説明

非水電解液処理用ゼオライト及び非水電解液の処理方法

【課題】
リチウム電池に用いられる非水電解液をゼオライトで脱水処理する場合、ゼオライトからのナトリウムの溶出の問題があった。
【解決手段】
交換可能なカチオンの97.5mol%以上99.5mol%以下がリチウムでイオン交換されたゼオライトでは、ナトリウム等のカチオン不純物の溶出を50ppm以下で非水電解液を脱水処理することができる。ゼオライト種としては、A型、チャバサイト、フェリエライト、ZSM−5、及びクリノプチロライトから成る群から選ばれる少なくとも一種以上のゼオライトを用いることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規な非水電解液処理用ゼオライト及び非水電解液の処理方法に関するものである。
【背景技術】
【0002】
水溶液系では不安定な金属イオンをメッキするための電解液、リチウム電池などの電池用電解液、及びキャパシター用電解液などの非水電解液を使用するときは、非水電解液中の不純物を除去することが極めて重要である。これらの用途においては、非水電解液中の水分量を50ppm以下にすることが必要である。そのため、非水電解液として使用する際には、予めこれらを脱水処理することが必要である。
【0003】
特にリチウム二次電池では、非水電解液中に水分が存在すると、電池の負極性能が低下するばかりでなく、非水電解液中の電解質塩の分解も促進されるため、非水電解液中の水分除去は極めて重要な課題である。
【0004】
これまで提案されている非水電解液の脱水処理方法としては、非水溶媒と電解質をそれぞれを乾燥処理した後に両者を混合して非水電解液を調製する方法、非水溶媒と電解質とを混合したものを共沸脱水する方法(特許文献1)、非水溶媒と電解質とを混合したものをゼオライトで脱水処理する方法(特許文献2)およびこれらを組み合わせた方法(特許文献3)などが例示されている。こられの脱水処理方法は技術的には、1)蒸留または乾燥によって非水電解液の脱水を行う方法、及び2)ゼオライトを使用して非水電解液の脱水を行う方法の2つに大別される。
【0005】
1)の方法には、非水溶媒と電解質をそれぞれ乾燥処理した後に両者を混合して非水電解液を調製する方法や、非水溶媒に電解質を溶解させた非水電解液の状態でそれを共沸脱水する方法が挙げられる。前者の場合には非水溶媒と電解質の混合過程で水分が混入し易くなり、一方、後者の共沸脱水では非水電解液中の十分に水分を除去することが困難である。そのため、いずれの方法においても非水電解液中の水分量を50ppm以下にすることがかなり困難である。
【0006】
2)の方法は、ゼオライトの水分吸着能によって非水電解液中の水分を除去する方法である。しかしながら、ゼオライトにはイオン交換可能なカチオンが存在するため、非水電解液中のリチウムイオンとゼオライト中のカチオンとが、脱水処理中にイオン交換反応を起こす。そのため、この方法では非水電解液中の水分は除去されるが、ゼオライト中のカチオンが不純物として非水電解液中に溶出して、水分除去後の非水電解液を汚染する。
【0007】
この問題を解決する手段として、ゼオライト中のイオン交換可能なカチオンを予め汚染源とならないカチオンでイオン交換しておく方法、例えばリチウム電池用非水電解液においてはナトリウム以外のカチオンでゼオライトをイオン交換しておく方法が提案されている(特許文献2、特許文献4、特許文献5)。しかし、イオン交換可能なカチオンをあらかじめリチウムで交換したものの、ナトリウムが残存しているリチウム置換型のゼオライトを使用して非水電解液を脱水処理する場合、ゼオライト中のイオン交換可能なカチオンが完全にリチウムイオンにイオン交換されないので、ゼオライトから非水電解液へナトリウムイオンが溶出する問題を避けることができなかった(特許文献3)。一方、ゼオライト中イオン交換可能なカチオンをリチウムで完全にイオン交換するためには、極めて大量かつ高純度のリチウムが必要であった。そのため、イオン交換可能なカチオンを完全にリチウムイオン交換したゼオライトは高価であった。
