説明

高分子電解質膜の製造方法

【課題】厚みムラやシワ、凹凸が生じにくい高分子電解質膜の製造方法を提供する。
【解決手段】支持体上にイオン性基含有高分子電解質の膜状物を形成させる膜形成工程(A)、前記膜を無機酸含有酸性液に接触させてイオン性基を酸型に変換する酸処理工程(B)、前記酸処理膜中の遊離の酸を除去する酸除去工程(C)及び前記酸除去膜を乾燥する乾燥工程(D)を有する高分子電解質膜の製造方法であって、前記(B)から(D)までの工程を、膜を支持体から剥離することなく実施する高分子電解質膜の製造方法であり、好ましくは、膜形成工程(A)が、イオン性基含有高分子電解質の溶媒溶液を支持体上に流延して流延膜とする流延工程(A)、前記流延膜を乾燥する乾燥工程(A)及び前記乾燥膜を前記イオン性基含有高分子電解質の溶媒と混和する液体で脱溶媒する脱溶媒工程(A)からなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高分子電解質膜の製造方法に関するものである。
【背景技術】
【0002】
近年、エネルギー効率や環境性に優れた新しい発電技術が注目を集めている。中でも高分子固体電解質膜を使用した固体高分子形燃料電池はエネルギー密度が高く、また、他の方式の燃料電池に比べて運転温度が低いため起動、停止が容易であるなどの特徴を有するため、電気自動車や分散発電などの電源装置としての開発が進んできている。
【0003】
高分子固体電解質膜には通常プロトン伝導性のイオン交換膜が使用される。高分子固体電解質膜にはプロトン伝導性以外にも、燃料の水素などの透過を防ぐ燃料透過抑止性や機械的強度などの特性が必要である。これら特性を支配する要因として電解質膜の厚みムラやシワ、凹凸が影響することがわかっている。
【0004】
従来、シワや凹凸を解消する手段として膜に張力をかけて乾燥する方法が報告されている(例えば、特許文献1)が、固定部分周辺と固定部分から最も離れた部分では厚みが不均一になる問題があった。また、乾燥時のみの固定ではそれ以前の工程で発生したシワや凹凸を十分解消できない問題もあった。
【特許文献1】特開2003−192805公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、厚みムラやシワ、凹凸が生じにくい、特に極薄の高分子電解質膜の製造方法を提供することである。
【課題を解決するための手段】
【0006】
本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。
[1]支持体上にイオン性基含有高分子電解質の膜状物を形成させる膜形成工程(A)、前記膜を無機酸含有酸性液に接触させてイオン性基を酸型に変換する酸処理工程(B),前記酸処理膜中の遊離の酸を除去する酸除去工程(C)及び前記酸除去膜を乾燥する乾燥工程(D)を有する高分子電解質膜の製造方法であって、前記(B)から(D)までの工程を、膜を支持体から剥離することなく実施することを特徴とする高分子電解質膜の製造方法。
[2]膜形成工程(A)が、イオン性基含有高分子電解質の溶媒溶液を支持体上に流延して流延膜とする流延工程(A)、前記流延膜を乾燥する乾燥工程(A)及び前記乾燥膜を前記イオン性基含有高分子電解質の溶媒と混和する液体で脱溶媒する脱溶媒工程(A)からなり、工程(A)及び工程(A)を、膜を支持体から剥離することなく実施する[1]に記載の高分子電解質膜の製造方法。
[3]乾燥工程(A)において、流延膜が自己支持性膜となるまで乾燥する支持体がポリエチレンテレフタレートフィルムである[2]に記載の高分子電解質膜の製造方法。
[4]支持体がポリエチレンテレフタレートフィルムである[2]に記載の高分子電解質膜の製造方法。
[5]イオン性基含有高分子電解質が、一般式1で表される繰り返し単位を有する[1]〜[4]のいずれかに記載の高分子電解質膜の製造方法。
【化1】

