説明

電気分解装置及び電気分解方法

【課題】電極の劣化を従来よりも低減する。
【解決手段】所定の電解液を電気分解する電気分解装置A1であって、電解液2に浸漬される接液面と、気体流路を形成する接気面と、接液面と接気面とを連通させ、壁面が電解液に対して疎液性、かつ、孔径が分解ガスを電解液に対して選択的に通過させる大きさに設定された複数の貫通孔とを備える複数の電気分解電極B1、B2と、該複数の電気分解電極B1、B2に極性が時間の経過とともに交互に切り替わる電位を供給する極性切換電源3とを具備する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気分解装置及び電気分解方法に関する。
【背景技術】
【0002】
下記特許文献1には、フッ化カリウム(KF)とフッ化水素(HF)とが混合したKF−HF系混合溶融塩を含む溶液を電解液とし、当該電解液を電気分解することによって高純度のフッ素ガスを安定的に発生させるフッ素ガス発生装置が開示されている。このフッ素ガス発生装置は、半導体製造装置のクリーニングに供するために、陽極電極で発生したフッ素ガスを回収するものである。このようなフッ素ガス発生装置では、電子を脱離することによってフッ素イオンをフッ素ガス化する陽極電極として、ニッケル(Ni)電極を使用している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2002−339090号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、上記ニッケル(Ni)電極は、電位をかけたことによる溶解によって材料であるニッケル(Ni)が電解液中に溶出し、この結果として陽極が劣化するという問題が発生する。すなわち、従来のフッ素ガス発生装置(電気分解装置)は、陽極の劣化に対応するために陽極電極を定期的に交換する必要があるため、連続した運転が困難である。したがって、フッ素ガス発生装置(電気分解装置)では、陽極電極の寿命を延ばすことが重大な技術課題となっている。
【0005】
また、半導体製造装置のクリーニングに使用するためには、高純度のフッ素ガスが必要である。上記従来のフッ素ガス発生装置は、十分な純度のフッ素ガスが得られるものの、陽極電極の寿命が短いという問題点がある。
【0006】
本発明は、上述した事情に鑑みてなされたものであり、以下の点を目的とするものである。
(1)電極の劣化を従来よりも低減する。
(2)発生ガスの純度を確保しつつ電極の劣化を従来よりも低減する。
【課題を解決するための手段】
【0007】
上記目的を達成するために、本発明では、電気分解方法に係る第1の解決手段として、所定の電解液を電気分解する電気分解装置であって、電解液に浸漬される接液面と、気体流路を形成する接気面と、接液面と接気面とを連通させ、壁面が電解液に対して疎液性、かつ、孔径が分解ガスを電解液に対して選択的に通過させる大きさに設定された複数の貫通孔とを備える複数の電気分解電極と、該複数の電気分解電極に極性が時間の経過とともに交互に切り替わる電位を供給する極性切換電源とを具備する、という手段を採用する。
【0008】
電気分解装置に係る第2の解決手段として、上記第1の解決手段において、各電気分解電極は、各接液面が垂直姿勢かつ互いに向き合うように電解液内に配置される、という手段を採用する。
【0009】
電気分解装置に係る第3の解決手段として、上記第1の解決手段において、各電気分解電極は、接液面を上側として電解液内に配置される、という手段を採用する。
【0010】
電気分解装置に係る第4の解決手段として、上記第1〜第3のいずれかの解決手段において、極性切換電源は、陰極面積が陽極面積と同じまたは陰極面積が陽極面積よりも大きくなるように極性を設定して各電気分解電極に電位を供給する、という手段を採用する。
【0011】
電気分解装置に係る第5の解決手段として、上記第1〜第4のいずれかの解決手段において、電解液がフッ素化合物を溶融塩とするものであり、フッ素化合物を電気分解してフッ素ガスを発生させる、という手段を採用する。
【0012】
また、本発明では、電気分解方法に係る第1の解決手段として、所定の電解液を電気分解する電気分解方法であって、電解液に浸漬される接液面と、気体流路を形成する接気面と、接液面と接気面とを連通させ、壁面が電解液に対して疎液性、かつ、孔径が分解ガスを電解液に対して選択的に通過させる大きさに設定された複数の貫通孔とを有する電気分解電極を電解液に複数浸漬させ、各電気分解電極に極性が時間の経過とともに交互に切り替わる電位を供給する、という手段を採用する。
【0013】
電気分解方法に係る第2の解決手段として、上記第1の解決手段において、各電気分解電極を各接液面が垂直姿勢かつ互いに向き合うように電解液内に配置する、という手段を採用する。
【0014】
電気分解方法に係る第3の解決手段として、上記第1の解決手段において、各電気分解電極を接液面を上側として電解液内に配置する、という手段を採用する。
【0015】
電気分解方法に係る第4の解決手段として、上記第1〜第3のいずれかの解決手段において、陰極面積が陽極面積と同じまたは陰極面積が陽極面積よりも大きくなるように極性を設定して各電気分解電極に電位を供給する、という手段を採用する。
