は、ペロブスカイト型複合酸化物を主成分として含有する。特に、インターコネクタ107に用いられるペロブスカイト型複合酸化物としては、ランタンクロマイト(LaCrO)などのクロマイト系材料が挙げられる。
【0074】
ここで、ランタンクロマイトの組成式は、以下の一般式(1)で表すことができる。
Ln1−xAxCr1−y-zByO・・・・・(1)
式(1)中、LnはY及びランタノイドからなる群より選択される少なくとも1種類の元素であり、AはCa,Sr及びBaからなる群より選択される少なくとも1種類の元素であり、Bは、Ti,V,Mn,Fe,Co,Cu,Ni,Zn,Mg及びAlからなる群より選択される少なくとも1種類の元素であり、0.025≦x≦0.3、0≦y≦0.22、0≦z≦0.15である。
このようなランタンクロマイトは、SOFCの作動温度(600〜1000℃)において、大気・還元両雰囲気で安定に存在できる材料であることから、横縞型を含むSOFCセルのインターコネクタ材料(電極材料)として好適に用いられる。
【0075】
しかしながら、ランタンクロマイトは難焼結材料であることが知られており、SOFCセルに適用するために支持基板102、燃料極103および電解質層104などと共焼結するためには、焼結助剤(CaO、SrOなど)を添加することによって易焼成化を図る必要がある。
そのため、焼結助剤が添加されたインターコネクタ材料(電極材料)においても、上述の通り、組成分布の均一性が高いことが好ましい。具体的には、インターコネクタ材料の任意の視野内の10スポットにおいて、EDSによりAサイトに含まれる元素のそれぞれの原子濃度を取得し、その原子濃度の標準偏差値を得たとき、Aサイトにおいて得られる標準偏差値が、10.3以下であることが好ましい。
これによって、インターコネクタ107を全体的に緻密化させることができるので、インターコネクタ107において局所的に焼成不足の領域(ピンホール)が発生することを抑制することができる。その結果、インターコネクタ107の信頼性を向上させることができる。
【0076】
集電部108は、インターコネクタ107とセル110とを電気的に接続するように配置される。具体的には、集電部108は、空気極106から、その空気極106を備えるセル110と隣り合うセル110に含まれるインターコネクタ107まで、連続するように設けられる。集電部108は、導電性を有すればよい。
【0077】
セル110に含まれる空気極106は、集電部108及びインターコネクタ107によって、隣り合うセル110の燃料極103と電気的に接続される。つまり、インターコネクタ107だけでなく、集電部108もセル110間の接続に寄与している。
【0078】
燃料電池100の各部の寸法は、具体的には、以下のように設定可能である。
支持基板102の幅W1 :1〜10cm
支持基板102の厚みW2:1〜10mm
支持基板102の長さW3:5〜50cm
支持基板102の外面(支持基板102と燃料極との界面)から流路123までの距離W4:0.1〜4mm
燃料極103の厚み :50〜500μm
(燃料極103が、燃料極集電層及び燃料極活性層を有する場合:
燃料極集電層の厚み:50〜500μm
燃料極活性層の厚み:5〜30μm)
電解質層104の厚み :3〜50μm
空気極106の厚み :10〜100μm
インターコネクタ107の厚み:10〜100μm
集電部108の厚み :50〜500μm
特に言及しなかった構成要素については、縦縞型燃料電池セルについて説明した寸法を採用してもよい。言うまでもなく、本発明はこれらの数値に限定されない。
【実施例】
【0079】
A.セルの作製
NiO-8YSZ燃料極基板(500μm)上に、NiO-8YSZ燃料極活性層(10μm)、8YSZ電解質層(3μm)、GDCバリア層(3μm)を積層した後、1400℃で2hrの条件で、共焼成した。
【0080】
表1〜表3に示すように、(La0.6Sr0.4)(Co0.2Fe0.8)Oを含む10種の電極材料(No.1〜No.10)は、(La0.8Sr0.2)FeOを含む6種の電極材料(No.11〜No.16)、及びLa(Ni0.6Fe0.4)Oを含む6種の電極材料(No.17〜No.22)を得た。
【0081】
同じ一般式で表され、かつ番号の異なる電極材料は、出発原料、焼成条件、粉砕条件がそれぞれ異なる。また、各電極材料が固相法及び液相法のいずれで合成されたかは、表中に記載している。
【0082】
得られた解砕物の平均粒径は200μmであった。解砕物を後述の組成分布の測定に用いた。
【0083】
解砕物をボールミル装置によって粉砕した。電極材料(粉体)の平均粒径をレーザ回折/散乱式粒度分布測定装置(堀場製作所製LA−700)で測定したところ、全て0.3μm以下であった。
【0084】
得られた粉体を用いてペーストを作製し、このペーストをスクリーン印刷法により膜化することで、バリア層上に空気極(30μm)を形成した。空気極は、1000℃下で2hr加熱されることで、バリア層上に焼き付けられた。
【0085】
以上の操作によって、SOFCセルを得た。
【0086】
B.評価
B−1.組成分布の測定
電極材料の解砕物について、EPMAにより各元素の原子濃度分布を測定した。具体的には、日本電子株式会社の電界放射型電子プローブマイクロアナライザー(型番:JXA−8500F)を用いて測定を行った。次に、EDSにより任意の視野において、SEM像で確認できる空洞になっていない10スポットで、Aサイトの各元素、Bサイトの各元素の酸化物としての原子濃度(mol%)を測定した。具体的には、ZEISS社(ドイツ)の電界放射型走査電子顕微鏡(型番:ULTRA55)を用いて測定を行った。
【0087】
具体的には、No.1〜No.10の各試料について、AサイトのLa及びSrのそれぞれの濃度を10スポットで測定し、La濃度の平均値及び各スポットにおける濃度の標準偏差値、並びにSr濃度の平均値及び各スポットにおける濃度の標準偏差値を得た。また、BサイトのCo及びFeについても同様に、濃度平均値及び各スポットにおける濃度の標準偏差値を得た。さらに、No.1〜No.10の各試料について、Aサイトの元素の原子濃度についての標準偏差値の最大値、及びBサイトの元素の原子濃度についての標準偏差値の最大値を得た。
【0088】
No.11〜No.16の各試料については、AサイトのLa及びSr、並びにBサイトのFeの濃度に関して同様の作業を行い、No.17〜No.22の各試料については、AサイトのLa及びSr、並びにBサイトのFeの濃度に関して同様の作業を行った。
【0089】
B−2.耐久性試験
作製したSOFCセルを用いて連続発電を実施した。発電条件は温度:750℃、電流密度:0.3A/cmであり、この条件による1000時間あたりの電圧降下率(劣化率)を算出した。劣化率が1%以下のものを“良好”と判定した。
【0090】
C.結果
C−1.No.1〜No.10:(La0.6Sr0.4)(Co0.2Fe0.8)Oについて
No.1〜No.10の試料のうち、一例としてNo.1の試料における濃度の測定結果、平均値及び標準偏差値の算出結果を表1に示す。表2には、No.1〜No.10の各試料について、各元素の原子濃度の標準偏差値の最大値を示す。各試料について、Aサイトにおける標準偏差値の最大値及びBサイトにおける標準偏差値の最大値に、下線を付す。表3には、No.1〜No.10の試料について、表2に示したAサイトにおける標準偏差値の最大値及びBサイトにおける標準偏差値の最大値と、1000時間当たりの電圧降下率(劣化率)と、電圧降下率に基づく評価結果と、を示す。
【0091】
また、図2及び図3には、No.1及びNo.7の試料について、それぞれの同一視野におけるSEM画像及び濃度マッピングの画像を示す。図2及び図3において、実際には、原子濃度の高い箇所は赤色で、低い箇所は青色で示される。
【0092】
【表1】