[一般式1において、Xは−S(=O)−基又は−C(=O)−基を、YはH又は1価の陽イオンを、ZはO原子又はS原子のいずれかを、Zは、O原子、S原子、−C(CH−基、−C(CF−基、−CH−基、シクロヘキシル基、直接結合のいずれかを、n1は1以上の整数を表す。]
【発明の効果】
【0007】
本発明により、膜厚が100μm以下の極薄の高分子電解質膜であっても、膜全面で厚みムラ、シワ及び凹凸が少なく、均一な高分子電解質膜を製造することができる。特に、軟化温度が90℃以上、好ましくは140℃〜250℃の高分子電解質の場合に有効である。
【発明を実施するための最良の形態】
【0008】
本発明の高分子電解質膜の製造方法は、支持体上にイオン性基含有高分子電解質の膜状物を形成させる膜形成工程(A)、前記膜を無機酸含有酸性液に接触させてイオン性基を酸型に変換する酸処理工程(B)、前記酸処理膜中の遊離の酸を除去する酸除去工程(C)及び前記酸除去膜を乾燥する乾燥工程(D)を有する。
支持体上にイオン性基含有高分子電解質の膜状物を形成させる膜形成工程(A)としては、押出法、圧延法または流延(キャスティング)法など任意の方法で膜(フィルム状の成形体)とすることができる。このうち、イオン性基含有高分子電解質の溶媒溶液を支持体上に流延させるキャスティング法が好ましい。
【0009】
キャスティング法の場合は、膜形成工程(A)が、イオン性基含有高分子電解質の溶媒溶液を支持体上に流延して流延膜とする流延工程(A)、前記流延膜を乾燥する乾燥工程(A)及び前記乾燥膜を前記イオン性基含有高分子電解質の溶媒と混和する液体で脱溶媒する脱溶媒工程(A)からなることが好ましい。
【0010】
流延工程(A)における高分子電解質の溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、ヘキサメチルホスホンアミドなどの非プロトン性極性溶媒や、メタノール、エタノール等のアルコール類から適切なものを選ぶことができるがこれらに限定されるものではない。これらの溶媒は、可能な範囲で複数を混合して使用してもよい。溶液中の化合物濃度は0.1〜50質量%の範囲であることが好ましい。溶液中の化合物濃度が0.1質量%未満であると良好な成形物を得るのが困難となる傾向にあり、50質量%を超えると加工性が悪化する傾向にある。
【0011】
支持体としてはポリエチレン、ポリエステル、ナイロン、テフロン(登録商標)などの樹脂フィルム及び樹脂シート、ガラスなどが使用できるが、水を含む溶媒及び酸に耐え得るものであれば特に限定されることは無い。また、支持体がコロナ処理や鏡面処理などにより表面改質されていてもよい。
【0012】
キャスティングする際の溶液の厚みは特に制限されないが、10〜2500μmであることが好ましい。より好ましくは50〜1500μmである。溶液の厚みが10μmよりも薄いとプロトン交換膜としての形態を保てなくなる傾向にあり、2500μmよりも厚いと不均一なプロトン交換膜ができやすくなる傾向にある。
溶液のキャスティング厚を制御する方法は公知の方法を用いることができる。例えば、アプリケーター、ドクターブレードなどを用いて一定の厚みにしたり、ガラスシャーレなどを用いてキャスト面積を一定にして溶液の量や濃度で厚みを制御することができる。キャスティングした溶液は、溶媒の除去速度を調整することでより均一な膜を得ることができる。例えば、加熱する場合には最初の段階では低温で行い、後に昇温させる方法がある。また、水などの非溶媒に浸漬する場合には、溶液を空気中や不活性ガス中に適当な時間放置しておくなどして化合物の凝固速度を調整することができる。
【0013】
支持体上の流延膜は、支持体とともに乾燥工程(A)に送られる。乾燥工程(A)における溶媒の除去法は、加熱処理や減圧処理による乾燥がプロトン交換膜の均一性の観点からは好ましい。また、化合物や溶媒の分解や変質を避けるため、減圧下でできるだけ低い温度で乾燥することが好ましい。溶媒の70%以上が除去され、流延膜が自己支持性を発現するまで乾燥することが好ましい。
また、溶液の粘度が高い場合には、支持体や溶液を加熱して高温でキャスティングすると溶液の粘度が低下して容易にキャスティングすることができる。
【0014】
自己支持性を発現するまで流延膜を乾燥して得られた膜は、さらに、支持体とともにイオン性基含有高分子電解質の溶媒と混和する液体で脱溶媒する脱溶媒工程(A)に送られる。
イオン性基含有高分子電解質の溶媒と混和する液体とは、溶媒と混和し、脱溶媒できるものであれば特に限定されないが、水が好ましい。
【0015】
本発明においては、膜形成工程(A)で形成された膜は、さらに、支持体とともに無機酸含有酸性液に接触させてイオン性基を酸型に変換する酸処理工程(B)で処理される。
酸処理工程(B)における無機酸とは、塩酸、硝酸、硫酸などの水溶液を使用することができる。酸性水溶液に接触させる際の温度は特に限定されない。
膜を支持体から剥離することなく酸性水溶液に接触させることにより、膜全面が支持体で固定され、膜平面方向の膨潤が抑制され、厚みムラやシワの発生を低減することができる。
【0016】
酸処理工程(B)を通過した酸処理膜は、次いで、膜中の遊離の酸を除去する酸除去工程(C)を通過し、さらに酸除去膜は、乾燥工程(D)で乾燥される。
酸処理膜中の過剰な酸を、膜を支持体から剥離することなく除去する工程は、水に接触させることが好ましい。水に接触させる方法としては、シャワーなどの流水に接触させる方法、水に浸漬する方法など特に限定されない。また、水との接触を繰り返し行っても構わない。
【0017】
乾燥工程(D)においても、高分子電解質膜を支持体から剥離することなく水分を除去する。乾燥法は特に限定されないが、風乾させることが好ましい。風乾させる方法としては高分子電解質膜に風を当てたり、また、風を当てることなく、放置することでも乾燥できる。風は加熱されていても構わない。また、支持体側から熱を加えることにより乾燥させることもできる。
【0018】
本発明の製造方法の特徴は、前記(B)から(D)までの工程を、膜を支持体から剥離することなく実施することにある。このことによって、水を含む溶媒に膜が接触する工程においても、膜が膨潤、変形する等の問題がなくなり、高分子電解質膜全面で厚みムラ、シワ及び凹凸が少なく、均一な高分子電解質膜を得ることができる。
【0019】
本発明の高分子電解質膜は、目的に応じて任意の膜厚にすることができるが、プロトン伝導性の面からはできるだけ薄いことが好ましい。具体的には3〜200μmであることが好ましく、5〜150μmであることがさらに好ましく、特に好ましくは5〜100μmである。高分子電解質膜の厚みが3μmより薄いと高分子電解質膜の取扱が困難となり燃料電池を作製した場合に短絡等が起こる傾向にあり、200μmよりも厚いと高分子電解質膜が頑丈となりすぎ、ハンドリングが難しくなる傾向にある。
【0020】
本発明における高分子電解質膜を形成するポリマーは公知の高分子電解質を用いることができる。
例えば、芳香族炭化水素系のイオン性基含有ポリマーとしては、ポリマー主鎖に芳香族あるいは芳香環とエーテル結合、スルホン結合、イミド結合、エステル結合、アミド結合、ウレタン結合、スルフィド結合、カーボネート結合及びケトン結合から選択される少なくとも1種以上の結合基を有する構造を持つ非フッ素系のイオン伝導性ポリマーであり、例えば、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリフェニルキノキサリン、ポリアリールケトン、ポリエーテルケトン、ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾール、ポリイミド等の構成成分の少なくとも1種を含むポリマーに、スルホン酸基、ホスホン酸基、カルボキシル基、及びそれらの誘導体の少なくとも1種が導入されているポリマーが挙げられる。
なお、スルホン酸基、ホスホン酸基、カルボシキル基などの官能基をポリマーに含むことで、ポリマーのイオン伝導性が発現される。この中で特に有効に作用する官能基は、スルホン酸基である。また、ここでいうポリスルホン、ポエーテルスルホン、ポリエーテルケトン等は、その分子鎖にスルホン結合、エーテル結合、ケトン結合を有しているポリマーの総称であり、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリエーテルエーテルケトンケトン、ポリエーテルケトンエーテルケトンケトン、ポリエーテルケトンスルホンなどを含むとともに、特定のポリマー構造に限定するものではない。
【0021】
上記官能基を含有するポリマーのうち、特に芳香環上にスルホン酸基を持つポリマーは、上記例のような骨格を持つポリマーに対して適当なスルホン化剤を反応させることにより得ることができる。このようなスルホン化剤としては、例えば、芳香族系炭化水素系ポリマーにスルホン酸基を導入する例として報告されている、濃硫酸や発煙硫酸を使用するもの(例えば、Solid State Ionics,106,P.219(1998))、クロル硫酸を使用するもの(例えば、J.Polym.Sci.,Polym.Chem.,22,P.295(1984))、無水硫酸錯体を使用するもの(例えば、J.Polym.Sci.,Polym.Chem.,22,P.721(1984)、J.Polym.Sci.,Polym.Chem.,23,P.1231(1985))等が有効である。本発明のイオン性基含有ポリマー、特にイオン伝導性がスルホン酸基であるポリマーを得るためには、これらの試薬を用い、それぞれのポリマーに応じた反応条件を選定することにより実施することができる。また、特許第2884189号に記載のスルホン化剤等を用いることも可能である。
【0022】
また、上記芳香族炭化水素系イオン性基含有ポリマーは、重合に用いるモノマーの中の少なくとも1種に酸性基を含むモノマーを用いて合成することもできる。例えば、芳香族ジアミンと芳香族テトラカルボン酸二無水物から合成されるポリイミドにおいては、芳香族ジアミンの少なくとも1種にスルホン酸基やホスホン酸基を含有するジアミンを用いて酸性基含有ポリイミドとすることが出来る。芳香族ジアミンジオールと芳香族ジカルボン酸から合成されるポリベンズオキサゾール、芳香族ジアミンジチオールと芳香族ジカルボン酸から合成されるポリベンズチアゾール、芳香族テトラミンと芳香族ジカルボン酸から合成されるポリベンズイミダゾールの場合は、芳香族ジカルボン酸の少なくとも1種にスルホン酸基含有ジカルボン酸やホスホン酸基含有ジカルボン酸を使用することにより酸性基含有ポリベンズオキサゾール、ポリベンズチアゾール、ポリベンズイミダゾールとすることが出来る。芳香族ジハライドと芳香族ジオールから合成されるポリスルホン、ポリエーテルスルホン、ポリエーテルケトンなどは、モノマーの少なくとも1種にスルホン酸基含有芳香族ジハライドやスルホン酸基含有芳香族ジオールを用いることで合成することが出来る。この際、スルホン酸基含有ジオールを用いるよりも、スルホン酸基含有ジハライドを用いる方が、重合度が高くなりやすいとともに、得られた酸性基含有ポリマーの熱安定性が高くなるので好ましい。
【0023】
芳香族炭化水素系イオン性基含有ポリマーは、スルホン酸基含有ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリエーテルケトン系ポリマーなどのポリアリーレンエーテル系化合物、ポリアリーレン系化合物であることがより好ましい。
【0024】
芳香族炭化水素系イオン性基含有ポリマーの中で特に好ましいのは、一般式1で表される繰り返し単位を有するものである。
【0025】
【化2】

