説明

電流センサ

【課題】電流センサの感度を向上させる。
【解決手段】集積回路の電流センサ10は、導体部分14を形成するように結合された少なくとも2つのリードを有するリードフレーム12と、1又は複数の磁界変換器18が配置された第1の面を有する基板16とを含み、第1の面が導体部分に近接し、第2の面が導体部分から遠位にある。基板は、導体部分の上方に基板16の第1の面を、また第1の面の上方に第2の面を、有するように配置される。基板は、集積回路内で従来の向きとは逆の向きに置かれる。この配置では、電流センサには、1又は複数の磁界変換器が導体部分に近接して設けられる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に電流センサに関し、より詳細には、集積回路パッケージ内の小型電流センサに関する。
【背景技術】
【0002】
当業界で周知のように、従来の電流センサの1つのタイプは、導体に近接する磁界変換器(magnetic field transducer)(例えば、ホール効果変換器又は磁気抵抗型変換器)を使用している。磁界変換器は、導体を流れる電流によって誘導された磁界に比例する大きさの出力信号を生成する。
【0003】
いくつかの典型的なホール効果電流センサは、ギャップ付き環状(トロイド)磁束集中器を含んでおり、環状ギャップ内にホール効果素子が置かれている。ホール効果素子及び環状体は、プリント回路基板上に実装可能なハウジング内に組み込まれる。使用に際しては、電線など別の導体が環状体の中心を通る。このような素子は、高さの点でも回路基板面積の点でも大きくなってしまう傾向がある。
【0004】
他のホール効果電流センサは、誘電体材料、例えば回路基板上に実装されるホール効果素子を含んでいる。このような電流センサの1つが、欧州特許出願公開第0867725号に記載されている。さらに他のホール効果電流センサは、欧州特許出願公開第1111693号に記載されているように、基板、例えばシリコン基板上に実装されるホール効果素子を含んでいる。
【0005】
感度及び直線性を含む様々なパラメータが、電流センサの性能を特徴づける。感度は、検知電流に応答したホール効果変換器からの出力電圧の変化の大きさに関係する。直線性は、ホール効果変換器からの出力電圧が検知電流に正比例して変化する度合いに関係する。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】欧州特許出願公開第0867725号明細書
【特許文献2】欧州特許出願公開第1111693号明細書
【特許文献3】国際公開第99/14605号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0007】
電流センサの感度は、様々な要素に関係する。1つの重要な要素は、導体の近傍で発生しホール効果素子によって検知される磁界の磁束密度である。このため、ある電流センサは、磁束集中器(flux concentrator)を使用している。もう1つの重要な要素は、特に磁束集中器が使用されない電流センサの場合の、ホール効果素子と導体との間の物理的分離である。
【課題を解決するための手段】
【0008】
本発明によれば、集積回路の電流センサは、導体部分を形成するように結合された少なくとも2つのリードを有するリードフレームと、1又は複数の磁界変換器が配置される第1の面を有する基板とを含み、第1の面が導体部分に近接し、第2の面が導体部分から遠位にある。特定の一実施形態では、この基板は、導体部分の上方に基板の第1の面がありこの第1の面の上方に基板の第2の面があるように配置される。この特定の実施形態では、基板は、集積回路内で従来の向きとは逆の向きに置かれる。
【0009】
この特定の配置では、電流センサには、1又は複数の磁界変換器が導体部分に近接する位置に設けられ、その結果、電流センサの感度が向上する。さらに、電流センサは、小型の集積回路パッケージ内に設けられる。
【0010】
本発明の他の態様によれば、集積回路を製造する方法は、少なくとも2つが1つの導体部分を形成するように互いに結合された複数のリードを有するリードフレームを形成すること、及び導体部分が所定の形状の断面になるようにエッチングすることを含む。特定の一実施形態では、この所定の形状はT字形である。他の実施形態では、この所定の形状は、リードフレームの大部分の厚みよりも薄い最小寸法の矩形である。
【0011】
この特定の配置では、導体部分は、その表面の上方での磁束密度がより集中するように形成されている。したがって、導体近傍に実装された磁界変換器は、より強い磁界を受け、その結果、電流センサの感度が向上する。
【0012】
第1の発明は、複数のリードを有するリードフレームと、前記複数のリードの少なくとも2つを結合する部分を含む導体部分と、前記導体部分に近接する第1の面及び前記導体部分から遠位にある第2の面を有する基板と、前記基板の前記第1の面上に配置された1又は複数の磁界変換器とを含む、集積回路である。第1の発明において、前記基板は、前記導体部分の上方に前記基板の前記第1の面を、また当該第1の面の上方に前記第2の面を、有するように配置される。第1の発明において、前記基板は、前記導体部分の下方に前記基板の前記第1の面を、また当該第1の面の下方に前記第2の面を、有するように配置される。第1の発明において、前記導体部分は、前記複数のリードの前記少なくとも2つに結合された導電性クリップをさらに含む。前記基板は、前記導電性クリップの上方に前記基板の前記第1の面を、また当該第1の面の上方に前記基板の前記第2の面を、有するように配置される。前記基板は、前記導電性クリップの下方に前記基板の前記第1の面を、また当該第1の面の下方に前記第2の面を、有するように配置される。