【0008】
他にもゼオライトを使用した非水電解液の脱水方法として、電解液とゼオライトを長時間接触させないことでゼオライト中のカチオンと電解液中のイオンとのイオン交換反応を抑制させる方法(特許文献3)が提案されている。しかし、この様な脱水方法はプロセスが複雑であった。
【0009】
このように、ゼオライトを用いた非水電解液の脱水方法における脱水能力の向上が図られてきたが、従来の方法ではゼオライトからのナトリウム溶出の問題、もしくは、プロセスの複雑化といった問題が生じていた。そのため、これまではナトリウム溶出がなく、かつ、簡便なプロセスにより非水電解液の脱水処理を可能とにさせる非水電解液処理用ゼオライトはなかった。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開昭58−28174号公報
【特許文献2】特開昭59−224071号公報
【特許文献3】特開平7−235309号公報
【特許文献4】特開2002−1107号公報
【特許文献5】特開昭59−81869号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明の目的は、非水電解液中へのナトリウムの溶出なしに水分を除去することができる工業的に有用な非水電解液処理用ゼオライトを提供することに係る。
【課題を解決するための手段】
【0012】
本発明者は上記の課題を解決するために鋭意検討を行った結果、イオン交換可能なカチオンの97.5mol%以上99.5mol%以下がリチウムでイオン交換されているゼオライトでは、ゼオライト中にリチウム以外のイオン交換可能なカチオンが残存しているにも拘わらず、非水電解液を脱水処理する際にリチウム以外のカチオンの溶出、特にナトリウムの溶出がなく、非水電解液中の汚染がなく脱水処理ができることを見出し、本発明を完成するに至った。
【0013】
以下、本発明の非水電解液処理用ゼオライトを具体的に説明する。
【0014】
本発明の非水電解液処理用ゼオライトは、交換可能なカチオンの97.5mol%以上99.5mol%以下がリチウムでイオン交換されており、好ましくは98.0mol%以上99.5mol%以下がリチウムでイオン交換されており、更に好ましくは98.0mol%以上99.0mol%以下がリチウムでイオン交換されている。
【0015】
なお、本発明においては、ゼオライト中の交換可能なカチオンの中でリチウムが占める割合を「リチウムイオン交換率」という。
【0016】
リチウム以外で、残存するゼオライト中の交換可能なカチオンは特に制限はない。ナトリウム、その他のアルカリ金属カチオン、アルカリ土類金属カチオン、又はプロトンなどが残存していてもよい。
【0017】
リチウムイオン交換率が97.5mol%未満では、このようなゼオライトで非水電解液を処理した際に、ゼオライト中のリチウム以外の交換可能なカチオンの非水電解液中への溶出が増大し、特にナトリウムの非水電解液中への溶出が急激に増大する。そのため、このようなゼオライトを使用して非水電解液の脱水処理を行った場合は、電池用の非水電解液として使用できないナトリウム濃度である、50ppm以上を超えるナトリウムがゼオライトから非水電解液へと溶出する。
【0018】
一方、リチウム以外のカチオンを有するゼオライトにおいては、リチウム以外のカチオンをリチウムで完全にイオン交換させる反応は極めて進行し難いことが知られている。特にリチウムイオン交換率が99.5mol%を超えてイオン交換するためには極めて大量のリチウムが必要となるため、本発明のゼオライトのリチウムイオン交換量は99.5mol%以下であり、好ましくは99.0mol%以下である。