[一般式1において、Xは−S(=O)−基又は−C(=O)−基を、YはH又は1価の陽イオンを、ZはO又はS原子のいずれかを、Zは、O原子、S原子、−C(CH−基、−C(CF−基、−CH−基、シクロヘキシル基、直接結合のいずれかを、n1は1以上の整数を表す。]
【0026】
一般式1において、Xは−S(=O)−基であると溶剤への溶解性が向上するため好ましい。Xが−C(=O)−基であると、ポリマーの軟化温度を下げて電極との接合性をさらに高めたり、電解質膜に光架橋性を付与したりすることができるため好ましい。高分子電解質膜として用いる場合には、YはH原子であることが好ましい。ただし、YがH原子であると、熱などによって分解しやすくなるので、電解質膜の製造などの加工時にはYをNaやKなどのアルカリ金属塩としておき、加工後に酸処理によってYをH原子に変換して高分子電解質膜を得ることもできる。ZはO原子であるとポリマーの着色が少なかったり、原料が入手しやすかったりするなどの利点があり好ましい。ZがSであると耐酸化性が向上するため好ましい。n1は1〜30の範囲にあることが好ましく、n1が3以上の場合には、n1が異なる複数の単位が含まれていてもよい。Zは、O原子、S原子、−C(CH−基、−C(CF−基、−CH−基、シクロヘキシル基、直接結合を表し、O原子、S原子であるとより接合性がより改良されるため好ましい。Zが直接結合である場合は、得られる高分子電解質膜の寸法安定性が改良されるために好ましい。n1が3以上の場合はZがO原子であると、高分子電解質膜にした場合の電極触媒層との接合性が特に向上するため好ましい。
【0027】
一般式1で表される繰り返し単位を有するイオン性基含有ポリマーは、さらに一般式2で表される繰り返し単位をさらに含有していることが好ましい。
【0028】
【化3】