【0016】
電気分解方法に係る第5の解決手段として、上記第1〜第4のいずれかの解決手段において、フッ素化合物を溶融塩とする電解液を用い、フッ素化合物を電気分解してフッ素ガスを発生させる、という手段を採用する。
【発明の効果】
【0017】
本発明によれば、極性が時間の経過とともに交互に切り替わる電位が各電気分解電極に供給されるので、各電気分解電極に供給する極性を固定している従来技術よりも電極、特に陽極の劣化を低減することが可能である。
また、本発明によれば、接液面で発生した分解ガスは、接液面から効果的に排除されて貫通孔の内部に移動し、また接液面から貫通孔の内部に電解液に対して選択的に侵入して接気面に移動するので、接液面に分解ガスが滞留する時間を従来よりも短縮することが可能であり、これによっても電極の劣化を従来よりも低減することが可能であると共に電解液の分解効率(分解ガスの発生効率)を従来よりも向上させることが可能である。
さらに、本発明によれば、接液面から貫通孔の内部に電解液に対して選択的に侵入して接気面に移動するので、純度の高い分解ガスを気体流路に収集することが可能である。
【図面の簡単な説明】
【0018】
【図1】本発明の第1実施形態に係る電気分解装置A1の構成を示すものであり、(a)は正面図、(b)は正面図におけるX1−X1線の矢視図である。
【図2】本発明の第1実施形態に係る電気分解装置A1における電極ユニットB(第1電極ユニットB1及び陰極電極ユニットB2)の構成を示すものであり、(a)は正面図、(b)は正面図におけるY1−Y1線の矢視図、(c)は側面図である。
【図3】本発明の第1実施形態に係る電気分解装置A1における電極ユニットBの電極板の構成を示すものであり、(a)は正面図、(b)は正面図におけるZ1−Z1線の矢視図、(c)は側面図である。
【図4】本発明の第1実施形態に係る電気分解装置A1における第1の電位V1及び第2の電位V2の電圧パターンを示す特性図である。
【図5】本発明の第2実施形態に係る電気分解装置A2の構成を示すものであり、(a)は正面図、(b)は正面図におけるX2−X2線の矢視図である。
【図6】本発明の第2実施形態の変形例に係る電気分解装置A3の構成を示す矢視図である。
【図7】本発明の第3実施形態に係る電気分解装置A4の構成を示す正面図である。
【図8】本発明の第3実施形態に係る電気分解装置A4における第1〜第3の電位V1、V2、V3の電圧パターンを示す特性図である。
【図9】本発明の第4実施形態に係る電気分解装置A5の構成を示すものであり、(a)は正面図、(b)は正面図におけるX3−X3線の矢視図である。
【図10】本発明の第5実施形態の変形例に係る電気分解装置A6の構成を示す矢視図である。
【発明を実施するための形態】
【0019】
以下、図面を参照して、本発明の実施形態について説明する。
〔第1実施形態〕
最初に、第1実施形態について説明する。本第1実施形態に係る電気分解装置A1は、図1に示すように、電解槽1、電解液2、第1電極ユニットB1、第2電極ユニットB2及び極性切換電源3から構成されている。電解槽1は、上端が解放されると共に内部に電解液2が貯留された箱型の容器である。
【0020】
電解液2は、所定の溶媒に所定の化合物(電気分解対象物)を含有するものである。この電解液2は、電気分解装置A1の目的、つまりどのような気体を電気分解によって回収するかによって種々のものが選定される。例えば、フッ素ガス(F)の生成・回収を目的とする場合には、電解液2として、フッ化カリウム(KF)とフッ化水素(HF)とが混合したものを溶融塩(KF・nHF(1≦n≦3))とするものが選定される。第1電極ユニットB1及び第2電極ユニットB2は、全く同一に構成されており、各電極面f1、f2がお互いに並行対峙するように垂直姿勢で電解液2に浸漬されている。
【0021】
極性切換電源3は、一対の出力端を有し、各出力端の電気的な極性を時間の経過とともに交互に切換える機能を備えた一種の交流電源である。上記一対の出力端のうち、一方の出力端は第1電極ユニットB1に接続され、他方の出力端は第2電極ユニットB2に接続されている。つまり、この極性切換電源3は、一方の出力端を介して第1電極ユニットB1に第1の電位V1を供給し、また他方の出力端を介して第2電極ユニットB2に第2の電位V2を供給する。
【0022】
したがって、本電気分解装置A1における第1電極ユニットB1及び第2電極ユニットB2は、極性切換電源3から時間の経過とともに異なる極性の電位が印加されるので、陽極電極あるいは陰極電極として機能する。
【0023】
図2は、上記第1電極ユニットB1及び第2電極ユニットB2の構成を極電極ユニットBとして示している。この極電極ユニットBは、図示するように、多孔電極板4、導線5、電極ホルダ6、気体導管7、電極カバー8及び締結ネジ9から構成されている。
【0024】
多孔電極板4は、図3に示されているように、正方形かつ一定厚の導体板4aの接液面4bと接気面4cとの間に、当該接液面4bと接気面4cとを連通させる多数の貫通孔4dが形成されたものである。上記導体板4aは、所定の金属、例えばニッケル(Ni)を材料とする平板である。このような多孔電極板4の接液面4bは、第1電極ユニットB1及び第2電極ユニットB2における電極面f1、f2である。