【0019】
さらに、ゼオライトのリチウムイオン交換率が98.0mol%以上99.0mol%以下であると、このゼオライトを用いて非水電解液を脱水処理した場合、ゼオライトからのナトリウム等のカチオン溶出は起きず、非水電解液の水分除去ができるだけでなく、遊離酸を高い割合で除去することができ、好ましい。
【0020】
ここで、遊離酸とは、非水電解液中の電解質が分解等することによって生成するフッ化水素等の酸のことである。
【0021】
本発明の非水電解液処理用ゼオライトの種類(結晶型)は、A型、チャバサイト、フェリエライト、ZSM−5、及びクリノプチロライトから成る群から選ばれた少なくとも一種以上のゼオライトであることが好ましく、A型ゼオライトであることがより好ましい。これらのゼオライトが特に非水電解液処理用ゼオライトに適している理由は定かではないが、これらのゼオライトはその細孔径が約6Å以下と小さく、中でもA型ゼオライトは8員環細孔構造であり細孔径が4Åとより小さい。そのため、リチウムイオンと溶媒和している非水電解液の非水溶媒がこれらのゼオライト細孔内に進入し難いため、非水溶媒が化学変化することがないためと考えられる。
【0022】
本発明の非水電解液処理用ゼオライトの形態は粉末、又は成形体等の任意の形態とすることが可能であるが、取扱いが容易な成形体であることが好ましい。
【0023】
ゼオライトを成形体とする場合、バインダーを添加して成形を行うことが好ましい。
【0024】
成形に使用するバインダーとしては、シリカ、アルミナ、及び粘土などが一般的に例示でき、バインダー中のナトリウム含有量が少ないものが好ましい。このようなバインダーとして、例えばカオリン系、ベントナイト系、タルク系、バイロフィライト系、モリサイト系、バーキュロライト系、モンモリロナイト系、クロライト系、及びハロイサイト系等の粘土が使用できる。
【0025】
バインダーの添加量は、特に制限はないが、粉末状のゼオライト(以下、ゼオライト粉末)100重量部に対して10重量部以上50重量部以下を添加することが好ましい。バインダーがゼオライト粉末100重量部に対して10重量部より少なくなると、使用においてゼオライト成形体が崩壊する恐れがあり、50重量部より多くなると脱水性能が不十分となる。
【0026】
バインダーを使用してゼオライトを成形体とする場合、アルカリ浸漬により成形体中のバインダーをゼオライトに転化(バインダーレス化)することが好ましい。これにより、ゼオライト成形体中のゼオライト含有比率を増大することができ、究極的にはゼオライト成形体の全てをゼオライトとすることができる。
【0027】
バインダーの一部又は全部をバインダーレス化した成形体では、成形体中のゼオライト含有率は95%以上であることが好ましく、100%であることがより好ましい。成形体中のゼオライト含有率が高いことにより、非水電解液の脱水効率が高くなる。
【0028】
成形体の形状は特に制限はなく、球状、円柱状、三つ葉型、楕円状、中空状などが例示できる。成形体の大きさは特に限定はなく、球状あるいは円柱状の直径として0.3mm〜5mm程度が例示できる。
【0029】
本発明の非水電解液処理用ゼオライトの製造方法は、リチウムイオン交換率が97.5mol%以上99.5mol%以下の範囲となるものであれば特に限定されるものではない。
【0030】
効率的にゼオライト中の交換可能なカチオンをリチウムイオンに交換させるためには、イオン交換効率の悪いバッチ式のイオン交換方法ではなく、リチウム塩水溶液をゼオライト上に通過させて、リチウムとイオン交換されたナトリウム等のカチオンを系外に連続的に排出させる、流通式のイオン交換方法で実施することが好ましい。最終的には、ゼオライト全体のリチウムイオン交換率を均一にするために、リチウム塩水溶液を循環させて使用することがより好ましい。