前記導電性クリップの厚みは、当該導電性クリップを通過する電流に従って選択される。第1の発明において、前記基板は、少なくとも1つのボンディングパッドを有し、当該少なくとも1つのボンディングパッドは、結合線を有する前記複数のリードの1つに対応して結合される。第1の発明において、前記基板は、前記複数のリードの1つに対応して結合される、はんだボール、金バンプ、共晶高鉛はんだバンプ、無鉛はんだバンプ、金スタッドバンプ、高分子導電性バンプ、異方性導電ペースト、及び導電膜から選択された1つを含む。第1の発明において、前記導体部分は導体部分の軸を有すると共に、前記1又は複数の磁界変換器の少なくとも2つが前記導体部分の軸の両側に配置される。第1の発明において、前記1又は複数の磁界変換器の少なくとも2つは、所定の電圧出力極性を生成するために互いに逆方向に回転して置かれる。第1の発明において、前記導体部分の少なくとも一部分はT字形断面を有する。第1の発明において、前記導体部分の少なくとも一部分は、前記リードフレームの厚みよりも薄い最小寸法の矩形断面を有する。第1の発明において、前記基板上に配置される少なくとも1つの増幅器をさらに含む。前記少なくとも1つの増幅器は、前記1又は複数の磁界変換器の少なくとも2つによって生成された信号の和に比例する出力信号を生成する。前記少なくとも1つの増幅器は、前記1又は複数の磁界変換器の4つに結合された加算構成を形成する。第1の発明において、前記1又は複数の磁界変換器に近接して配置される磁束集中器をさらに含む。第1の発明において、前記基板の前記第2の面に近接して配置される磁束集中層をさらに含む。
【0013】
第2の発明は、集積回路を製造する方法であって、複数のリードを有するリードフレームを形成する工程であって、前記複数のリードの内の少なくとも2つが互いに結合されて、1つの導体部分を形成する、リードフレームを形成する工程と、前記導体部分が所定形状の断面を備えるように、前記導体部分をエッチングする工程とを含む方法である。第2の発明において、前記所定形状はT字形を含む。前記所定形状は、前記リードフレームの厚みよりも薄い最小寸法の矩形を含む。第2の発明において、前記リードフレームに近接して基板を取り付ける工程をさらに含み、前記基板は、前記導体部分に近接する第1の面と前記導体部分から遠位にある第2の面とを有しており、前記基板の前記第1の面上に1又は複数の磁界変換器が配置される。前記所定形状はT字形を含む。前記所定形状は、前記リードフレームの厚みよりも薄い最小寸法の矩形を含む。
【図面の簡単な説明】
【0014】
【図1】本発明による電流センサの等角図である。
【図2】図1の電流センサのホール効果素子を横切る位置と磁界の関係を示すグラフである。
【図3】本発明による電流センサの他の実施形態の等角図である。
【図4】図3の電流センサの一部を形成する回路の概略図である。
【図5】本発明による電流センサの他の実施形態の等角図である。
【図6】本発明による電流センサの他の実施形態の等角図である。
【図6A】本発明による電流センサの他の実施形態の等角図である。
【図7】本発明による電流センサの他の実施形態の等角図である。
【図8】図7の電流センサのもう1つの等角図である。
【図9】本発明の別の態様によるより薄い導体部分を有する他のリードフレームの等角図である。
【図9A】図9の導体部分の代替実施形態の断面図である。
【発明を実施するための形態】
【0015】
本発明の前述の特徴ならびに本発明自体は、添付図面の以下の詳細な説明からより完全に理解することができる。
【0016】
図1を参照すると、本発明による例示的な電流センサ10は、複数のリード12a〜12hを有するリードフレーム12を含む。リード12a及び12bは、電流路すなわち幅がw1の狭窄部分を有する導体14を形成するようにリード12c及び12dに結合されている。電流センサ10は、第1の面16a及び反対側の第2の面16bを有する基板16も含む。基板16は、磁界変換器18を有し、磁界変換器18は、ある実施形態では、第1の面16a内に拡散によって作り込まれるか、又は第1の面16a上に配置されるホール効果素子18とすることができる。基板16は、半導体材料、例えばシリコンから構成することができ、他の実施形態では、基板16は、絶縁材料から構成することができる。
【0017】
基板16は、リードフレーム12の上方に配置され、したがって、第1の面16aが導体部分14に近接し、第2の面16bが導体部分14から遠位にあり、より具体的には、ホール効果素子18が導体部分14に近接している。図示の実施形態では、基板16は、基板が集積回路パッケージ内に取り付けられる従来の向きとは逆の向きになっている(すなわち、第1の面16aは下方を向いている)。
【0018】
基板16は、第1の面16a上にボンディングパッド20a〜20cを有し、ボンディングパッド20a〜20cに結合線22a〜22cが結合されている。さらに、結合線22a〜22cは、リードフレーム12のリード12e、12f、12hに結合されている。
【0019】
絶縁体24は、基板16をリードフレーム12から分離するものである。絶縁体24は、様々な方法で設けることができる。例えば、一実施形態では、絶縁体24の第1の部分は、基板16の第1の面16a上に直接堆積される厚みが4μmのBCB樹脂層を含む。絶縁体24の第2の部分は、リードフレーム12上に堆積されるStaychip(商標)のNUF−2071E型の下充填材料(Cookson Electronics Equipment社、ニュージャージー州)の層を含む。このような配置は、基板16とリードフレーム12との間に千ボルトを超える絶縁をもたらす。
【0020】