【0025】
この貫通孔4dは、図示するように、壁面に疎液性の被膜4e(疎液膜)が形成されたものであり、また断面形状が互いに平行な接液面4bと接気面4cとに直交すると共に一定の断面積となるように形成されている。貫通孔4dの直径は、例えば500μm以下であり、より好ましくは10μm〜500μmである。このような貫通孔4dの直径は、以下に詳説するように電解液が貫通孔4dの内部に浸入しないように最適化されている。
【0026】
また、貫通孔4dの配列ピッチは、特に制限がないが、10μm〜500μm程度が好ましい。すなわち、貫通孔4dの配列ピッチは、貫通孔4dの孔径と同程度が好ましい。
なお、図3の多孔電極板4は、貫通孔4dが碁盤の目のように配置された状態に形成されているが、貫通孔4dの配置態様はこれに限定されるものではなく、例えば千鳥格子状あるいは規則性のない配列状態であっても良い。また、図3に示す貫通孔4dの断面形状は、軸線方向に一定の断面積となる形状であるが、軸線方向に断面積が変化するような形状であっても良い。このような多孔電極板4は、平板な導体板4aを例えばレーザ加工することによって容易に形成することができる。
【0027】
また、上記多孔電極板4の接液面4bは、電解液に対して親液性となるよう表面処理されている。多孔電極板4は、導体板4aを母材として形成されているが、各貫通孔4dの壁面は、導電性材料の表面に電解液に対して疎液性の被膜である疎液膜4eが全面的に形成されている。このような各被膜は、例えばスプレーコーティング、フローコーティング、スピンコーティング、ディップコーティング、ロールコーティング、加圧コーティング等の各種コーティング方法によって親液性材料あるいは疎液性材料を塗布することによって形成される。
【0028】
ここで、「親液性」とは、一定量の液滴が固体表面に置かれた状態において液滴の気液界面と固液界面がなす角度(接触角)が90°より小さくなる状態のことであり、また「疎液性」とは、上記接触角が90°より大きくなる状態のことである。上記接触角として接液面4b(親液面)及び各貫通孔4dの疎液膜4e(疎液面)を見た場合、上記接液面4b(親液面)の電解液に対する接触角α(α<90°)及び疎液膜4e(疎液面)の電解液に対する接触角β(90°<β)は、以下の関係式(1)を満足する。すなわち、接液面4bの接触角αは、各貫通孔4dの疎液膜4eの接触角βよりも小さく設定されている。
α<90°<β (1)
【0029】
すなわち、多孔電極板4は、貫通孔4dの直径が500μm以下に設定され、かつ、接液面4b(親液面)及び各貫通孔4dの疎液膜4e(疎液面)の各接触角α、βが上記関係式(1)を満足するように構成されている。また、各接触角α、βについては、上記関係式(1)に代えて、α+10°<90°<βの条件あるいはα+25°<90°<βの条件を満足することがより好ましい。なお、接気面4cの接触角については特に限定しないが、90°よりも大きく(つまり疎液性とし)設定することが好ましい。
【0030】
導線5は、このような多孔電極板4の接気面4cに一端が接続されると共に他端が外部の電源(図示略)の出力端に接続された電線であり、電源から出力された電気分解用の電位を多孔電極板4に供給するためのものである。電極ホルダ6は、内部に窪み部が形成された立方体状の非導電性部材である。図示するように、この電極ホルダ6には窪み部を一方から塞ぐような状態で上述した平板状の多孔電極板4が装着されている。なお、電極ホルダ6の窪み部と多孔電極板4とによって囲まれた空洞は気体チャンバー6aである。このような気体チャンバー6aは、図示するように複数の貫通孔4dを介して接液面4bに連通する。
【0031】
気体導管7は、一端が電極ホルダ6の上部に固定された中空円筒状の非導電性部材であり、内部空洞は上記気体チャンバー6aに連通する気体チャネル7aである。図示していないが、気体導管7の他端は気体回収装置に接続されている。電極カバー8は、中心部に正方形の開口8aが形成された正方形状の非導電性部材である。この電極カバー8は、接液面4bが開口8aを介して外部に露出するように多孔電極板4を電極ホルダ6の一部に保持するためのものである。締結ネジ9は、このような電極カバー8を電極ホルダ6に締結固定するためのものであり、電極カバー8の各丁部近傍にそれぞれ設けられている。
【0032】
次に、このように構成された電気分解装置A1の動作について図4に示す第1の電位V1及び第2の電位V2の電圧パターンをも参照して詳しく説明する。
なお、以下の説明では、フッ素ガス(F)を生成・回収するために、フッ化カリウム(KF)とフッ化水素(HF)とが混合したものを溶融塩(KF・nHF(1≦n≦3))とする電解液2を電気分解する場合について説明する。
【0033】
本電気分解装置A1の運転時において、極性切換電源3は、図4(a)に示す電圧パターンの第1の電位V1を第1電極ユニットB1に供給すると共に、第2の電位V2を第2電極ユニットB2に供給する。第1の電位V1及び第2の電位V2は、電圧が一定の周期で方形波状に正極運転電位+Vaと負極運転電位0との間で変化する電圧パターンの電位である。なお、負極電位は必ずしも零とは限らず負電位である場合もある。
【0034】
