説明

高周波ろう付け装置および高周波ろう付け方法

【課題】放射温度計を用いて信頼性のあるろう付け製品の製造を可能ならしめるようにしたアルミニウム材同士のろう付けを行う高周波ろう付け装置を提供する。
【解決手段】制御装置5に、放射温度計4の仕様に基づき設定した演算開始温度を含む基点から単位時間を経過する毎に、測定温度と演算開始温度の温度差を求め、基点から現時点までの経過時間中の各温度差の単位時間を加味する積分値を求める第1演算作業と、積分値を経過時間で除算して基点を始点とする単位時間を加味する一次関数の勾配を求める第2演算作業と、勾配を用いた一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3演算作業と、第1乃至第3演算作業を順次繰返す第4演算作業を行うと共に、基点からの加熱時間が設定温度到達予想時間に到達した場合に、所定時間の後熱後に高周波加熱コイル2への電力供給を停止させる電力停止指令信号発信機能を付与する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高周波ろう付け装置および高周波ろう付け方法の改善に係り、より詳しくは、アルミニウム材同士のろう付けを行う高周波ろう付け装置および高周波ろう付け方法に関するものである。
【背景技術】
【0002】
高周波ろう付けでは、ろう付けする金属部材の一部を高周波加熱コイルで加熱するので、金属材料を均熱化することが難しい。通常、加熱量が一定であると仮定してタイマで加熱時間を制御する場合が多いが、このような方法では、当然、金属材料の周囲環境の影響や加熱装置の加熱量の変化に対応することができない。そこで、温度センサによりろう付けする金属部材のろう付け領域の温度を測定し、ろう付け領域が設定温度になったらろう付けが完了して、信頼性のあるろう付けを可能ならしめるようにしたろう付け装置が提案されている。以下、この従来例に係るろう付け装置の概要を、その装置を示すブロック図の図5を参照しながら説明する。
【0003】
即ち、この従来例に係るろう付け装置は、銅パイプ51,52に対して相対的に位置決めされたトーチ55、加熱ガスの圧力、流量を制御したり、あるいはトーチ55の加熱位置を制御したりする加熱制御手段57、銅パイプ51に対して相対的に位置決めされた赤外線放射温度センサ(赤外線カメラ)54、検出された温度画像データを処理する画像データ処理手段56とから構成されている。前記画像データ処理手段56では、取り込まれた画像データをプリアンプ56a,メインアンプ56bによりまず温度と出力電圧との関係を求める。
【0004】
そして、前記関係を放射率補正56cにより設定された溶融時の銅パイプ51の放射率で補正し、リニアライザ56dでリニアライズして、温度分布データを求める。この温度分布データは温度判定処理56eで演算処理してろう溶融の判定をし、ろう付け完了信号を加熱制御手段57に出力するようにしたものである。なお、符号60は、リニアライザ56dから出力された温度分布データを画像として表示するモニタであり、また符号53はろう材である。
【0005】
従って、この従来例に係るろう付け装置によれば、赤外線放射温度センサ(赤外線カメラ)4の放射率を銅パイプ51のろうが広がる領域51bに設定することにより、容易にろう溶融の判断をすることができる。その結果、加熱制御手段7に対して適正なろう付け完了信号を出力することができるので、信頼性のあるろう付けができる。なお、この従来例に係るろう付け装置では、トーチろう付けを例として説明しているが、高周波ろう付けに対しても適応できると説明されている(例えば、特許文献1参照。)。
【特許文献1】特開平06−285625号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
上記従来例に係るろう付け装置によれば、信頼性のあるろう付けができるので、それなりに優れていると考えられる。しかしながら、この従来例に係るろう付け装置によりろう付けし得る金属材料は、銅パイプのろう付けを例として説明されているように、放射率が高い金属材料に限られる。例えば、金属材料がアルミニウム材である場合には、放射率が低く、特に測定範囲の影響、より具体的には置きろう(ろう材)の影響を受け易く、測定温度が安定しないため、アルミニウム材同士のろう付けに対して適用することができないからである。
【0007】
ところで、高周波加熱装置によれば、安定した性能を発揮することができるといわれている。しかしながら、アルミニウム材同士のろう付け部位にリング状のろう材を取付けるか否かによって、高周波加熱によるろう付け領域の放射温度計による測定温度の上昇状態は、縦軸に放射温度計による測定温度(単位:℃)をとり、横軸に加熱開始時からの加熱時間(単位:×10−1s)をとって示す、アルミニウム材の放射温度計による測定温度の上昇状態説明図の図4に示すように、大きく相違することを温度上昇状態確認試験によって確認した。