導体部分14は、電流が流れる全経路の一部にすぎないことが理解されよう。例えば、矢印26で示す方向の電流が、この場合は電気的に並列結合されて示してあるリード12c、12d中に入り、導体部分14を経由して、この場合も電気的に並列結合されて示してあるリード12a、12bから外へ流れる。
【0021】
この構成では、ホール効果素子18は、導体部分14を通過する矢印26で示す方向の電流によって発生する磁界がホール効果素子18の最大応答軸とほぼ同じ方向になる、導体部分14に近接しかつ導体部分14に相対する所定の位置に配置される。ホール効果素子18は、この磁界に比例する電圧出力を生成し、したがって導体部分14を流れる電流に比例する電圧出力を生成する。図示のホール効果素子18は、z軸34とほぼ同じ方向の最大応答軸を有する。電流に応答して発生する磁界は、導体部分14の周りを循環するため、ホール効果素子18は、図のように導体部分14のすぐ横に(すなわち、y軸32に沿ってわずかにずらして)配置され、そこで、磁界は、ほぼz軸34に沿った向きになる。この位置にすると、ホール効果素子18からの電圧出力がより大きくなり、したがってホール効果素子18の感度が向上する。しかし、別の方向に合わせた最大応答軸を有するホール効果素子又は別タイプの磁界センサ例えば磁気抵抗素子は、導体部分14に相対する別の位置に、例えば導体部分14の上に(z軸34に沿った方向に)配置することができる。
【0022】
基板16の第1の面16a上には1つのホール効果素子18が示してあるが、図3及び図5の実施形態に示すように複数のホール効果素子が使用され得ることが理解されよう。また、追加の回路例えば増幅器を、第1の面16a及び/又は第2の面16b内に拡散によって作り込む、又はその面上に配置する、あるいはその面で支持することもできる。このタイプの例示的な回路が図4に示してある。
【0023】
図1の実施形態では、ホール効果素子18と導体14との間の近接は、第2の面よりも導体部分14により近接して位置する第1の基板面16a上にホール効果素子18を設けることによって実現される。他の実施形態では、この有利な近接は、図7及び図8に示すように、第2の基板面16b上にホール効果素子18を設けること、及び第2の面16bとほぼ同じ面になるように導体部分14を形成することによって実現することができる。
【0024】
次に、図2を参照すると、グラフ50は、導体部分14を通過する10A程度の電流に対する、ホール効果素子18(図1)の平面におけるx軸30(図1)及びy軸32(図1)に沿ってホール素子18を横切るz軸34(図1)方向の磁束密度を示す。ホール効果素子18の中心(図示せず)は、横座標52上の300μmに対応する。仮数54は、磁束に対応する。
【0025】
磁束曲線56は、x軸30に沿った位置に対するz軸34の磁束の変化に対応する。磁束曲線58は、y軸32に沿った位置に対するz軸34の磁束の変化に対応する。
【0026】
磁束曲線56、58は、300μmに中心があるホール素子の近傍でほぼ平坦であると特徴づけることができる。したがって、z軸34の方向の磁界に敏感なホール効果素子18の出力は、ホール効果素子18のx軸30及びy軸32に沿った位置に対して比較的鈍感である。
【0027】
例示のホール効果素子18は、x軸30及びy軸32に沿った200μm程度の寸法であり、したがって、ホール効果素子18は、横座標52上の200μmから400μmの範囲にある。ホール効果素子18の位置がx軸30又はy軸32に沿って50μm分変わっても、ホール効果素子によって検知される磁界はあまり変化しない。したがって、x軸30及びy軸32におけるホール効果素子の位置は、電流センサ10(図1)の感度の影響をあまり受けずに、製造上の位置公差によって異なることができる。
【0028】
ホール効果素子18のx方向30の寸法に相対する導体部分14のx方向30の幅w1(図1)は、ホール効果素子18のx方向30に沿った位置でz方向34の磁束密度の均一性に大きな影響を及ぼす。特に、ホール効果素子18のx方向30の幅に比べて導体部分14が長いほど(すなわち、図1の幅w1が大きいほど)、曲線56のほぼ平坦な部分がより長くなる。
【0029】
幅w1(図1)は、電流センサ10(図1)の所望の感度と電流路14及びホール効果素子18の相対位置の製造ばらつきに起因する性能ばらつきの所望の低減とを含むがこれらに限定されない様々な要素に従って選択される。一般に、幅w1をホール効果素子18の幅に相当するように選択すると、電流センサ10の感度が最大になることが理解されよう。しかし、幅w1をホール効果素子18の幅よりも大きくなるように選択すると、ホール素子のx方向30の位置配置の製造公差に起因する性能ばらつきが最小になることも理解されよう。
【0030】
次に、図3を参照すると、本発明による他の例示的な電流センサ70は、複数のリード72a〜72hを有するリードフレーム72と、幅がw2の開口部を有する導体部分74とを含む。電流センサは、第1の面76a及び反対側の第2の面76bを有する基板76も含む。基板76は、第1の面76a内に拡散によって作り込まれるか、又は第1の面76a上に配置されるあるいは第1の面76aよって支持される第1のホール効果素子78a及び第2のホール効果素子78bを有する。基板76は、ホール効果素子78が導体部分74に近接するように、リードフレーム72上に配置される。図示の実施形態では、基板76は、基板が集積回路パッケージ内に取り付けられる従来の向きとは逆の向きになっている(すなわち、第1の面76aが下方を向いている)。絶縁体(図示せず)は、基板76をリードフレーム72から分離することができる。この絶縁体は、図1に示した絶縁体24と同一又は類似のものとすることができる。