また、これら第1の電位V1及び第2の電位V2は、図示するように、お互いの正極運転電位+Vaがオーバーラップしないように、つまり同時に正極運転電位+Vaとならないように電圧パターンが設定されている。なお、正極運転電位+Vaは、電気分解が発生し得る正極ガス発生電位+Vgを超える電圧として設定されている。
【0035】
このような第1の電位V1及び第2の電位V2は、第1の電位V1が正極運転電位+Vaのとき、第2の電位V2は負極運転電位0である。また、これとは逆に、第2の電位V2が正極運転電位+Vaのとき、第1の電位V1は負極運転電位0である。したがって、第1電極ユニットB1に正極運転電位+Vaが印加されたとき、つまり第1電極ユニットB1が陽極曲電極として機能するとき、第2電極ユニットB2には負極運転電位0が印加されて陽極曲電極として機能する。
【0036】
なお、第1の電位V1及び第2の電位V2の電圧パターンは、上述した図4(a)のパターンに代えて、図4(b)に示す電圧パターンであっても良い。図4(b)の電圧パターンは、図4(a)のパターンとの対比において、第1の電位V1及び第2の電位V2の負極運転電位0から正極運転電位+Vaへの電圧変化を多段的(中間が3段階)に順次変化させる点で相違する。なお、この電圧変化における段階数は中間3段階に限定されない。また、この電圧変化は、多段的ではなく、ランプ波形のように一定の傾斜で直線的に変化するもの、あるいは滑らかな曲線状に変化するものでも良い。
【0037】
さて、第1電極ユニットB1が正極運転電位+Va、また第2電極ユニットB2が負極運転電位0の状態において、電解液2と接触する第1電極ユニットB1の多孔電極板4の接液面4b(電極面f1)では以下の反応式(2)に示す化学反応が生じ、電極面f1においてフッ素ガス(F)が気泡として発生する。また、第2電極ユニットB2の多孔電極板4の接液面4b(電極面f2)では、以下の反応式(3)に示す化学反応が生じ、電極面f2において水素ガス(H)が気泡として発生する。
陽極 : 2F → F+2e (2)
陰極 : 2H+2e → H (3)
【0038】
ここで、第1電極ユニットB1の接液面4bは、親液性のため電解液2と馴染みが良く、よってフッ素ガス(F)が効率良く生成される。また、このような接液面4bは、親液性の被膜で覆われているので気泡(気体)であるフッ素ガス(F)との馴染みが悪い。一方、このような接液面4bに多数形成された貫通孔4dの疎液膜4eは、疎液性の被膜で覆われているので、電解液2との馴染みは悪いが、気泡(気体)であるフッ素ガス(F)との馴染みが良い。
【0039】
すなわち、第1電極ユニットB1の多孔電極板4では、接液面4bの接触角αと貫通孔4dの疎液膜4eの接触角βとの間に関係式(1)が成立しているので、第1電極ユニットB1の接液面4bにおいて貫通孔4d近傍で発生したフッ素ガス(F)の気泡は、接液面4b(親液面)から排除されて貫通孔4dの疎液膜4e(疎液面)に移動する。そして、接液面4bにおいて貫通孔4d近傍で発生したフッ素ガス(F)の気泡は、この力の作用によって、接液面4bから貫通孔4dに移動する。
【0040】
電解液2の表面張力γ[N/m]、接液面4bの電解液2に対する接触角α[deg]、貫通孔4dの半径r[m]とした場合、電解液2が貫通孔4dの内部に入り込むために必要な圧力(ヤング・ラプラス圧力)ΔPは、下式(4)のように表される。
ΔP=−2γ(cosα)/r (4)
したがって、貫通孔4dの入口における電解液2の圧力(電解液2に対する貫通孔4dの深さに依存する)が上記ヤング・ラプラス圧力ΔPを超えなければ、電解液2は貫通孔4dの内部に浸入することができない。
【0041】
このように、第1電極ユニットB1の多孔電極板4では、電解液2が内部に浸入できない大きさ、つまり分解ガス(気体)であるフッ素ガス(F)を選択的に通過させる大きさ(上述した500μmm以下の直径)となるように貫通孔4dの孔径が設定されると共に、貫通孔4dの壁面に接液面4bの接触角αよりも大きな接触角βを有する疎液膜4eが設けられているので、接液面4bで発生したフッ素ガス(F)の気泡は、接液面4bから効果的に排除されて貫通孔4dの内部に移動し、また接液面4bから貫通孔4dの内部に電解液2に対して選択的に侵入して接気面4cに移動する。
【0042】
すなわち、本電気分解装置A1の第1電極ユニットB1では、気泡(気体)であるフッ素ガス(F)が液体である電解液2から効果的に分離されて、電解液2は貫通孔4dを通過することなく、このような電解液2に対して選択的に貫通孔4dを通過して気体チャンバー6a内に収集される。そして、気体チャンバー6a内のフッ素ガス(F)は、気体導管7によって形成される気体チャネル7aを介して外部に回収される。したがって、本電気分解装置A1によれば、従来まで気泡に覆われていた部分からガスを除去することにより電解における有効面積を増加することが可能であり、電解液2の分解効率、つまりフッ素ガス(F)の発生効率を向上させることができる。
【0043】