【0031】
リチウム塩水溶液に用いるリチウム塩は、水溶性のものであれば特に制限はなく、硝酸リチウム、硫酸リチウム、炭酸リチウム、水酸化リチウム及び塩化リチウムなどが例示できる。
【0032】
リチウム塩水溶液中のリチウム濃度は特に限定はないが、1mol%以上であることが好ましい。
【0033】
本発明の非水電解液処理用ゼオライト、非水電解液処理用ゼオライト成形体、又はその両者(以下、「非水電解液処理用ゼオライト等」という)は、非水電解液と接触させることにり高度に脱水した非水電解液を製造することができる。さらに、本発明の非水電解液処理用ゼオライト等により、十分に脱水され、かつ、十分に遊離酸が除去された非水電解液を製造することができる。
【0034】
本発明の非水電解液処理用ゼオライト等で処理できる非水電解液の種類は、非水電解液であれば特に制限されることはない。非水電解液としては、例えば、炭酸ジメチル、炭酸ジエチル等のカーボネート類や、スルホラン、ジメチルスルホキシド等のスルホラン類、γ−ブチロラクトン等のラクトン類、及びジメチルスルホキシド等のエーテル類の少なくとも1種類以上の有機溶媒に、過塩素酸リチウム、四フッ化ホウ酸リチウム、六フッ化リン酸リチウム、及びトリフルオロメタンスルホン酸等のリチウム塩、4級アンモニウム塩等の少なくとも1種類以上を溶解したものが例示できる。
【0035】
本発明の非水電解液処理用ゼオライト等を使用して非水電解液を脱水処理する場合、予めゼオライトの水分を除去(ゼオライトの脱水処理)しておくことが好ましい。ゼオライトの脱水処理の方法は、ゼオライトから水分が除去される方法及び条件であれば特に制限されるものではない。ゼオライト自体の耐熱性を考慮すれば、できる限り低温で水分を除去させることが好ましく、乾燥した雰囲気において600℃以下の温度で1時間〜5時間程度熱処理することがより好ましい。
【0036】
本発明の非水電解液処理用ゼオライト等を使用した非水電解液の脱水処理方法は、非水電解液とゼオライトが接触する方法であれば特に制限されるものではなく、例えば、本発明の非水電解液処理用ゼオライト等を充填したカラムに非水電解液を流通させる方法、または調製した非水電解液に本発明の非水電解液処理用ゼオライト等を浸漬して静置または攪拌する方法などが例示できる。
【0037】
本発明の非水電解液処理用ゼオライト等で脱水処理した非水電解液は、ナトリウム濃度が50ppm以下であることが好ましく、40ppm以下であることがより好ましい。
【0038】
本発明の非水電解液処理用ゼオライト等は、リチウム電池内の非水電解液中に添加して用いてもよい。
【発明の効果】
【0039】
本発明の非水電解液処理用ゼオライト等は、ゼオライト中の交換可能なカチオンがリチウムで完全にイオン交換されていないにも拘らず、ナトリウム等のリチウム以外のカチオン溶出の問題を起こさずに、非水電解液の脱水処理に用いることができる。
【実施例】
【0040】
以下、本発明を実施例で説明するが、本発明はこれらの実施例に限定されるものではない。
【0041】
(リチウムイオン交換率)
リチウムイオン交換後のゼオライトを溶解し、ICP測定によってゼオライト中のリチウム濃度、ナトリウム濃度及びカリウム濃度をそれぞれ定量した。定量したリチウム濃度、ナトリウム濃度及びカリウム濃度の合計をモル濃度で求め、当該濃度に対するリチウム濃度の割合をmol%で求めて、リチウムイオン交換率とした。
【0042】
(ナトリウム溶出特性)