【0031】
この構成では、ホール効果素子78a、78bはどちらも、導体部分74を通過する矢印86で示す方向の電流によって発生する磁界が、ホール効果素子78a、78bの最大応答軸とほぼ同じ方向になるように、導体部分74に近接しかつ導体部分74に相対する所定の位置に配置される。この場合、ホール効果素子78a、78bのそれぞれは、z軸94と同じ方向の最大応答軸を有する。したがって、ホール効果素子78a、78bは、図のように導体部分74の両側に(すなわち、y軸92に沿ってわずかにずらして)配置され、そこで、磁界は、ほぼz軸94に沿った向きになる。一実施形態では、ホール効果素子78a、78bは、導体部分74の周囲にほぼ等分だけ互いに逆方向に(y軸92に沿って)ずらして置かれる。しかし、別の方向に合わせた最大応答軸を有するホール効果素子又は別タイプの磁気センサ例えば磁気抵抗素子を、導体部分74に相対する他の位置に、例えば導体部分74の上に(z軸34に沿った方向に)配置することができる。
【0032】
動作中、電流は、電気的に並列結合されたリード72c、72d中に入り、導体部分74を通り、同様に電気的に並列結合されたリード72a、72bから流出する。導体部分74を流れる電流は、ホール効果素子78a、78bによって検知される磁界を発生させる。上述のように、ホール効果素子78a、78bは、電流によって発生する磁界が、ホール効果素子78a、78bの最大応答軸とほぼ同じ方向になるように、導体部分74に非常に近接しかつ導体部分74に相対する所定の位置にある。この配置によって、ホール効果素子74からの電圧出力がより大きくなり、したがってホール効果素子74の感度が向上する。
【0033】
第1のホール効果素子78a及び第2のホール効果素子78bが受ける磁界は、z軸94に沿って互いに反対方向を向いている。したがって、2つのホール効果素子78a、78bの出力は、それらが同じ向きに分極された場合に極性が逆になる。ホール効果素子78a、78bの一方からの出力が、例えば反転増幅器を用いて反転され、次いでホール効果素子78a、78bの他方の出力と加算され、すなわち差分加算される場合、特定の利点が実現される。
【0034】
最初の利点としては、2つのホール効果素子78a、78bの出力は、上述のように差分加算されたとき、同一電流が存在する場合に、単一のホール効果素子からの電圧出力の2倍の大きさの電圧出力になる。したがって、電流センサ70は、図1の電流センサ10の感度の2倍の感度を有する。
【0035】
第2の利点としては、電流センサ70は、y軸92の方向でのホール効果素子78a、78bの位置のばらつきに対して比較的鈍感である。これは、y軸92の方向に移動したときに、ホール効果素子78a、78bの一方からの電圧出力が増大する傾向があり、ホール効果素子78a、78bの他方からの電圧出力が減少する傾向があるからである。したがって、2つの出力の差分加算値は、比較的一定している。
【0036】
リードフレーム72は、回路基板への表面実装に適した平坦リード72a〜72hを有するように示してあるが、図1のリードフレーム12のような、曲がったリードを有するリードフレームも使用され得ることが理解されよう。同様に、2つのホール効果素子78a、78bが示してあるが、3つ以上又は1つのホール効果素子を使用することもできる。
【0037】
図4を参照すると、図3に関連して説明する、差分信号加算の実行に適した加算回路100が、2つのホール効果素子102a、102bに結合されて示してある。ホール効果素子102a、102bは、図3のホール効果素子78a、78bと同一又は類似のものとすることができる。この場合、ホール効果素子102a、102bのそれぞれが、ホール効果素子102a、102b上にベクトルで示すように、他方のホール効果素子に対して90度回転して置かれる。したがって、ホール効果素子102a、102bは、互いに逆向きの磁界112a、112bに応答して同一極性を有する出力電圧103a、103bを生成する。出力電圧103aは、非反転構成で配置された増幅器104aに結合されており、出力電圧103bは、反転構成で配置された増幅器104bに結合されている。したがって、増幅器出力電圧106a、106bは、磁界112a、112bに応答して互いに逆の電圧向きとなる。増幅器出力電圧106a、106bは、差分加算すなわち出力電圧106a、106bの差を生成するように、差動結合されている。したがって、出力電圧106a、106bは、増幅器108の出力により大きな出力電圧110を生成するように差分加算される。
【0038】
加算回路100を、図3の電流センサ70内で使用することができ、その場合に、ホール効果素子102a、102bは、ホール効果素子78a、78bに対応する。特定の一実施形態では、加算回路100は、基板76の第1の面76a内に拡散によって作り込まれるか、又は基板76の第1の面76a上に配置される。他の実施形態では、加算回路100は、基板76の第2の面76b内に拡散によって作り込まれるか、又は基板76の第2の面76b上に配置されるが、ホール効果素子78a、78bは、第1の面76a上に置いたままでバイア(vias、バイアホール)などを介して他の回路部品に結合される。
【0039】
次に、図1と同じ要素には同じ参照番号で示してある図5を参照すると、他の例示的な電流センサ120は、第1の面126a及び反対側の第2の面126bを有する基板126を含む。この場合、4つのホール効果素子128a〜128dが、基板126の第1の面126a内に拡散によって作り込まれるか、又は基板126の第1の面126a上に配置される。基板126は、図のように、第1のホール効果素子128a及び第2のホール効果素子128bがy軸142に沿った導体部分14の片側にあり、第3及び第4のホール効果素子128c、128dがy軸42に沿った導体部分14の反対側にあるように、リードフレーム12に相対して位置する。一実施形態では、ホール効果素子128a、128bは、ホール効果素子128c、128dが導体部分14から(y軸142に沿って)ずらす量と同じ量だけ導体部分14から(y軸142に沿って)反対側にずらして配置される。