このような第1電極ユニットB1における作用に対して、第2電極ユニットB2では、多孔電極板4が第1電極ユニットB1の多孔電極板4と全く同様に構成されているものの、接液面4b(電極面f2)で発生するガスがフッ素ガス(F)ではなく水素ガス(H)の気泡であるために、当該水素ガス(H)の気泡は、接液面4bから貫通孔4dの内部に移動せず、また、接液面4bが親液性であり気泡(気体)に対して馴染みが悪いので、浮力に従って接液面4bから速やかに排除されて電解液2内を浮上する。すなわち、水素ガス(H)は、フッ素ガス(F)のように気体チャンバー6a内に収集されるのではなく、第2電極ユニットB2の上方に別途設けられたガス回収器に回収される。
【0044】
続いて、このような第1電極ユニットB1が正極運転電位+Va、また第2電極ユニットB2が負極運転電位0の状態から第1電極ユニットB1が負極運転電位−Va、また第2電極ユニットB2が正極運転電位+Vaの状態に切換ると、第1電極ユニットB1の電極面f1では水素ガス(H)が発生し、第2電極ユニットB2の電極面f2ではフッ素ガス(F)が発生する。
【0045】
この状態では、第1電極ユニットB1の電極面f1で発生した水素ガス(H)は、上述した第2電極ユニットB2の場合と同様に、第1電極ユニットB1の貫通孔4dを通過して気体チャンバー6a内に収集されることはなく、浮力に従って電解液2内を浮上して回収される。一方、第2電極ユニットB2の電極面f2で発生したフッ素ガス(F)は、上述したように貫通孔4dに侵入して気体チャンバー6a内に収集される。
【0046】
このような本電気分解装置A1によれば、第1電極ユニットB1に印加する第1の電位V1及び第2電極ユニットB2に印加する第2の電位V2の極性を交互に切換えることにより、第1電極ユニットB1と第2電極ユニットB2とで交互に陽極電極として機能するので、金属板4aの溶出を大幅に抑制することが可能であり、よって第1電極ユニットB1及び第2電極ユニットB2の劣化を大幅に抑制することができる。
【0047】
また、本電気分解装置A1によれば、第1電極ユニットB1及び第2電極ユニットB2では、陽極電極と陰極電極とに交互に切り換わることによってフッ素ガス(F)と水素ガス(H)とが交互に発生するものの、フッ素ガス(F)と水素ガス(H)とが個別に収集されるので、純度の高いフッ素ガス(F)及び水素ガス(H)を収集することが可能である。
【0048】
さらに、本電気分解装置A1によれば、各電極面f1、f2が平行に対向するように第1電極ユニットB1及び第2電極ユニットB2の姿勢が設定されているので、各電極面f1、f2の各部位における各電極面f1、f2間の距離が同一であり、よって各電極面f1、f2間に均一な電界が発生する。仮に各電極面f1、f2が不平行であった場合、各電極面f1、f2の各部位における各電極面f1、f2間の距離は一定ではなくなるので、各電極面f1、f2の部位によって異なる電界が発生する。このような本電気分解装置A1によれば、各電極面f1、f2間に均一な電界が発生するので、フッ素ガス(F)及び水素ガス(H)を効率良く発生させることができる。
【0049】
〔第2実施形態〕
次に、第2実施形態について、図5を参照して説明する。なお、図5では、上述した第1実施形態に係る電気分解装置A1と同一の構成要素については同一符合を付している。以下では、このような同一の構成要素については、重複するので説明を省略する。
【0050】
本第2実施形態に係る電気分解装置A2は、電解槽1A、電解液2、第1電極ユニットB1、第2電極ユニットB2及び極性切換電源3(図示略)から構成されている。本電気分解装置A2は、図示するように第1電極ユニットB1及び第2電極ユニットB2を水平姿勢で電解槽1A内に収容する電解槽1Aを備えている。この電解槽1Aは、第1実施形態に係る電気分解装置A1における電解槽1よりも正面から見た面積が大きく、また深さが浅く構成されたものである。また、第1電極ユニットB1及び第2電極ユニットB2は、図示するように、電極面f1、f2を上側に向けた姿勢、かつ、互いに同一深さとなるように電解槽1A内の電解液2に浸漬されている。
【0051】
また、本電気分解装置A2の変形例として、図6に示すような電気分解装置A3が考えられる。この変形例に係る電気分解装置A3は、各電極面f1、f2が下側に向けたれた姿勢、かつ、各電極面f1、f2が水平に対して多少傾斜した姿勢で第1電極ユニットB1及び第2電極ユニットB2を電解槽1A内の電解液2に浸漬されたものである。
【0052】
このような各電気分解装置A2、A3においても、上述した第1実施形態に係る電気分解装置A1と全く同様に、第1電極ユニットB1及び第2電極ユニットB2の電極面f1、f2で発生したフッ素ガス(F)は、貫通孔4dに侵入して気体チャンバー6a内に移動して回収され、一方、第1電極ユニットB1及び第2電極ユニットB2の各電極面f1、f2で発生した水素ガス(H)は、第1電極ユニットB1及び第2電極ユニットB2の各貫通孔4dすることなく浮力に従って電解液2内を浮上して回収される。
【0053】
また、各電気分解装置A2、A3によれば、第1電極ユニットB1に印加する第1の電位V1及び第2電極ユニットB2に印加する第2の電位V2の極性を交互に切換えるので、フッ素ガス(F)が第1電極ユニットB1と第2電極ユニットB2とで交互に発生する。したがって、第1電極ユニットB1及び第2電極ユニットB2における金属板4aの溶出を大幅に抑制することができる。
【0054】