[一般式2において、Arは二価の芳香族基を、ZはO原子又はS原子のいずれかを、Zは、O原子、S原子、−C(CH−基、−C(CF−基、−CH−基、シクロヘキシル基、直接結合のいずれかを、n2は1以上の整数を表す。]
【0029】
一般式2において、ZはO原子であるとポリマーの着色が少なかったり、原料が入手しやすかったりするなどの利点があり好ましい。ZがS原子であると耐酸化性が向上するため好ましい。n2は1〜30の範囲にあることが好ましく、n2が3以上の場合には、n2が異なる複数の単位が含まれていてもよい。Zは、O原子、S原子、−C(CH−基、−C(CF−基、−CH−基、シクロヘキシル基、直接結合を表し、O原子、S原子であるとより接合性がより改良されるため好ましい。Zが直接結合である場合は、得られる高分子電解質膜の寸法安定性が改良されるために好ましい。n2が3以上の場合はZがO原子であると、高分子電解質膜にした場合の電極触媒層との接合性が特に向上するため好ましい。
【0030】
本発明における高分子電解質膜を構成するイオン性基含有ポリマーが、主として、一般式1で表される繰り返し単位と、一般式2で表される繰り返し単位で構成される場合には、それぞれのモル比は、7:93〜70:30の範囲であることが好ましい。モル比が7:93とは、一般式1で表される繰り返し単位のモル数を7としたとき、一般式2で表される繰り返し単位のモル数が93であることを表す。70:30のモル比よりも一般式1で表される繰り返し単位が多くなると、高分子電解質膜としたときの燃料透過性が大きくなる場合があり好ましくない。7:93のモル比よりも一般式1で表される繰り返し単位が少なくなると、高分子電解質膜としたときのプロトン伝導性が低下して抵抗が増大するため好ましくない。10:90〜50:50の範囲であることがより好ましい。10:90〜40:60の範囲であることがさらに好ましい。本発明におけるイオン性基含有ポリマーは、一般式1及び一般式2で表される繰り返し単位を有することによって適切な軟化温度を有し、高分子電解質膜としたときに良好な電極との接合性を示す。
【0031】
一般式2におけるArは、電子吸引性基を有する二価の芳香族基が好ましい。電子吸引性基とは、例えばスルホン基、スルホニル基、スルホン酸基、スルホン酸エステル基、スルホン酸アミド基、スルホン酸イミド基、カルボキシル基、カルボニル基、カルボン酸エステル基、シアノ基、ハロゲン基、トリフルオロメチル基、ニトロ基などを挙げることができるが、これらに限定されず、公知の任意の電子吸引性基であればよい。
【0032】
Arの好ましい構造は、化学式3〜6で表される構造である。化学式3の構造はポリマーの溶解性を高めることができ好ましい。化学式4の構造はポリマーの軟化温度を下げて電極との接合性を高めたり、光架橋性を付与したりするので好ましい。化学式5又は6の構造はポリマーの膨潤を少なくできるので好ましく、化学式6の構造がより好ましい。化学式3〜6の中でも化学式6の構造が最も好ましい。
【0033】
【化4】

【0034】
本発明の高分子電解質膜を構成するイオン性基含有ポリマーのさらに好ましい態様の一つは、高分子電解質膜が主として、一般式1で表される構造と、一般式2で表される構造で構成され、かつ一般式1におけるZ及びZがいずれもO原子であり、かつ、n1が3以上であるイオン性基含有ポリマーである。このようなイオン性基含有ポリマーを用いると、電極との接合性が特に向上するため好ましい。
【0035】
前記のイオン性基含有ポリマーのさらに好ましい態様の一つは、一般式2における、Z及びZがいずれもO原子であり、かつ、n2が3以上であるとより好ましい。このようなイオン性基含有ポリマーを用いると、電極との接合性がより一層向上するため好ましい。
【0036】
本発明の高分子電解質膜を構成するイオン性基含有ポリマーのさらに好ましい態様の一つは、一般式1及び一般式2に加えて、一般式7で表される繰り返し単位を有するイオン性基含有ポリマーである。一般式1及び一般式2で表される繰り返し単位に加え、一般式7で表される繰り返し単位をさらに有していることが、高分子電解質膜としたときの膜の形態安定性を高めることができるため好ましい。
【0037】
【化5】

[一般式7において、Xは−S(=O)−基又は−C(=O)−基を、YはH又は1価の陽イオンを、ZはO又はS原子のいずれかを表す。]
【0038】
一般式7において、Xは−S(=O)−基であると溶剤への溶解性が向上するため好ましい。Xが−C(=O)−基であると、ポリマーの軟化温度を下げて電極との接合性をさらに高めたり、電解質膜に光架橋性を付与したりすることができるため好ましい。高分子電解質膜として用いる場合には、YはH原子であることが好ましい。ただし、YがH原子であると、熱などによって分解しやすくなるので、電解質膜の製造などの加工時にはYをNaやKなどのアルカリ金属塩としておき、加工後に酸処理によってYをH原子に変換して高分子電解質膜を得ることもできる。ZはO原子であるとポリマーの着色が少なかったり、原料が入手しやすかったりするなどの利点があり好ましい。ZがSであると耐酸化性が向上するため好ましい。
【0039】
本発明の高分子電解質膜を構成するイオン性基含有ポリマーが、一般式1、2、及び7で表される繰り返し単位を有している場合には、Z及びZが、O原子又はS原子であり、かつ、n1が1であると、高分子電解質膜とした場合の電極触媒層との接合性と、膜の形態安定性がより良好になるので好ましい。また、Z及びZが、O原子又はS原子であり、かつ、n2が1であると、高分子電解質膜とした場合の電極触媒層との接合性と、膜の形態安定性がさらに良好になるので好ましい。
【0040】
本発明の高分子電解質膜を構成するイオン性基含有ポリマーは、一般式1、2、及び7で表される繰り返し単位に加え、一般式8で表される繰り返し単位をさらに有していると、高分子電解質膜としたときに、電極触媒層との接合性と、膜の形態安定性を大きく向上することができるためよりより好ましい。
【0041】
【化6】