【0093】
【表2】


【0094】
【表3】

【0095】
表1〜表3、図2及び図3に示すように、No.1〜No.4、No.7〜No.10の試料については、劣化率が小さく抑えられた。これらの試料では、Aサイトの元素の原子濃度の標準偏差(ばらつき)は、10.5未満であり、具体的には10.3以下であった。また、Bサイトの元素の原子濃度の標準偏差は3.99以下であった。
【0096】
その一方で、劣化率が大きかったNo.5〜No.6の試料では、Aサイトの元素の原子濃度の標準偏差は11.5以上であり、Bサイトの元素の原子濃度の標準偏差は4.18以上であった。
【0097】
C−2.No.11〜No.16:(La0.6Sr0.4)(Co0.2Fe0.8)Oについて
No.11〜No.16の試料のうち、一例としてNo.11の試料における濃度の測定結果、平均値及び標準偏差値の算出結果を表4に示す。表5には、No.11〜No.16の各試料について、各元素の原子濃度の標準偏差値の最大値を示す。各試料について、Aサイトにおける標準偏差値の最大値及びBサイトにおける標準偏差値の最大値に、下線を付す。表6には、No.11〜No.16の試料について、表5に示したAサイトにおける標準偏差値の最大値及びBサイトにおける標準偏差値の最大値と、1000時間当たりの電圧降下率(劣化率)と、電圧降下率に基づく評価結果と、を示す。
【0098】
【表4】


【0099】
【表5】

【0100】
【表6】

【0101】
表4〜表6に示すように、No.11〜No.13、No.15〜No.16の試料については、劣化率が小さく抑えられた。これらの試料では、Aサイトの元素の原子濃度の標準偏差(ばらつき)は、7.91以下であった。また、Bサイトの元素の原子濃度の標準偏差は、4.16以下であった。
【0102】
その一方で、劣化率が大きかったNo.14の試料では、Aサイトの元素の原子濃度の標準偏差は10.95と比較的大きかった。また、Bサイトの元素の原子濃度の標準偏差も4.98と比較的大きかった。
【0103】
C−3.No.17〜No.22:(La0.8Sr0.2)FeOについて
No.17〜No.22の試料のうち、一例としてNo.17の試料における濃度の測定結果、平均値及び標準偏差値の算出結果を表7に示す。表8には、No.17〜No.22の各試料について、各元素の原子濃度の標準偏差値の最大値を示す。各試料について、Aサイトにおける標準偏差値の最大値及びBサイトにおける標準偏差値の最大値に、下線を付す。表9には、No.17〜No.22の試料について、表8に示したAサイトにおける標準偏差値の最大値及びBサイトにおける標準偏差値の最大値と、1000時間当たりの電圧降下率(劣化率)と、電圧降下率に基づく評価結果と、を示す。
【0104】
【表7】