また、本電気分解装置A2によれば、各電極面f1、f2を上側に向けた姿勢かつ水平姿勢になっているので、各電極面f1、f2の各部位の電解液2における深さが同一であり、よって各電極面f1、f2の各部位で発生した水素ガス(H)に均等な浮力が発生する。したがって、本電気分解装置A2によれば、上述した各電極面f1、f2間に発生する電界の均一性は損なわれるものの、各電極面f1、f2の各部位で発生した水素ガス(H)を効果的に浮上させることができる。
【0055】
これに対して、第1実施形態に係る電気分解装置A1では、各電極面f1、f2が垂直姿勢に設定されているので、各電極面f1、f2それぞれの液深さ方向において、深い部分はより大きな液圧が加わるため、気液界面を形成するヤングラブラス圧よりも大きな液圧が加わった場合、貫通孔4dの内部に電解液2が侵入してしまう。
【0056】
また、変形例に係る電気分解装置A3によれば、各電極面f1、f2が下側に向いているので、各電極面f1、f2において若干発生するスラッジ(沈殿物)は重力の作用によって下降する。したがって、この電気分解装置A3によれば、スラッジ(沈殿物)が各電極面f1、f2上に堆積することを防止することができる。
【0057】
〔第3実施形態〕
次に、第3実施形態について説明する。なお、図7では、図1と同一の構成要素には同一符合を付している。以下では、図1と同一の構成要素については、重複するので説明を省略する。
【0058】
本第3実施形態に係る電気分解装置A4は、図示するように、第1〜第3電極ユニットB1〜B3を備えると共に、これら第1〜第3電極ユニットB1〜B3に対応する極性切換電源3Aを備えるものである。すなわち、第1〜第3電極ユニットB1〜B3は、各電極面f1、f2、f3(接液面)が垂直姿勢、かつ互いに60度の角度で向き合うように電解槽1内の電解液2に浸漬されている。なお、本実施形態では60度の場合を図示しているが、本発明はこれに制限されず、任意の角度を持っても良い。
【0059】
極性切換電源3Aは、図8(a)の電圧パターンに示すように、上記第1〜第3電極ユニットB1〜B3に対応する第1〜第3の電位V1〜V3を出力する。すなわち、極性切換電源3Aは、電圧が一定の周期かつ交互に正極運転電位+Vaと負極運転電位0との間で方形波状に変化する電圧パターンの第1〜第3の電位V1〜V3を出力する。
【0060】
また、これら第1〜第3の電位V1〜V3は、図示するように、お互いの正極運転電位+Vaがオーバーラップしないように、つまり同時に正極運転電位+Vaとならないように電圧パターンが設定されている。すなわち、第1〜第3の電位V1〜V3は、第1〜第3電極ユニットB1〜B3の何れかに正極運転電位+Vaを印加したときに、他の2つには負極運転電位0を印加するように設定されている。
【0061】
このような第1〜第3の電位V1〜V3に電圧パターンは、陽極面積が陰極面積よりも小さくなるように制御したものである。これにより陰極上で起こる電気化学反応が律速となって陽極でのフッ素ガス発生効率を低下させることを回避している。すなわち、極性切換電源3Aは、陰極電極の反応面積が陽極分解電極の反応面積よりも実効的に大きくなるように第1〜第3の電位V1〜V3の極性を設定して第1〜第3電極ユニットB1〜B3に電位を供給する。
【0062】
なお、極性切換電源3Aについては、図8(a)のような電圧パターンに代えて、図8(b)のような電圧パターンの第1〜第3の電位V1〜V3を出力するものであっても良い。図8(b)の電圧パターンは、図8(a)のパターンとの対比において、第1〜第3の電位V1〜V3の負極運転電位−Vaから正極運転電位+Vaへの電圧変化を多段的に順次変化させる点で相違する。
【0063】
このような本電気分解装置A4では、極性切換電源3Aが例えば図8(a)のような電圧パターンの第1〜第3の電位V1〜V3を出力した場合、第1〜第3電極ユニットB1〜B3の何れかに正極運転電位+Vaが印加されたとき、他の2つには負極運転電位0が印加される。すなわち、第1〜第3電極ユニットB1〜B3の何れかが陽極電極として機能した場合に、他は陰極電極として機能する。そして、正極運転電位+Vaが印加された陽極電極ではフッ素ガス(F)が発生し、負極運転電位0が印加された陰極電極では水素ガス(H)が発生する。
【0064】
このような本電気分解装置A4においても、上述した第1、第2実施形態に係る電気分解装置A1〜A3と全く同様に、正極運転電位+Vaが印加されたときに第1〜第3電極ユニットB1〜B3の電極面f1〜f3で発生したフッ素ガス(F)は、貫通孔4dを介して気体チャンバー6a内に移動して回収され、一方、負極運転電位0が印加されたときに第1〜第3電極ユニットB1〜B3の電極面f1〜f3で発生した水素ガス(H)は、第1〜第3電極ユニットB1〜B3の各貫通孔4dすることなく浮力に従って電解液2内を浮上して回収される。
【0065】
また、本電気分解装置A4によれば、第1電極ユニットB1に印加する第1の電位V1、第2電極ユニットB2に印加する第2の電位V2及び第3電極ユニットB3に印加する第3の電位V3の極性を交互に切換えるので、フッ素ガス(F)が第1〜第3電極ユニットB1〜B3で交互に発生する。したがって、第1〜第3電極ユニットB1〜B3における金属板4aの溶出を大幅に抑制することができる。