【0040】
この構成では、ホール効果素子128a〜128dは、導体部分14を通過する矢印86で示す方向の電流によって発生する磁界が、ホール効果素子128a〜128dの最大応答軸とほぼ同じ方向になるように、導体部分14に近接しかつ導体部分14に相対する所定の位置に配置される。この場合、ホール効果素子128a〜128dのそれぞれは、z軸144と整合する最大応答軸を有する。図示の実施形態では、ホール効果素子128a、128bは、図のように導体部分144のホール効果素子128c、128dとは反対側に(すなわち、y軸142に沿ってわずかにずらして)配置され、そこで、磁界は、ほぼz軸144に沿った向きになる。しかし、別の方向に合わせた最大応答軸を有するホール効果素子、又は別タイプの磁気センサ、例えば磁気抵抗素子を、導体部分14に相対する他の位置に、例えば導体部分14の上に(z軸144に沿った方向に)配置することができる。第1のホール効果素子128a及び第2のホール効果素子128bがz軸144に沿った方向の磁界に曝され、第3のホール効果素子128c及び第4のホール効果素子128dがz軸144に沿った逆方向の磁界に曝されることが理解されよう。
【0041】
4つのホール効果素子128a〜128dは、特定の利点を実現するために、当業者には理解されるように、加算回路として構成された電子回路に結合することができる。この加算回路は、例えば図4の加算回路100を2つ含むことができる。一実施形態では、この加算回路は、ホール効果素子128a〜128dの内の最初の2つを図4の加算回路100のような第1の加算回路と結合させ、ホール効果素子128a〜128dの内の後の2つを加算回路100のような第2の加算回路と結合することができる。第1の加算回路の出力は、他の増幅器を用いて第2の加算回路の出力と加算することができる。最初の利点としては、前述の加算回路に結合された4つのホール効果素子128a〜128dは、同一電流が存在する場合に、単一のホール効果素子、例えば図1のホール効果素子18からの電圧出力の4倍の大きさの電圧出力を生成する。したがって、電流センサ120は、図1の電流センサ10の4倍の感度を有する。
【0042】
第2の利点としては、電流センサ120は、y軸142の方向のホール効果素子128a〜128dの位置のばらつきに対して比較的鈍感である。これは、y軸142の方向に移動したときに、4つのホール効果素子128a〜128dの2つからの電圧出力が増大する傾向があり、4つのホール効果素子128a〜128dの他の2つからの電圧出力が減少する傾向があるからである。したがって、加算回路として結合されるとき、回路出力は、ホール効果素子のy軸の位置に対して比較的鈍感になる。
【0043】
図76を参照すると、本発明による例示的な電流センサ150は、複数のリード152a〜152h及び導体部分154を有するリードフレーム152を含む。電流センサ150は、第1の面166a及び反対側の第2の面166bを有する基板166も含む。基板166は、第1の面166a内に拡散によって作り込まれるか、又は第1の面166a上に配置されるホール効果素子158を有する。基板166は、ホール効果素子158が導体部分154に近接するように、リードフレーム152上に配置される。基板166は、基板が集積回路パッケージ内に取り付けられる基板の従来の向きとは逆の向きになっている(すなわち、第1の面166aが下方を向いている)。基板166は、この基板の第1の面166a上にはんだボール160a〜160cを有するフリップチップである。はんだボール160a〜160cは、図のようにリード152e〜152hに直接結合している。絶縁体164は、基板166をリードフレーム152から分離する。絶縁体164は、図1に示した絶縁体24と同一又は類似のものとすることができる。
【0044】
この構成では、ホール効果素子158は、導体部分154を通過する矢印168で示す方向の電流によって発生する磁界が、ホール効果素子158の最大応答軸とほぼ同じ方向になるように、導体部分154に近接しかつ導体部分154に相対する所定の位置に配置される。ホール効果素子158は、z軸174と整合する最大応答軸を有する。したがって、ホール効果素子158は、図のように導体部分14のすぐ横に(すなわち、y軸172に沿ってわずかにずれて)配置され、そこで、磁界は、ほぼz軸174に沿った向きになる。しかし、別の方向に合わせた最大応答軸を有するホール効果素子又は別タイプの磁気センサ例えば磁気抵抗素子は、導体部分154に相対する別の位置に、例えば導体部分154の上に(z軸174の方向に)配置されることができる。
【0045】
電流センサ150の動作は、上述の図1の電流センサ10の動作と同様である。ホール効果素子158が導体部分154に近接すると、ホール効果素子158からの出力電圧はより大きくなり、したがってホール効果素子158の感度が向上する。
【0046】
基板166の第1の面166a上には1つのホール効果素子158しか示されていないが、複数のホール効果素子が本発明で使用され得ることが理解されよう。他の回路、例えば増幅器は、基板166の第1の面166a及び/又は第2の面166b内に拡散によって作り込まれる、又はその面に結合される、あるいはその面で支持されることもできる。