【0105】
【表8】


【0106】
【表9】

【0107】
表7〜表9に示すように、No.17、No.19〜No.22の試料については、劣化率が小さく抑えられた。これらの試料では、Aサイトの元素の原子濃度の標準偏差(ばらつき)は、7.72以下であった。
【0108】
その一方で、劣化率が大きかったNo.14の試料では、Aサイトの元素の原子濃度の標準偏差は10.5と比較的大きかった。
【0109】
C−4.まとめ
以上の結果から、原子の分布が比較的均一である(標準偏差が小さい)ことで、空気極の劣化が抑制されると考えられる。
【0110】
なお、いずれの材料においても、マクロ的な組成は、原料の仕込み組成と一致することを、湿式分析(ICP分析)により確認した。
【0111】
原子の分布と空気極の劣化との関係については、以下のように考察することができる。
【0112】
粉体の空気極材料の全体の組成は仕込み組成に一致していても、ミクロの部分を観察した場合に各元素の存在(分布)が不均一であれば、その部分の組成は、全体的な組成からずれている。このような部分では、導電性及び触媒活性が低く、発電時の空気極としての機能が低い。よって、燃料電池セルとして動作した場合には、このような不活性な部分を回避するように電流が流れるため、その部分の周辺における電流密度が高くなる。その結果、この周辺部分では加速的に劣化が進むものと考えられる。
【0113】
なお、解砕物を用いることで上述の各表では原子濃度のばらつきを算出したが、粉砕体であっても、解析時のスポット径が粉砕体の径よりも小さいので、原子の分布状態(ばらつき)は解砕物と相違しないことを、いずれの材料においても確認した。
【産業上の利用可能性】
【0114】
本発明に係る電極材料は、導電性が求められる種々の部材に適用可能である。特に、この電極材料は、固体酸化物型燃料電池セルの空気極に適用可能である。
【符号の説明】
【0115】
1 燃料電池セル
10 燃料電池
11 燃料極
13 バリア層
14 空気極
15 電解質層
4 集電部材
41 導電接続部

【特許請求の範囲】
【請求項1】
一般式ABOで表されるペロブスカイト構造を有する複合酸化物を含有し、
1つの視野内の10スポットにおいてエネルギー分散型X線分光法により測定されたAサイト内の各元素の原子濃度の標準偏差値が10.3以下である
電極材料。
【請求項2】
前記Aサイトには、La及びSrの少なくとも一方の原子が含まれる
請求項1に記載の電極材料。
【請求項3】
前記複合酸化物は、(LaSr)(CoFe)O、(LaSr)FeO、(LaSr)CoO、La(NiFe)O、又は(SmSr)CoOである
請求項2に記載の電極材料。
【請求項4】
前記1つの視野は、電子顕微鏡において100倍〜5000倍の倍率で観察される範囲である
請求項1〜3のいずれかに記載の電極材料。
【請求項5】
前記10スポットそれぞれのサイズは、1μm以下である
請求項1〜4のいずれかに記載の電極材料。
【請求項6】
前記10スポットの位置は、前記1つの視野内における前記原子濃度の分布に基づいて設定される10段階の濃度レベルに応じて、前記1つの視野内から選択される
請求項1〜5のいずれかに記載の電極材料。
【請求項7】
前記10段階の濃度レベルは、前記原子濃度の分布の全範囲に渡って設定される
請求項6に記載の電極材料。
【請求項8】
請求項1〜7のいずれかに記載の電極材料からなる空気極と、
燃料極と、
前記空気極と前記燃料極との間に配置される固体電解質層と、
を備える
固体酸化物型燃料電池セル。
【請求項9】
ガス流路を内部に有し、電気的絶縁性の多孔質支持基板と、
前記多孔質支持基板上に順次積層された燃料極と固体電解質層と空気極とによって構成される発電素子部と、
請求項1〜7のいずれかに記載の電極材料によって構成されており、前記発電素子部に接続されるインターコネクタと、
を備える
固体酸化物型燃料電池セル。

【図1】
image rotate

【図4】
image rotate

【図5】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−43774(P2012−43774A)
【公開日】平成24年3月1日(2012.3.1)
【国際特許分類】
【出願番号】特願2011−114050(P2011−114050)
【出願日】平成23年5月20日(2011.5.20)
【出願人】(000004064)日本碍子株式会社 (2,325)
【Fターム(参考)】