[一般式8において、Arは2価の芳香族基を、ZはO原子又はS原子のいずれかを表す。]
【0042】
一般式8におけるZはO原子であるとポリマーの着色が少なかったり、原料が入手しやすかったりするなどの利点があり好ましい。ZがS原子であると耐酸化性が向上するため好ましい。化学式8におけるArは、電子吸引性基を有する二価の芳香族基が好ましい。電子吸引性基とは、例えばスルホン基、スルホニル基、スルホン酸基、スルホン酸エステル基、スルホン酸アミド基、スルホン酸イミド基、カルボキシル基、カルボニル基、カルボン酸エステル基、シアノ基、ハロゲン基、トリフルオロメチル基、ニトロ基などを挙げることができるが、これらに限定されず、公知の任意の電子吸引性基であればよい。
【0043】
Arの好ましい構造は、化学式3〜6で表される構造である。化学式3の構造はイオン性基含有ポリマーの溶解性を高めることができ好ましい。化学式4の構造はイオン性基含有ポリマーの軟化温度を下げて電極との接合性をさらに高めたり、光架橋性を付与したりするので好ましい。化学式5又は6の構造はイオン性基含有ポリマーの膨潤を少なくできるので好ましく、化学式6の構造がより好ましい。化学式3〜6の中でも化学式6の構造が最も好ましい。
【0044】
本発明の高分子電解質膜を構成するイオン性基含有ポリマーが、一般式1、2、7及び8でそれぞれ表される繰り返し単位を全て有している場合は、それぞれの繰り返し単位のモル%、及びその他の繰り返し単位のモル%が下記数式1〜3を満たすことが好ましい。
【0045】
0.9≦(n3+n4+n5+n6)/(n3+n4+n5+n6+n7)≦1.0
数式1
0.05≦(n3+n4)/(n3+n4+n5+n6)≦0.7 数式2
0.01≦(n4+n6)/(n3+n4+n5+n6)≦0.95 数式3(上記数式中、n3は一般式7で表される繰り返し単位のモル%を、n4は一般式1で表される繰り返し単位のモル%を、n5は一般式8で表される繰り返し単位のモル%を、n6は一般式2で表される繰り返し単位のモル%を、n7はその他の繰り返し単位のモル%を、それぞれ表す。)
【0046】
(n3+n4+n5+n6)/(n3+n4+n5+n6+n7)が0.9よりも小さいと、高分子電解質膜としたときに良好な特性が得られないため好ましくない。より好ましいのは0.95〜1.0の範囲である。
【0047】
(n3+n4)/(n3+n4+n5+n6)が0.05よりも小さくなると、高分子電解質膜としたときに十分なプロトン伝導性が得られないため好ましくない。また、0.9よりも大きいと高分子電解質膜としたときの膨潤性が著しく大きくなるため好ましくない。より好ましい範囲は0.1〜0.7の範囲である。
【0048】
(n3+n4)/(n3+n4+n5+n6)は0.07〜0.5の範囲であることが好ましく、0.1〜0.4の範囲であることがより好ましい。0.5よりも大きいと、燃料透過性が大きくなる場合があり好ましくない。0.07よりも小さいと、プロトン伝導性が低下して抵抗が増大するため好ましくない。
【0049】
(n4+n6)/(n3+n4+n5+n6)が0.01よりも少ないと、高分子電解質膜としたときに電極触媒層との接合性が低下するため好ましくない。0.95よりも大きいと、高分子電解質膜としたときの膨潤性が大きくなりすぎる場合があるため好ましくない。0.05〜0.8がより好ましい範囲である。0.4〜0.8の範囲であることがさらに好ましい。
【0050】
なお、本発明におけるイオン性基含有ポリマーにおいて、上記各一般式で表される各繰り返し単位の結合様式は特に限定されるものではなく、ランダム結合、交互結合、連続したブロック構造での結合など、いずれでもよい。
【0051】
本発明における上記イオン性基含有ポリマーの合成方法としては、公知の方法を採用でき、特に限定されないが、合成に用いる原料モノマーの好ましい例として、下記一般式9〜11で表される構造のモノマーを挙げることができる。さらに、一般式12で表される構造のモノマーをさらに用いると、膜の形態安定性など物理的な特性が向上するため好ましい。
【0052】
【化7】

【0053】
一般式9〜12において、Xは−S(=O)−基又は−C(=O)−基を、YはH又は1価の陽イオンを、Z及びZ10は、それぞれ独立してCl原子、F原子、I原子、Br原子、ニトロ基のいずれかを、Z及びZ11は、それぞれ独立してOH基、SH基、−O−NH−C(=O)−R基、−S−NH−C(=O)−R基のいずれかを[Rは芳香族又は脂肪族の炭化水素基を表す。]、Zは、O原子、S原子、−C(CH−基、−C(CF−基、−CH−基、シクロヘキシル基のいずれかを、Arは分子中に、スルホン基、カルボニル基、スルホニル基、ホスフィン基、シアノ基、トリフルオロメチル基などのパーフルオロアルキル基、ニトロ基、ハロゲン基などの電子吸引性基を有する芳香族基を表す。
【0054】
一般式9で表される化合物の具体例としては、3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン、3,3’−ジスルホ−4,4’−ジフルオロジフェニルスルホン、3,3’−ジスルホ−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホ−4,4’−ジフルオロジフェニルケトン、3,3’−ジスルホブチル−4,4’−ジクロロジフェニルスルホン、3,3’−ジスルホブチル−4,4’−ジフルオロジフェニルスルホン、3,3’−ジスルホブチル−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホブチル−4,4’−ジフルオロジフェニルケトン、及びそれらのスルホン酸基が1価陽イオン種との塩になったもの等が挙げられる。1価陽イオン種としては、ナトリウム、カリウムや他の金属種や各種アミン類等でも良く、これらに制限されるわけではない。
一般式9で表される化合物のうち、スルホン酸基が塩になっている化合物の例としては、3,3’−ジスルホン酸ナトリウム−4,4’−ジクロロジフェニルスルホン、3,3’−ジスルホン酸ナトリウム−4,4’−ジフルオロジフェニルスルホン、3,3’−ジスルホン酸ナトリウム−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホン酸ナトリウム−4,4’−ジフルオロジフェニルケトン、3,3’−ジスルホン酸カリウム−4,4’−ジクロロジフェニルスルホン、3,3’−ジスルホン酸カリウム−4,4’−ジフルオロジフェニルスルホン、3,3’−ジスルホン酸カリウム−4,4’−ジクロロジフェニルケトン、3,3’−ジスルホン酸カリウム−4,4’−ジフルオロジフェニルケトンなどを挙げることができる。
【0055】
一般式10で表される化合物の具体例としては、2,2−ビス(4−ヒドロキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)メタン、2,2−ビス(4−ヒドロキシフェニル)ヘキサフルオロプロパン、4,4’−チオビスベンゼンチオール、4,4’−オキシビスベンゼンチオール、ビス(4−ヒドロキシフェニル)スルフィド、4,4’−ジヒドロキシジフェニルエーテル、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサンなどを挙げることができ、4,4’−チオビスベンゼンチオール、ビス(4−ヒドロキシフェニル)スルフィド、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、末端ヒドロキシル基含有フェニレンエーテルオリゴマー(下記化学式13で表される構造のもの)が好ましい。化学式13においては、nは1以上の整数からなり、nの異なる成分が混合されたものでも良い。
【0056】
【化8】