【0047】
3個のはんだボール160a〜160cが示してあるが、基板166を安定させるためのダミーはんだボールを含む任意の数のはんだボールを設けることができる。また、はんだボール160a〜160cが示してあるが、金バンプ、共晶高鉛はんだバンプ、無鉛はんだバンプ、金スタッドバンプ、高分子導電性バンプ、異方性導電ペースト及び導電膜を含むがこれらに限定されない他の接続方法が使用されることもできる。
【0048】
次に、図6と同じ要素には同じ参照番号で示してある図6Aを参照すると、本発明による例示的な電流センサ180は、磁束集中器182及び磁束集中層(flux concentrating layer)184を含む。磁束集中器182は、基板166の第1の面166aに隣接しかつその下方にあるホール効果センサ158の近傍に位置する。磁束集中層184は、基板166の第2の面166b上に(又は、それに隣接しかつ上方に)配置される。
【0049】
動作中、磁束集中器182及び磁束集中層184はそれぞれ、導体部分154を通過する電流によって発生する磁束を集中させる傾向があり、それによって電流センサ180が図6の電流センサ150よりも高い感度を有するようになる。
【0050】
磁束集中器182及び磁束集中層184はそれぞれ、フェライト、パーマロイ(商標)及び鉄を含むがこれらに限定されない様々な材料で構成することができる。
【0051】
磁束集中器182は、立方形で示してあるが、他の実施形態では、磁束集中器は、別の形状、例えば多面体形状、楕円形状又は球形状を有することができる。磁束集中器182も磁束集中層184も示してあるが、他の実施形態では、磁束集中器182及び磁束集中層184の一方のみ設けられることもできる。また、磁束集中器182及び磁束集中層184は、1つの磁界変換器158と共に示してあるが、磁束集中器182及び磁束集中層184は、複数の磁界変換器158を有する構成、例えば図1、3及び5に示した構成にも適用できることが理解されよう。
【0052】
次に、図7を参照すると、本発明による他の例示的な電流センサ200は、複数のリード202a〜202hを有するリードフレーム202を含む。電流センサ200は、第1の面206a及び反対側の第2の面206bも含む。基板206は、第1の面206a内に拡散によって作り込まれるか、又は第1の面206a上に配置されるホール効果素子208を有する。導体部分204aを有する導電性クリップ204は、リード202a〜202dに結合されている。導電性クリップ204の特徴は、図8に示してある。導電性クリップ204は、これが基板206の第1の面206aの上方へ覆って通るように曲げて形成されていると言えば十分であろう。基板206は、ホール効果素子208が導体部分204aに近接するように、リードフレーム202の上に配置される。図示の実施形態では、基板206は、第1の面206aが上方へ向けられた従来の取付け方向になっている。基板206は、第1の面206a上にボンディングパッド212a〜212cを有し、ボンディングパッド212a〜212cに結合線210a〜210cが結合されている。さらに、結合線210a〜210cは、リード202e、202f、202hに結合されている。絶縁体214は基板206を導電性クリップ204から分離するように設けることができる。絶縁体214は、図1に示した絶縁体24と同一又は類似のものとすることができる。
【0053】
この構成では、ホール効果素子208は、導体部分204aに近接して配置され、導体部分204aは、基板206の第1の面206aの上方へ覆うように通る。ホール効果素子208は、導体部分204aを通過する矢印216で示す方向の電流によって発生する磁界がホール効果素子208の最大応答軸とほぼ同じ方向になるように、導体部分204aに相対する所定の位置に配置される。ホール効果素子208は、z軸224と整合する最大応答軸を有する。図示の実施形態では、ホール効果素子208は、図のように導体部分204aのすぐ横に(すなわち、y軸222に沿ってわずかにずらして)配置され、そこで、磁界は、ほぼz軸224に沿った向きになる。しかし、別の方向に合わせた最大応答軸を有するホール効果素子又は別タイプの磁気センサ例えば磁気抵抗素子は、導体部分204aに相対する別の位置に配置され、例えば、導体部分204aの上方又は下方に(z軸224の方向に)これと基本的に合致する別の位置に配置されることができる。
【0054】
動作中、電流は、並列結合されたリード202c、202d中に入り、導電性クリップ204を通り、同様に並列結合されたリード202a、202bから流出する。導体部分204aを流れる電流は磁界を発生させ、この磁界は、ホール効果素子208によって検知される。ホール効果素子208は、磁界に比例する電圧出力を生成し、したがって導体部分204aを通過する電流に比例する電圧出力を生成する。上述のように、ホール効果素子208は、この電流によって発生する磁界がホール効果素子208の最大応答軸とほぼ同じ方向になる、導体部分204aに非常に近接しかつ導体部分204aに相対する所定の位置にある。この位置にすると、ホール効果素子208からの電圧出力がより大きくなり、したがって感度が向上する。
【0055】
基板206の第2の面206b上には1つのホール効果素子208しか示していないが、複数のホール効果素子が使用され得ることが理解されよう。特に、2つのホール効果素子を有する一実施形態は、図3の電流センサ70と類似のものとすることができ、4つのホール効果素子を有する一実施形態は、図5の電流センサ120と類似のものとすることができる。また、追加の回路例えば増幅器が、基板206の第1の面206a及び/又は第2の面206b内に拡散によって作り込まれるか、又はその面に結合されることもできる。