【0066】
また、本電気分解装置A4の全体的な反応速度は、陽極電極における電解液2の分解速度(フッ素ガス(F)の発生速度)によって決定される。すなわち、陽極電極における電解液2の分解速度が本電気分解装置A4の反応律速である。
【0067】
本電気分解装置A4によれば、ある1つの電極ユニットに正極運転電位+Vaが印加されたとき、他の2つの電極ユニットには負極運転電位0が印加されるので、負極の実効的な電極面積を大きくすることが可能である。したがって、本電気分解装置A4によれば、陰極で起こる電気化学反応が律速にならず、よってフッ素ガス(F)の発生効率を向上させることができる。
【0068】
また、本電気分解装置A4によれば、第1〜第3電極ユニットB1〜B3の各電極面f1〜f3が互いに等距離に設けられているので、各電極面f1〜f3間の電界が同一である。したがって、このような本電気分解装置A4によれば、第1〜第3電極ユニットB1〜B3におけるフッ素ガス(F)及び水素ガス(H)の発生量を均一化することができる。
【0069】
〔第4実施形態〕
次に、第4実施形態について、図9を参照して説明する。なお、図9では、上述した第1〜第3実施形態に係る電気分解装置A1〜A4と同一の構成要素については同一符合を付している。以下では、このような同一の構成要素については、重複するので説明を省略する。
【0070】
本第4実施形態に係る電気分解装置A5は、電解槽1B、電解液2、第1〜第3電極ユニットB1〜B3及び極性切換電源3A(図示略)から構成されている。本電気分解装置A5は、図示するように第1〜第3電極ユニットB1〜B3を水平姿勢で電解槽1A内に収容する電解槽1Bを備えている。この電解槽1Bは、第1、正面から見た面積が第2電極ユニットB1、B2を水平姿勢で収容する第2実施形態に係る電気分解装置A2の電解槽1Aよりも大きく、また深さは電解槽1Aと同等である。また、第1〜第3電極ユニットB1〜B3は、図示するように、電極面f1〜f3を上側に向けた姿勢、かつ、互いに同一深さとなるように電解槽1B内の電解液2に浸漬されている。
【0071】
また、このような本電気分解装置A5の変形例として、図10に示すような電気分解装置A6が考えられる。この変形例に係る電気分解装置A6は、各電極面f1〜f3が下側に向けたれた姿勢、かつ、各電極面f1〜f3が水平に対して多少傾斜した状態となるように第1〜第3電極ユニットB1〜B3を電解槽1B内の電解液2に浸漬させたものである。
【0072】
すなわち、本第4実施形態に係る電気分解装置A5は、第2実施形態に係る電気分解装置A2における電解槽1Aの水平面積を第1〜第3電極ユニットB1〜B3を収容できるようにさに大きくしたものである。したがって、電極面f1、f2を上側に向けた姿勢、かつ、互いに同一深さとなるように第1、第2電極ユニットB1、B2を電解液2に浸漬する第2実施形態に係る電気分解装置A2の作用効果と第1〜第3電極ユニットB1〜B3を電解液2に浸漬する第3実施形態に係る電気分解装置A3の作用効果とを奏する。
【0073】
また、変形例に係る電気分解装置A6は、第2実施形態の変形例に係る電気分解装置A3における電解槽1Aの水平面積を第1〜第3電極ユニットB1〜B3を収容できるようにさに大きくしたものである。したがって、各電極面f1、f2が下側に向けたれた姿勢、かつ、各電極面f1、f2が水平に対して多少傾斜した姿勢となるように第1電極ユニットB1及び第2電極ユニットB2を電解槽1A内の電解液2に浸漬させた第2実施形態の変形例に係る電気分解装置A3の作用効果と第1〜第3電極ユニットB1〜B3を電解液2に浸漬する第3実施形態に係る電気分解装置A3の作用効果とを奏する。
【0074】
なお、本発明は、上記各実施形態に限定されるものではなく、例えば以下のようなさらなる変形例が考えられる。
(1)上記各実施形態では、2つあるいは3つの電極ユニットを組み合わせる構成を採用するものであるが、本発明はこれに限定されない。4つ以上の電極ユニットを組み合わせても良い。上記各実施形態では、全ての電極ユニットを同一構成としたが、必要に応じて異なる構成の電極ユニットを組み合わせても良い。
【0075】
(2)また、3つ以上の電極ユニットを組み合わせる場合には、全ての電極ユニットに電位を供給しなくても良い。すなわち、例えば第3、第4実施形態のように、第1〜第3電極ユニットB1〜B3を用いる場合において、何れか2つの電極ユニットに電位を供給し、他の1つの電極ユニットに電位を供給しないような運用も考えられる。
【0076】
(3)上記各実施形態では、第1電極ユニットA1pの多孔電極板1(金属板1a)の材料としてニッケル(Ni)を選定したが、本願発明はこれに限定されない。ニッケル(Ni)に代えて以下の材料を用いても良い。すなわち、金属電極としては、白金(Pt)、金(Au)、銀(Ag)、パラジウム(Pb)、ロジウム(Rh)、イリジウム(Ir)、タングステン(W)の単体、またはこれらを主成分とする合金もしくはニッケル(Ni)−銅(Cu)合金、ニッケル(Ni)−クロム(Cr)−鉄(Fe)合金、ニッケル(Ni)−モリブデン(Mo)合金、ニッケル(Ni)−クロム(Cr)−モリブデン(Mo)合金、等々を用いても良い。