【0057】
一般式10で表される構造のモノマーは、イオン性基含有ポリマーの柔軟性を高め、変形に対する破壊を抑制したり、ガラス転移温度を低下させて電極触媒層との接合性を向上させたりするなどの効果をもたらすことができる。
【0058】
一般式11で表される化合物としては、同一芳香環にハロゲン、ニトロ基などの求核置換反応における脱離基と、それを活性化する電子吸引性基を有する化合物を挙げることができる。具体例としては、2,6−ジクロロベンゾニトリル、2,4−ジクロロベンゾニトリル、2,6−ジフルオロベンゾニトリル、2,4−ジフルオロベンゾニトリル、4,4’−ジクロロジフェニルスルホン、4,4’−ジフルオロジフェニルスルホン、4,4’−ジフルオロベンゾフェノン、4,4’−ジクロロベンゾフェノン、デカフルオロビフェニル等が挙げられるがこれらに制限されることなく、芳香族求核置換反応に活性のある他の芳香族ジハロゲン化合物、芳香族ジニトロ化合物、芳香族ジシアノ化合物なども使用することができる。
【0059】
一般式12で表される化合物の例としては、4,4’−ビフェノール、4、4’−ジメルカプトビフェノールなどを挙げることができ、4,4’−ビフェノールが好ましい。
上述の芳香族求核置換反応において、一般式9〜12で表される化合物とともに他の各種活性化ジハロゲン芳香族化合物やジニトロ芳香族化合物、ビスフェノール化合物、ビスチオフェノール化合物をモノマーとして併用することもできる。
【0060】
その他のビスフェノール化合物又はビスチオフェノール化合物の例としては、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(3−メチル−4−ヒドロキシフェニル)フルオレン、ビス(4−ヒドロキシフェニル)スルホン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)ブタン、3,3−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、ビス(4−ヒドロキシ−3,5−ジメチルフェニル)メタン、ビス(4−ヒドロキシ−2,5−ジメチルフェニル)メタン、ビス(4−ヒドロキシフェニル)フェニルメタン、ハイドロキノン、レゾルシン、ビス(4−ヒドロキシフェニル)ケトン、1,4−ベンゼンジチオール、1,3−ベンゼンジチオール、フェノールフタレイン、10−(2,5−ジヒドロキシフェニル)−9,10−ジヒドロ−9−オキサ−10−フォスファフェナンスレン−10−オキサイド等が挙げられるが、この他にも芳香族求核置換反応によるポリアリーレンエーテル系化合物の重合に用いることができる各種芳香族ジオール又は各種芳香族ジチオールを使用することもでき、上記の化合物に限定されるものではない。
【0061】
本発明におけるイオン性基含有高分子電解質膜の製造方法においては、上記の活性化ジハロゲン芳香族化合物やジニトロ芳香族化合物や芳香族ジオール類又は芳香族ジチオール類を原料とし、塩基性化合物の存在下で、公知の芳香族求核置換反応により重合して得られるポリマーで、対数粘度が0.1〜2.0dL/gで、軟化温度が90℃以上のものが好ましく、さらに軟化温度が140〜250℃のものがより好ましい。
【実施例】
【0062】
以下本発明を実施例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、各種測定は次のように行った。
<溶液粘度>
ポリマー粉末を0.5g/dlの濃度でN−メチルピロリドンに溶解し、30℃の恒温槽中でウベローデ型粘度計を用いて粘度測定を行い、対数粘度ln[ta/tb]/cで評価した(taは試料溶液の落下秒数、tbは溶媒のみの落下秒数、cはポリマー濃度)。
【0063】
<軟化温度>
5mm幅の酸型の膜を、チャック幅10mmで、50℃から250℃まで2℃/分で加熱しながら、10Hzの動歪を与えて動的粘弾性を、Rheogel E−4000(東機産業社製)を用いて測定した。E’が大きく低下する変曲点の温度を軟化温度とした。<電解質膜の膜厚>
高分子電解質膜の厚みは、支持体から剥離した後、市販のマイクロメーター(Mitutoyo マイクロメーター 0.001mm)を用いて測定した。室温が20℃で湿度が30±5RH%にコントロールされた測定室内で24時間以上静置した高分子電解質膜を5×5cmの大きさに切断したサンプルに対して、20箇所の厚みを測定し、その平均値を厚みとし、標準偏差値にて厚みムラの程度を示した。
【0064】
<電解質膜の凹凸測定>
高分子電解質膜の凹凸の測定は、市販の三次元非接触表面形状計測装置(菱化システム
マイクロマップ)を用いて測定した。室温が20℃で湿度が30±5RH%にコントロールされた測定室内で24時間以上静置した高分子電解質膜を3×3cmの大きさに切断し、その両面について形状を観察、最大凸部と最大凹部の高さの差を測定した。
【0065】
〔実施例1〕
3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン2ナトリウム塩778g、2,6−ジクロロベンゾニトリル553g、4,4’−ビフェノール893g、炭酸カリウム762g、N−メチル−2−ピロリドンを5621g入れて、窒素雰囲気下にて150℃で1時間撹拌した後、反応温度を200℃に上昇させて系の粘性が十分上がるのを目安に反応を続けた。放冷の後、水中にストランド状に沈殿させ、得られたポリマーを水中で40時間洗浄した後、乾燥した。このポリマーのこのポリマーの対数粘度は1.05dL/g、軟化温度は245℃であった。
次いで、このポリマーを、N−メチル−2−ピロリドンを溶剤として用い、ポリマー濃度が25質量%となるようにポリマー溶液を調整した。調整した溶液を、支持体のポリエチレンテレフタレートフィルム上に、ブレードコーターにて厚み200μmになるよう温度20℃で連続的に流延し、温度140℃で30分間乾燥して、流延膜が乾燥によって自己支持性を示すようになったポリマー膜を支持体上に密着した状態で得た。引き続き、支持体からポリマー膜を剥がすことなく30℃、20質量%硫酸水溶液に10分間浸漬し、次いで、支持体からポリマー膜を剥がすことなく30℃純水に40分間浸漬し、さらに、支持体からポリマー膜を剥がすことなく25℃で30分間風乾させた。その後、支持体からポリマー膜を剥がして高分子電解質膜を得た。
【0066】
〔実施例2〕
実施例1に記載の方法により支持体上に流延、乾燥したポリマー膜を、支持体から剥がすことなく30℃の純水に20分間浸漬した後、実施例1に記載の方法と同様に硫酸水溶液、純水に浸漬し、風乾させて高分子電解質膜を得た。
【0067】
〔比較例1〕
実施例1に記載の方法によりフィルム支持体上に流延、乾燥したポリマー膜を、支持体から剥がした後、ポリマー膜のみを実施例1に記載の方法と同様に硫酸水溶液、純水に浸漬し、風乾させて高分子電解質膜を得たが、多数のシワが発生し、評価に値するものではなかった。
【0068】
〔比較例2〕
実施例1に記載の方法によりフィルム支持体上に流延、乾燥したポリマー膜を、支持体から剥がした後、ポリマー膜のみを実施例1に記載の方法と同様に硫酸水溶液、純水に浸漬し、金枠に固定した後、風乾させて高分子電解質膜を得た。硫酸水溶液、純水に浸漬した際に発生したシワは、金枠に固定することで減少するものの、痕が残った。
【0069】
〔比較例3〕
実施例1に記載の方法によりフィルム支持体上に流延、乾燥したポリマー膜を、支持体から剥がすことなく硫酸水溶液、純水に浸漬した後、フィルムからポリマー膜を剥がし、ポリマー膜のみを風乾させて高分子電解質膜を得た。
実施例1、2、比較例1〜3の物性値を表1に示す。
【0070】
【表1】