【0056】
導電性クリップ204は、様々な方法で様々な材料から形成され得ることが理解されよう。特定の一実施形態では、導電性クリップ204は、例えば銅板から打ち抜いたものである。他の実施形態では、導電性クリップ204は、はく例えば銅はくから形成される。他の実施形態では、導電性クリップ204は、エッチングプロセスによって形成される。導電性クリップ204により、導体部分204aをホール効果素子208に非常に近接させながら、基板206を従来の取付け方向で使用できるようになる。
【0057】
導電性クリップ204は、当該導電性クリップを通過する電流の大きさに従って選択された厚みのものとすることができる。したがって、比較的高い電流を検知するようになされた電流センサが望ましい場合、導電性チップ204は比較的厚くすることができ、比較的低い電流を検知するようになされた電流センサが望ましい場合、導電性チップ204は比較的薄くすることができる。他の実施形態では、比較的高い電流を検知するようになされた電流センサが望ましい場合、複数の導電性クリップ204が、1つの導電性クリップ204よりも厚い、したがってより大きな電流を伝えることが可能な有効厚みの増大をもたらすように、他の導電性クリップと接触して積み重ねることができる。複数の導電性クリップ204を他の導電性クリップと接触して積み重ねると、1つの導電性クリップ204よりも厚い、したがってより大きな電流を伝えることが可能な有効厚みの増大をもたらすことができる。
【0058】
図7の実施形態では、ホール効果素子208と導体部分204aとの間の近接は、第2の面206bよりも導体部分204aにより近接して位置する第1の基板面206a上にホール効果素子208を設けることによって実現される。他の実施形態では、この有利な近接は、第2の基板面206b上にホール効果素子208を設け、第2の面206bとほぼ同じ面になるように導体部分204aを形成することによって実現される。
【0059】
次に、図7と同じ要素には同じ参照番号で示してある図8を参照すると、リード202a〜202dに結合される前の導電性クリップ204が示してある。導電性クリップ204は、導体部分204、遷移領域204b、曲げ領域204c、及びボンディング領域204dを含む。ボンディング領域204dは、リード202a〜202dに結合される2つの部分204e、204fを含む。遷移領域204bは、基板206と接触しないように導体部分204aに比べて高くすることができる。
【0060】
ホール効果素子を本発明の実施形態に関連して示し説明してきたが、他のタイプの磁気センサも使用され得ることが理解されよう。例えば、磁気抵抗素子が、ホール効果素子の代わりに使用されることができる。しかし、従来の磁気抵抗素子は、従来のホール効果素子の最大応答軸と垂直方向の最大応答軸とを有する。本明細書に記載のホール効果素子の実施形態と同じ結果を得るために本発明の実施形態に従って1又は複数の磁気抵抗素子を導体部分に相対する適切な位置に置く方法を、当業者なら理解するであろう。
【0061】
次に図9を参照すると、図3のリードフレーム72及び図6のリードフレーム152と類似の形状を有するリードフレーム250が示してある。リードフレーム250は、リードフレーム250の他の部分よりも薄くなっている複数の薄い部分252a〜252nを有する。これらの薄い部分は、化学エッチング及びスタンピングを含むがこれらに限定されない様々なプロセスによって形成されることができる。
【0062】
導体部分254は、面254aと、薄い部分252b〜252n以外の部分の厚みと同じ又は同等とすることができる厚みt1とを有する。リードフレーム250のその他の部分は、厚みt2を有する。特定の一実施形態では、通電部分254の厚みt1は、他の薄い部分252b〜252nの厚みと同じであり、厚みt1は、厚みt2の約半分である。一実施形態では、導体部分254は、基本的に矩形で厚みt1の断面を有する。
【0063】
導体部分254を通過するある電流が存在する場合、例えば図3の導体部分74よりも薄くなっている導体部分254では、図3の導体部分74に同程度の電流が存在する場合の面74aの近傍よりも、面254aの近傍でより高い磁束密度になる。言い換えれば、この電流は圧縮されて、普通ならより厚い導体部分を有する場合よりも面254aに近づく。その結果、電流によって発生する磁界は、面254aの近傍でより高い磁束密度になる。
【0064】
したがって、リードフレーム250が図3のリードフレーム72の代わりに使用されるとき、ホール効果素子78a、78bは、より大きな磁界を受け、より感度の高い電流センサをもたらす。
【0065】
薄い部分252b〜252n以外の部分は、他の利点を提供する。例えば、リードフレーム250をモールドしてプラスチック囲繞体にするとき、他の薄い部分252b〜252nは、リードフレーム250をモールド体の中により頑強に固定する傾向がある。
【0066】
厚みt1は、導体部分254を通過する最大電流を含むがこれに限定されない様々な要素に従って選択される。
【0067】
同じ利点を実現するために、上記の薄い部分は、図3の実施形態以外の実施形態において、前掲のリードフレーム以外のものにも適用され得ることが理解されよう。
【0068】
次に、図9Aを参照すると、図9の導体部分254を置き換えるのに適した代替導体部分270は、図9の線9A−9Aに沿った横断面から見られるT字形断面を有している。このT字形状は、面270a、第1の厚みt3及び第2の厚みt4を有する。厚みt3は、図9の厚みt1と同一又は同等とすることができ、厚みt4は、図9の厚みt2と同一又は同等とすることができる。特定の一実施形態では、厚みt3は、厚みt4の約半分にすることができる。