【0008】
即ち、ろう付けするアルミニウム材同士のろう付け部位にリング状のろう材を取付けない場合(ろう材なし試料:2個)、図4において破線で示すように、放射温度計による測定温度はろう付け設定温度になるまでほぼ直線に近似した状態で上昇する。ところが、ろう材を取付けた場合(ろう材あり試料:2個)、放射温度計による測定温度は、高周波加熱による熱エネルギーの影響を受けて、ろう材の位置が変化したり、放射率の変化の影響を受けたりすることによって、図4において実線と一点鎖線とで示すように、上昇過程において上昇状態が大きく変動するのに加えて、たとえアルミニウム材同士の寸法形状が同じであっても、測定温度の上昇状態が相違している。
【0009】
つまり、高周波加熱装置による加熱は局所加熱であり、そしてアルミニウム材同士のろう付け領域にろう材が存在し、またろう材からのフラックスの噴出しや、ろう材の溶融等により放射率が変化し、一般的に使用されている放射温度計に影響を与えるためであると考えられる。従って、放射温度計による測定温度を、そのままアルミニウム材同士の高周波ろう付けの制御に使用すると大きな誤差が発生し、信頼性のあるろう付けができない。
しかしながら、信頼性のあるアルミニウム材からなるろう付け製品をより安価に製造するためには生産性の向上、品質安定の面から、放射温度計の測定温度を用いた高周波加熱装置を活用するのが好ましい。
【0010】
従って、本発明の目的は、放射温度計を用いて信頼性のあるろう付け製品の製造を可能ならしめるようにしたアルミニウム材同士のろう付けを行う高周波ろう付け装置および高周波ろう付け方法を提供することである。
【課題を解決するための手段】
【0011】
発明者らは、上記の課題を解決するために行った試験から得た下記の事項から、放射温度計により測定される測定温度の上昇状態が波状に変動しても、加熱量が安定しいていることを知見して、本発明に係る高周波ろう付け装置および高周波ろう付け方法を具現するに至ったものである。
【0012】
(1)加熱開始初期段階で通常より高い温度が測定された場合は、後の段階で通常より低い温度が測定される傾向があり、一方的に通常より高い温度が測定されたり、低い温度が測定されたりするようなことがない。
(2)アルミニウム材のろう付け部位にろう材を取付けない場合の温度は、上記のとおり、直線に近似した線を描いて上昇する。
(3)ろう材の質量は、ろう付けするアルミニウム材の質量と比較すると極僅かであるから、高周波加熱エネルギーの殆どが、アルミニウム材に供給されている。
従って、放射温度計による測定温度のすべての情報から、温度上昇直線の勾配を求めることにより、アルミニウム材のろう付け部位の温度を、目標とするろう付け設定温度にするのに必要な加熱時間を推測することができる。
【0013】
上記目的を達成するために、本発明の請求項1に係る高周波ろう付け装置が採用した手段は、高周波加熱装置からの電力の供給により、アルミニウム材同士のろう付け部位を加熱する高周波加熱コイルを備え、前記ろう付け部位の温度を測定する放射温度計を備えると共に、前記放射温度計で測定された測定温度に基づいて前記高周波加熱装置を制御する制御装置を備えてなる高周波ろう付け装置において、前記制御装置は、前記放射温度計の仕様に基づいて設定した演算開始温度を含む基点から単位時間を経過する毎に、測定温度と前記演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値を求める第1演算作業と、前記積分値を前記経過時間で除算して前記基点を始点とする前記単位時間を加味する一次関数の勾配を求める第2演算作業と、前記勾配を用いた前記一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3演算作業と、前記第1演算作業乃至第3演算作業を順次繰返す第4演算作業を行うと共に、前記基点からの加熱時間が前記設定温度到達予想時間に到達した場合に、前記高周波加熱装置に対して予め設定した所定時間の後熱後に、高周波加熱コイルへの電力の供給を停止させる電力停止指令信号を発する電力停止指令信号発信機能を備えてなるところにある。
【0014】
また、本発明の請求項2に係る高周波ろう付け方法が採用した手段は、アルミニウム材同士のろう付け部位の温度を放射温度計で測定しながら、高周波加熱コイルにより加熱して前記ろう付け部位をろう付けする高周波ろう付け方法において、前記放射温度計の仕様に基づいて設定した演算開始温度を含む基点から単位時間を経過する毎に、前記放射温度計による測定温度と前記演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値を求める第1工程と、前記積分値を前記経過時間で除算して前記基点を始点とする前記単位時間を加味する一次関数の勾配を求める第2工程と、前記勾配を用いた一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3工程と、前記第1乃至3工程を順次繰返す第4工程と、前記基点からの加熱時間が前記設定温度到達予想時間に到達した場合に、前記高周波加熱装置に対して予め設定した所定時間の後熱後に、高周波加熱コイルへの電力の供給を停止させる電力停止指令信号を発する第5工程とからなるところにある。