【0071】
〔実施例3〕
結合水を取り除いた3,3’−ジスルホン酸ナトリウム−4,4’−ジクロロジフェニルスルホン(略号:S−DCDPS)800.0g、2,6−ジクロロベンゾニトリル(略号:DCBN)356.5g、4,4’−ビフェノール(略号:BP) 606.5g、4,4’−チオビスフェノール(略号:BPS) 96.9g、炭酸カリウム 562.7g、N−メチル−2−ピロリドン(略号:NMP) 4624.3gを原料とする以外は、実施例1と同様にして対数粘度1.02dl/g、軟化温度225℃のポリマーを得た。
さらに、実施例1と同様にして高分子電解質膜を得た。
〔比較例4〕
実施例3で得られたポリマーを用い、比較例1と同様にして高分子電解質膜を得たが、多数のシワが発生し、評価に値するものではなかった。
〔比較例5〕
実施例3で得られたポリマーを用い、比較例2と同様にして高分子電解質膜を得た。硫酸水溶液、純水に浸漬した際に発生したシワは、金枠に固定することで減少するものの、痕が残った。
〔比較例6〕
実施例3で得られたポリマーを用い、比較例3と同様にして高分子電解質膜を得た。
実施例3、比較例4〜6の物性値を表2に示す。
【0072】
【表2】

【0073】
〔実施例4〕
乾燥したS−DCDPS 310.0g、DCBN 253.3g、末端ヒドロキシル基含有フェニレンエーテルオリゴマー(大日本インキ化学工業社製SPECIANOL DPE−PL;化学式13においてnが1〜8の成分を含む混合物でnの平均値は5である構造であるもの)(略号:DPE) 1156.6g、炭酸カリウム319.8g、NMP 5164.3gを用い、反応時間を8時間にした他は、実施例1と同様にして対数粘度0.63dl/g、軟化温度152℃のポリマーを得た。
さらに、実施例1と同様にして高分子電解質膜を得た。
【0074】
〔比較例7〕
実施例4で得られたポリマーを用い、比較例1と同様にして高分子電解質膜を得たが、多数のシワが発生し、評価に値するものではなかった。
〔比較例8〕
実施例4で得られたポリマーを用い、比較例2と同様にして高分子電解質膜を得た。硫酸水溶液、純水に浸漬した際に発生したシワは、金枠に固定することで減少するものの、痕が残った。
〔比較例9〕
実施例4で得られたポリマーを用い、比較例3と同様にして高分子電解質膜を得た。
実施例4、比較例7〜9の物性値を表3に示す。
【0075】
【表3】