【0077】
また、炭素電極としては、グラッシーカーボン、パイロリティックグラファイト、ベーサルプレインパイロリティックグラファイト、カーボンペースト、HOPG(Highly Oriented Pyrolytic Graphite)、炭素繊維、導電性ダイヤモンド、BDD(Boron Doped Diamond)、導電性DLC(Diamond Like Carbon)電極等を用いても良い。また、透明電極として、Nesa(アンチモン(Sb)をドープした酸化錫(SnO))、Nesatoron(錫(Sn)をドープした酸化インジウム(In))等を用いても良い。酸化物電極としては、酸化チタン(TiO)、酸化マンガン(MnO),二酸化鉛(PbO)、ペロブスカイト酸化物、ブロンズ酸化物等を用いても良い。
【0078】
また、半導体電極としては、シリコン(Si)、ゲルマニウム(Ge)、酸化亜鉛(ZnO)、硫化カドニウム(CdS)、ガリウムヒ素(GaAs)、酸化チタン(TiO)等を用いても良い。また、高分子固体電解質電極を用いても良い。さらには、陽極電極と陰極電極との組み合わせとして、上述した各材料単一あるいは2つ以上の材料の組み合わせを採用しても良い。
【0079】
(4)上記各実施形態では、フッ素ガス(F)及び水素ガス(H)のうち、フッ素ガス(F)のみが貫通孔を通過するように各電極ユニットを構成したが、本発明は、これに限定されない。貫通孔の孔径あるいは/及び内壁の疎液性等を適宜調節することにより、水素ガス(H)が貫通孔を通過する状態を実現することも可能であると思われる。
なお、陽極の親液面で発生したフッ素ガスは貫通孔を経て疎液面へ移動する。一方、陰極の親液面で発生した水素ガスは、貫通孔を経て疎液面へ移動する場合と貫通孔を通過せずに電解液内を移動する場合がある。この場合は、フッ素ガスと水素ガスが接触すると爆発的反応を起こす可能性があるので、混合しないように回収するものでも良い。
【0080】
したがって、フッ素ガス(F)及び水素ガス(H)の両方が貫通孔を通過するように各電極ユニットを構成しても良い。このように構成した電極ユニットを用いた場合であっても、各電極ユニットからのフッ素ガス(F)及び水素ガス(H)の回収方法を工夫することによって、純度の高いフッ素ガス(F)及び水素ガス(H)を収集することが可能である。
【符号の説明】
【0081】
A1〜A6…電気分解装置、B…電極ユニット、B1…第1電極ユニット、B2…第2電極ユニット、B3…第3電極ユニット、f1〜f3…電極面、1、1A、1B…電解槽、2…電解液、3、3A…極性切換電源、4…多孔電極板、4a…金属板、4b…接液面、4c…接気面、4d…貫通孔、4e…壁面、5…導線、6…電極ホルダ、7…気体導管、8…電極カバー、9…締結ネジ

【特許請求の範囲】
【請求項1】
所定の電解液を電気分解する電気分解装置であって、
電解液に浸漬される接液面と、気体流路を形成する接気面と、接液面と接気面とを連通させ、壁面が電解液に対して疎液性、かつ、孔径が分解ガスを電解液に対して選択的に通過させる大きさに設定された複数の貫通孔とを備える複数の電気分解電極と、
該複数の電気分解電極に極性が時間の経過とともに交互に切り替わる電位を供給する極性切換電源と
を具備することを特徴とする電気分解装置。
【請求項2】
各電気分解電極は、各接液面が垂直姿勢かつ互いに向き合うように電解液内に配置されることを特徴とする請求項1記載の電気分解装置。
【請求項3】
各電気分解電極は、接液面を上側として電解液内に配置されることを特徴とする請求項1記載の電気分解装置。
【請求項4】
電解液がフッ素化合物を溶融塩とするものであり、フッ素化合物を電気分解してフッ素ガスを発生させることを特徴とする請求項1〜3のいずれか一項に記載の電気分解装置。
【請求項5】
所定の電解液を電気分解する電気分解方法であって、
電解液に浸漬される接液面と、気体流路を形成する接気面と、接液面と接気面とを連通させ、壁面が電解液に対して疎液性、かつ、孔径が分解ガスを電解液に対して選択的に通過させる大きさに設定された複数の貫通孔とを有する電気分解電極を電解液に複数浸漬させ、
各電気分解電極に時間の経過とともに交互に切り替わる電位を供給する
ことを特徴とする電気分解方法。
【請求項6】
各電気分解電極を各接液面が垂直姿勢かつ互いに向き合うように電解液内に配置することを特徴とする請求項5記載の電気分解方法。
【請求項7】
各電気分解電極を接液面を上側として電解液内に配置することを特徴とする請求項5記載の電気分解方法。
【請求項8】
フッ素化合物を溶融塩とする電解液を用い、フッ素化合物を電気分解してフッ素ガスを発生させることを特徴とする請求項5〜7のいずれか一項に記載の電気分解方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−38145(P2011−38145A)
【公開日】平成23年2月24日(2011.2.24)
【国際特許分類】
【出願番号】特願2009−185785(P2009−185785)
【出願日】平成21年8月10日(2009.8.10)
【出願人】(000006507)横河電機株式会社 (4,443)
【出願人】(000005887)三井化学株式会社 (2,318)
【Fターム(参考)】