ゼオライトからのナトリウムの溶出特性は、ゼオライトを高濃度のリチウム塩水溶液中に浸漬することにより評価した。つまり、リチウム塩水溶液中のリチウムがゼオライト中のナトリウムとイオン交換し易い環境中にゼオライトを置くことにより、ゼオライトからのナトリウム溶出の加速的な試験を行った。この様な環境下におけるナトリウム溶出量により、非水電解液に溶出する最大ナトリウム溶出濃度を見積もった。
【0043】
具体的には、リチウム塩水溶液として、2mol/Lの塩化リチウム水溶液(キシダ化学製試薬 純度99.0%以上を用いて調製)を使用した。当該水溶液100gに脱水処理したゼオライト成形体10gを浸漬し、30℃、180rpmで1時間撹拌した。攪拌後に水溶液をメンブランフィルターで濾過して微粉を取り除き、濾過後の水溶液中のナトリウム濃度をICP測定により定量して、ナトリウム溶出濃度を測定した。
【0044】
なお、溶出濃度の測定を行う前、つまりナトリウム溶出特性評価を行う前の2mol/Lの塩化リチウム水溶液中のナトリウム濃度は0.2ppmであった。
【0045】
実施例1
ナトリウムA型ゼオライト100重量部にカオリン粘土25重量部、CMC(カルボキシメチルセルロース)4重量部と水を混合混練し、直径1.5mmφの円柱状の成形体とした。成形体は乾燥した後、箱形炉を使用して600℃で3時間焼成した。
【0046】
焼成した成形体をカラムに充填して、6%の水酸化ナトリウム水溶液を80℃で流通させて粘土をA型ゼオライトへ転換した(バインダーレス化)。バインダーレス化の成形体は、95%以上がゼオライトであった。
【0047】
引き続き、カラム内の水酸化ナトリウム水溶液を水洗して除去した後、ゼオライト成形体のリチウムイオン交換を行った。リチウムイオン交換は15倍当量の4mol/Lの塩化リチウム水溶液を80℃でワンパスで流通してゼオライトと塩化リチウム水溶液とを接触させた後、最終的に塩化リチウム水溶液を循環させた。これにより、ゼオライト成形体中のリチウムイオン交換率を均質化した。リチウムイオン交換後のゼオライト成形体は水洗を行い、70℃で乾燥した後、500℃で3時間焼成してゼオライトの脱水処理を行った。
【0048】
得られたリチウムイオン交換A型ゼオライト成形体のリチウムイオン交換率は99.0mol%であり、残りのカチオンはナトリウムであった。
【0049】
当該ゼオライト成形体を用いて、ナトリウム溶出濃度の測定を行った結果、処理後のリチウム塩水溶液中のナトリウム濃度は33ppmであった。
【0050】
実施例2
4mol/Lの塩化リチウム水溶液の通液量を25倍当量にし、リチウムイオン交換率を99.5mol%とした以外は実施例1と同様の処理を行った。処理後のリチウム塩水溶液中のナトリウム濃度は18ppmであった。
【0051】
比較例1
4mol/Lの塩化リチウム水溶液の通液量を10倍当量にし、リチウムイオン交換率を97.0mol%とした以外は実施例1と同様の処理を行った。処理後のリチウム塩水溶液中のナトリウム濃度は103ppmであり、ナトリウム溶出濃度の測定前のリチウム塩水溶液中のナトリウム濃度(0.2ppm)と比べ大幅に増加した。
【0052】
比較例2
ゼオライトをナトリウム及びカリウムを含むLSX型ゼオライトを使用した。また、バインダーレス化を、6%の水酸化ナトリウム水溶液の代わりに8%の水酸化ナトリウム水溶液と1%のSiOの混合溶液を使用して、この混合溶液をゼオライトに90℃で流通させてバインダーをX型ゼオライトへ転換した。リチウムイオン交換の際、塩化リチウム水溶液の通液量を6倍当量とした以外は実施例1と同様に処理した。
【0053】
得られたリチウム交換LSX型ゼオライト成形体のリチウムイオン交換率は96.0mol%であり、残りのカチオンはナトリウムとカリウムであった。
【0054】
当該ゼオライト成形体を用いて、ナトリウム溶出濃度の測定を行った結果、処理後のリチウム塩水溶液中のナトリウム濃度は130ppmであり、ナトリウム溶出濃度の測定前のリチウム塩水溶液中のナトリウム濃度(0.2ppm)と比べ大幅に増加した。