【0069】
図9に関連して、上述と実質的に同じ理由で、導体部分270を通過する電流に応答して発生する磁界は、導体部分270が均一な厚みt4を有する場合よりも面270aの近傍でより大きくなる。
【0070】
導体部分254(図9)及び導体部分270は、それぞれ矩形断面及びT字形断面を有するように述べたが、上記利点を実現するために他の断面形状が提供され得ることを理解されたい。
【0071】
本発明の好ましい実施形態について説明してきたが、それらの概念を組み入れた他の実施形態が使用され得ることが、今では当業者には明らかになるであろう。したがって、これらの実施形態は、開示された実施形態に限定されるべきでなく、添付の特許請求の趣旨及び範囲によってのみ限定されるべきであると思われる。本明細書に引用した全ての文献は、それらの全体を参照することにより本明細書に組み込まれる。

【特許請求の範囲】
【請求項1】
対向する第1(76a、166a)及び第2の面(76b、166b)と、該基板の第1の面上に配置されたボンディングパッドとを有する基板(76、166)と、
前記基板の第1の面上に配置された一つ以上の磁界検知素子(78a、78b、158)と、
リードフレーム(72)とを具備する磁界センサであって、該リードフレーム(72)は、
夫々が別個の軸線を有する複数のリード(72a−72h、152a−152h)であって、該複数のリードの各々が前記各軸線に沿って平坦である前記複数のリードと、
前記複数のリードの少なくとも二つのリードを連結するように形成された導体部分(74、154)であって、前記基板が前記リードフレーム(72)上に、該リードフレーム近傍の基板の第1の面と該リードフレームから遠位の位置の該基板の第2の面とがフリップチップになるよう配置され、且つ前記導体部分(74、154)が前記一つ以上の磁界検知素子(78a、78b、158)の近傍に配置された、前記導体部分(74、154)とを備え、
該磁界センサは、更に、
前記ボンディングパッドと前記リードフレーム(72)のリードとの間に配置された複数のはんだボール(160a−160c)と、
前記基板の前記第1の面と前記リードフレーム(72)との間に配置された絶縁体(164)であって、該絶縁体は前記導体部分(74、154)を前記基板から絶縁する前記絶縁体(164)とを具備する、磁界センサ。
【請求項2】
請求項1に記載の磁界センサにおいて、前記一つ以上の磁界検知素子はホール効果素子(78a、78b、158)であり、該ホール効果素子は、前記基板の第1の面に沿った所定の方向のホール効果素子の幅を有し、
前記導体部分(74、154)は、前記ホール効果素子(78a、78b、158)を取り囲む開口形状の開口部を備え、
前記開口部は、前記所定方向の幅(w2)により分離される対向する側部を備え、
前記ホール効果素子(78a、78b、158)に対する前記開口部の幅(w2)は、前記導体部分を通過する電流に対する前記ホール効果素子のより高い選択感度を提供するように設定されると共に、前記ホール効果素子(78a、78b、158)に対する前記開口部の幅(w2)は、また前記開口部内において前記ホール効果素子の相対位置の製造公差に起因する性能のばらつきが選択した量になるように設定される、磁界センサ。
【請求項3】
請求項2に記載の磁界センサにおいて、前記一つ以上の磁界検知素子の近傍に配置された磁束集中器(182)を更に備える、磁界センサ。
【請求項4】
請求項2に記載の磁界センサにおいて、前記基板の第2の面上に配置された磁束集中器(182)を更に備える、磁界センサ。
【請求項5】
請求項2に記載の磁界センサにおいて、磁束集中器(182)を更に備え、該磁束集中器(182)は、前記基板の第1の面の近傍に配置され、且つ前記ホール効果素子(78a、78b、158)の近傍であって且つ前記狭窄部分の開口形状内にて前記基板の第2の面から遠位の位置に配置される、磁界センサ。
【請求項6】
請求項2に記載の磁界センサにおいて、磁束集中器(182)を更に備え、該磁束集中器(182)は、
前記基板の第2の面上に配置した磁束収束層(184)と、
前記基板の第1の面の近傍に配置された磁束集中器部分であって、該磁束集中器部分は、前記ホール効果素子(78a、78b、158)の近傍であって且つ前記開口形状内にて前記基板の第2の面から遠位の位置に配置された前記磁束集中器部分とを備える、磁界センサ。
【請求項7】
請求項1に記載の磁界センサにおいて、前記基板を取り囲むパッケージを更に備え、
該パッケージは、底面を有し、前記複数のリードの底面及び前記導体部分の底面は、前記パッケージの底面と同一の面である、磁界センサ。
【請求項8】
請求項7に記載の磁界センサにおいて、前記複数のリードの底面及び前記導体部分の底面は、前記パッケージから外部へ曝されている、磁界センサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図6A】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図9A】
image rotate


【公開番号】特開2013−79973(P2013−79973A)
【公開日】平成25年5月2日(2013.5.2)
【国際特許分類】
【出願番号】特願2012−271928(P2012−271928)
【出願日】平成24年12月13日(2012.12.13)
【分割の表示】特願2009−151851(P2009−151851)の分割
【原出願日】平成16年3月29日(2004.3.29)
【出願人】(501105602)アレグロ・マイクロシステムズ・インコーポレーテッド (55)
【Fターム(参考)】