【0076】
〔実施例5〕
実施例1において、3,3’−ジスルホ−4,4’−ジクロロジフェニルスルホン2ナトリウム塩778gのかわりに3,3’−ジスルホ−4,4’−ジクロロジフェニルケトン2ナトリウム塩721gを用いて同様にポリマーを合成した。得られたポリマーの対数粘度は0.99dL/gであった。実施例1と同様にして高分子電解質膜を作製したところ、シワのない良好なものとすることができた。
〔比較例10〕
実施例5で得られたポリマーを比較例1と同様にして高分子電解質膜を作製したところ、明らかにシワの発生量が多いものとなった。
【0077】
〔実施例6〕
9,9−ビス(4−ヒドロキシフェニル)フルオレン0.60g、ビスフェノールS1.00g、ジフルオロジフェニルスルホン1.45g、炭酸カルシウム0.91gを50ml四つ口フラスコに計り取り、窒素気流下で20mlのNMPを入れて、反応温度を175℃付近に設定して5時間程度反応を続けた。放冷の後、約100mlのメタノール中に再沈殿させ、ミキサーを用いて3回水洗処理をしてポリマーを得た。得られたポリマーの対数粘度は、0.58であった。ポリマー試料を濃硫酸(98%)とともに室温でマグネティックスターラーにより撹拌することで、スルホン化反応を行い、反応後、硫酸溶液を過剰の氷水中に投入して反応を止め、生じた沈殿を濾取、水洗して、スルホン酸基含有ポリマーを得た。本ポリマーを実施例1と同様にして高分子電解質膜を作製したところ、シワのない良好なものとすることができた。
〔比較例11〕
実施例6で得られたポリマーを比較例1と同様にして高分子電解質膜を作製したところ、シワの発生量が多いものとなった。
【0078】
〔実施例7〕
3,3’,4,4‘−テトラアミノジフェニルスルホン15g、2,5−ジカルボキシベンゼンスルホン酸モノナトリウム14g、ポリリン酸(五酸化リン含量75%)205g、五酸化リン164gを重合容器に量り取る。窒素を流し、オイルバス上ゆっくり撹拌しながら100℃まで昇温 した。100℃で1時間保持した後、150℃に昇温 して1時間、200℃に昇温 して4時間重合した。重合終了後放冷し、水を加えて重合物を取り出し、家庭用ミキサーを用いて3回水洗を繰り返した後の水浸漬ポリマーに炭酸ナトリウムを加えて中和し、更に水洗を繰り返して洗液のpHが中性となり変化しないことを確認した。得られたポリマーは80℃で終夜減圧乾燥した。ポリマーの対数粘度は、1.68を示した。得られたポリマーとNMPを25質量%になるようにはかり取り、撹拌しながら、オイルバス上で170℃に加熱して溶解させた。得られた溶液を用いて実施例1と同様にして高分子電解質膜を作製したところ、シワのない良好なものとすることができた。
〔比較例12〕
実施例7で得られたポリマーを比較例1と同様にして高分子電解質膜を作製したところ、シワの発生量が多く、厚みムラも大きいものとなった。
【0079】
〔実施例8〕
3,3’,4,4‘−テトラアミノジフェニルスルホン1.83g、2,5−ジカルボキシベンゼンスルホン酸モノナトリウム0.53g、3,5−ジカルボキシフェニルホスホン酸1.13g、ポリリン酸(五酸化リン含量75%)25g、五酸化リン20gを重合容器に量り取り、窒素を流し、オイルバス上ゆっくり撹拌しながら100℃まで昇温 した。100℃で1時間保持した後、150℃に昇温 して1時間、200℃に昇温 して6時間重合した。重合終了後放冷し、水を加えて重合物を取り出し、家庭用ミキサーを用いて3回水洗を繰り返した後の水浸漬ポリマーに炭酸ナトリウムを加えて中和し、更に水洗を繰り返して洗液のpHが中性となり変化しないことを確認した。得られたポリマーは80℃で終夜減圧乾燥した。ポリマーの対数粘度は、1.31を示した。得られたポリマーはN−メチル−2−ピロリドン(NMP)とともに25質量%濃度となるようにオイルバス上で溶解した。得られた溶液を用いて実施例1と同様にして高分子電解質膜を作製したところ、シワのない良好なものとすることができた。
〔比較例13〕
実施例8で得られたポリマーを比較例1と同様にして高分子電解質膜を作製したところ、シワの発生量が多いものとなった。
【0080】
実施例1〜8では膜厚が30μm程度の極薄の膜でありながら、シワの発生なく、厚みムラや凹凸も小さく、高分子電解質膜として良好であることが確認された。一方、比較例2、5、8は発生したシワを乾燥する工程にて低減させることはできたが、厚みムラが大きかった。乾燥時の固定のみではシワが十分に解消されず、厚みムラが残ったものと推定される。比較例3、6、9ではシワの発生はなく、厚みムラも小さいものではあったが、凹凸高さは高い値となった。これは高分子電解質膜の厚みは同じであるが、波打っていることを示唆している。
【産業上の利用可能性】
【0081】
本発明により、極薄で高分子電解質膜全面で厚みムラ、シワ及び凹凸が少なく、均一な高分子電解質膜を製造することができ、燃料の水素などの透過を防ぐ燃料透過抑止性や機械的強度などの特性を向上させることができ、固体高分子形燃料電池の発展に寄与することが期待される。

【特許請求の範囲】
【請求項1】
支持体上にイオン性基含有高分子電解質の膜状物を形成させる膜形成工程(A)、前記膜を無機酸含有酸性液に接触させてイオン性基を酸型に変換する酸処理工程(B)、前記酸処理膜中の遊離の酸を除去する酸除去工程(C)及び前記酸除去膜を乾燥する乾燥工程(D)を有する高分子電解質膜の製造方法であって、前記(B)から(D)までの工程を、膜を支持体から剥離することなく実施することを特徴とする高分子電解質膜の製造方法。
【請求項2】
膜形成工程(A)が、イオン性基含有高分子電解質の溶媒溶液を支持体上に流延して流延膜とする流延工程(A)、前記流延膜を乾燥する乾燥工程(A)及び前記乾燥膜を前記イオン性基含有高分子電解質の溶媒と混和する液体で脱溶媒する脱溶媒工程(A)からなり、工程(A)及び工程(A)を、膜を支持体から剥離することなく実施する請求項1に記載の高分子電解質膜の製造方法。
【請求項3】
乾燥工程(A)において、流延膜が自己支持性膜となるまで乾燥する請求項2に記載の高分子電解質膜の製造方法。
【請求項4】
支持体がポリエチレンテレフタレートフィルムである請求項2に記載の高分子電解質膜の製造方法。
【請求項5】
イオン性基含有高分子電解質が、一般式1で表される繰り返し単位を有する請求項1〜4のいずれかに記載の高分子電解質膜の製造方法。
【化1】

[一般式1において、Xは−S(=O)−基又は−C(=O)−基を、YはH又は1価の陽イオンを、ZはO又はS原子のいずれかを、Zは、O原子、S原子、−C(CH−基、−C(CF−基、−CH−基、シクロヘキシル基、直接結合のいずれかを、n1は1以上の整数を表す。]

【公開番号】特開2008−181856(P2008−181856A)
【公開日】平成20年8月7日(2008.8.7)
【国際特許分類】
【出願番号】特願2007−245049(P2007−245049)
【出願日】平成19年9月21日(2007.9.21)
【出願人】(000003160)東洋紡績株式会社 (3,622)
【Fターム(参考)】