(非水電解液を用いた水分除去、遊離酸除去及びカチオン溶出特性)
実施例3
実施例1で得られたリチウムイオン交換A型ゼオライト(リチウムイオン交換率99.0mol%)10gを、市販のリチウム電池用非水電解液(1mol/L−LiPF エチレンカーボネート:ジメチルカーボネート=1:2体積比率、キシダ化学製)100gに浸漬した。これを室温下で24時間静置して非水電解液を脱水処理し、処理後の非水電解液を回収した。得られた非水電解液は水分濃度をカールフィッシャー測定により定量し、カチオン濃度をICP測定により定量した。
【0055】
また、非水電解液の遊離酸濃度は以下に示す滴定法によって定量した。すなわち、脱水処理後の非水電解液10mlを量り取り、その重量を精秤した後、約0℃まで冷却した純水100mlを脱水処理後の非水電解液に加えて滴定用溶液とした。滴定用溶液の温度を0〜5℃とし、0.1mol/Lの水酸化ナトリウム水溶液を滴下して中和点を求めた。
【0056】
なお、滴定の中和点を示すための指示薬として、ブロムチモールブルー粉末を使用した。中和点は、指示薬を添加した滴定用溶液が、橙色から青紫色に変り、青紫色が5秒間持続した点とした。求められた中和点より、以下の式に基づいて遊離酸濃度をフッ化水素換算濃度として求めた。
【0057】
遊離酸濃度(ppm)=中和点までに要した0.1mol/Lの水酸化ナトリウム水溶液の滴下量(ml)×フッ化水素分子量×100/非水電解液の重量(g)
【0058】
ここで、フッ化水素の分子量は20g/molとした。
【0059】
なお、脱水処理前の非水電解液は、水分濃度が124ppm、遊離酸濃度が54ppmであり、ナトリウムとカリウムは検出されなかった。
【0060】
ゼオライトを24時間浸漬して脱水処理した後の非水電解液の測定結果を表1に示す。なお、表1における水分除去率及び遊離酸除去率は、脱水処理後の非水電解液中の水分濃度及び遊離酸濃度が、脱水処理前のそれより変化した割合を示している。これらの値が大きいほど水分及び遊離酸が除去されていることを示す。そのため、これらの値が大きいほど本発明の非水電解液用ゼオライト等の脱水特性及び遊離酸除去特性が高いことを意味する。
【0061】
当該実施例では、ゼオライトから非水電解液へのカチオン溶出がなく、非水電解液中の水分除去及び遊離酸除去がされていた。さらに、当該ゼオライトによる脱水処理では、非水電解液中の遊離酸除去率が特に高かった。
【0062】
実施例4
リチウムイオン交換に用いた塩化リチウム水溶液として工業用塩化リチウム(リチウム純度99.5mol%)を用いたこと以外は実施例1と同様に処理した。得られたリチウムイオン交換A型ゼオライトのリチウムイオン交換率は98mol%であり、残りのカチオンはナトリウム1mol%、カリウム1mol%であった。
【0063】
このゼオライトを用いて、実施例3と同様な条件で非水電解液を脱水処理した。結果を表1に示す。ゼオライトから非水電解液へのカチオン溶出がなく、非水電解液中の水分除去及び遊離酸除去がされていた。さらに、当該ゼオライトによる脱水処理では、非水電解液中の遊離酸除去率が高かった。
【0064】
実施例5
実施例1と同様にバインダーレス化まで行い、25倍当量の4mol/Lの塩化リチウム水溶液を80℃でゼオライトとを接触させてリチウムイオン交換を行った。リチウムイオン交換後のゼオライト成形体は水洗して、70℃で乾燥した後、500℃で3時間焼成してゼオライトの脱水処理を行った。得られたリチウムイオン交換A型ゼオライトのリチウムイオン交換率は99.4mol%であり、残りのカチオンはナトリウムであった。
【0065】
このゼオライトを用いて、実施例3と同様な条件で非水電解液を脱水処理した。結果を表1に示す。ゼオライトから非水電解液へのカチオン溶出がなく、非水電解液中の水分除去及び遊離酸除去がされていた。
【0066】
比較例3
リチウムイオン交換に6倍当量の4mol/Lの塩化リチウム水溶液を使用したこと以外は、実施例1と同様の処理を行った。得られたリチウムイオン交換A型ゼオライトのリチウムイオン交換率は95mol%であり、残りのカチオンはナトリウム5mol%であった。
【0067】
このゼオライトを用いて、実施例3と同様の試験を行った。結果を表1に示す。当該ゼオライトによる非水電解液の脱水処理では、非水電解液中の水分および遊離酸は除去されるが、ゼオライトから非水電解液中へ大量のナトリウムが溶出した。
【0068】
比較例4
比較例1と同様にして得たリチウムイオン交換A型ゼオライト(リチウムイオン交換率97mol%)を用いて、実施例3と同様な条件で非水電解液を脱水処理した。結果を表1に示す。当該ゼオライトによる非水電解液の脱水処理では、非水電解液中の水分および遊離酸は除去されるが、ゼオライトから非水電解液へのナトリウムの溶出が生じた。
【0069】
比較例5
比較例2と同じリチウムイオン交換LSXゼオライト(リチウムイオン交換率は96.0mol%)を用いて、実施例3と同様な条件で非水電解液を脱水処理した。結果を表1に示す。
【0070】
比較例5のゼオライトの水分除去能力はリチウムイオン交換A型ゼオライトより低かった。更に、ゼオライトから非水電解液へのナトリウムとカリウムの溶出が認められた。また、非水電解液中の遊離酸濃度はゼオライトとの接触により増加した。非水電解液に含まれる電解質であるLiPFがゼオライトに吸着して分解したと推定される。
【0071】
【表1】

【産業上の利用可能性】
【0072】
本発明のゼオライトは、非水電解液の脱水に利用することができ、特に、リチウムイオン電池、リチウムイオンキャパシタ等で使用される電解液の脱水用途として使用することができる。

【特許請求の範囲】
【請求項1】
交換可能なカチオンの97.5mol%以上99.5mol%以下がリチウムでイオン交換されていることを特徴とする非水電解液処理用ゼオライト。
【請求項2】
交換可能なカチオンの98.0mol%以上99.0mol%以下がリチウムでイオン交換されていることを特徴とする請求項1に記載の非水電解液処理用ゼオライト。
【請求項3】
ゼオライトが、A型、チャバサイト、フェリエライト、ZSM−5、クリノプチロライトから成る群から選ばれた少なくとも一種以上のゼオライトであることを特徴とする請求項1又は2に記載の非水電解液処理用ゼオライト。
【請求項4】
請求項1乃至3のいずれかに記載の非水電解液処理用ゼオライトを成形してなる非水電解液処理用ゼオライト成形体。
【請求項5】
請求項1乃至3のいずれかに記載の非水電解液処理用ゼオライトを95重量%以上含んでなる請求項4に記載の非水電解液処理用ゼオライト成形体。
【請求項6】
請求項1乃至3のいずれかに記載の非水電解液処理用ゼオライト、請求項4又は5に記載の非水電解液処理用ゼオライト成形体、又はその両者と非水電解液を接触させることを特徴とする非水電解液の製造方法。
【請求項7】
請求項1乃至3のいずれかに記載の非水電解液処理用ゼオライト、請求項4又は5に記載の非水電解液処理用ゼオライト成形体、又はその両者と非水電解液を含んでなるリチウム電池。

【公開番号】特開2011−71111(P2011−71111A)
【公開日】平成23年4月7日(2011.4.7)
【国際特許分類】
【出願番号】特願2010−187191(P2010−187191)
【出願日】平成22年8月24日(2010.8.24)
【出願人】(000003300)東ソー株式会社 (1,901)
【Fターム(参考)】