【発明の効果】
【0015】
本発明の請求項1に係る高周波ろう付け装置または請求項2に係る高周波ろう付け方法では、アルミニウム材同士のろう付け部位をろう付けするに当り、放射温度計の仕様に基づいて設定した演算開始温度を含む基点から単位時間を経過する毎に、放射温度計による測定温度と演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値が演算される。前記積分値は、前記基点から現時点までの経過時間の間に、アルミニウム材のろう付け部位に対して供給された高周波加熱エネルギーに相当するものである。
【0016】
そして、前記高周波加熱エネルギーに相当する積分値を前記経過時間で除算して演算され、前記基点を始点とする前記単位時間を加味する一次関数の勾配は、各単位時間の測定温度の温度上昇直線毎の各勾配の平均的勾配となる。前記基点からの高周波加熱コイルによる加熱時間が、前記平均的勾配を用いた一次関数から求められた設定温度到達予想時間に到達すると、前記設定温度到達予想時間に到達した時点おける測定温度の如何に拘わらず、アルミニウム材のろう付け部位に対して、ろう付け設定温度になるのに必要な加熱エネルギーが供給されたことになるので、アルミニウム材のろう付け部位における実際の温度はろう付け設定温度に到達していることとなる。前記設定温度到達予想時間に到達した後、所定時間の後熱後に、高周波加熱コイルへの電力の供給が停止され、アルミニウム材同士のろう付けが終了する。
【0017】
従って、本発明の請求項1に係る高周波ろう付け装置または請求項2に係る高周波ろう付け方法によれば、放射温度計で測定される測定温度に基づいてアルミニウム材を高周波ろう付けするにも拘わらず、信頼性に優れたアルミニウム材からなるろう付け製品を製造することが可能になる。
【発明を実施するための最良の形態】
【0018】
以下、本発明の高周波ろう付け方法を実施する本発明の実施の形態に係る高周波ろう付け装置を、添付図面を順次参照しながら説明する。図1は本発明の実施の形態に係る高周波ろう付け装置の模式的構成説明図であり、図2は縦軸に放射温度計による測定温度をとり、横軸に加熱開始時からの加熱時間をとって示す高周波ろう付け装置によるろう付け制御説明図である。
【0019】
図1に示す符号1は、本発明の実施の形態に係る高周波ろう付け装置である。この高周波ろう付け装置1は、アルミニウム材6aと、このアルミニウム材6aに設けられた、図示しない嵌合穴に直角に嵌合され、嵌合側にリング状のろう材7が嵌着されてなるアルミニウム材6bとからなる、形態がT字型の被ろう付け材6のろう付け領域6cを加熱する、周知の構成になる高周波加熱コイル2を備えている。この高周波加熱コイル2には、前記ろう付け領域6cの温度を測定する放射温度計4から送信され続ける測定温度(温度信号)を受取る制御装置5によって制御される高周波加熱装置3から電力が供給されるように構成されている。
【0020】
前記制御装置5は、後述する複数の演算機能を備えている。即ち、この制御装置5は、図2に示すように、前記放射温度計4の仕様(測定温度範囲)に基づいて設定した演算開始温度Fsを含む基点Pから、予め設定された単位時間ΔXi(i=0〜n)を経過する毎に、単位時間ΔXiと、前記放射温度計4から入力される測定温度(温度サンプル)と演算開始温度Fsの温度差Fi(i=0〜n)とを順次乗算して乗算値(ΔXi・Fi)を演算すると共に、前記基点Pから現時点までの加熱時間Xi中に含まれる全ての乗算値(ΔXi・Fi)の積分値Si(i=0〜n)を求める第1演算作業を行う第1演算機能を備えている。前記積分値Siは、前記基点Pから現時点までの間に、被ろう付け材6のろう付け領域6cに供給される加熱エネルギーに相当するものである。
【0021】
なお、前記積分値Siを演算により求める演算手順を、下記のような演算手段に変えることができるので、この積分値Siを求める演算手段は、上記演算手順に限定されるものではない。即ち、前記基点Pから予め設定された単位時間ΔXiを経過する毎に、この単位時間ΔXi(例えば、0.1秒)が1であるとして、前記放射温度計4から入力される測定温度(温度サンプル)と演算開始温度Fsの温度差Fiを求める。次いで、前記基点Pから現時点までの温度差Fiの積分値を演算すると共に、演算により求められた温度差Fiの積分値に前記単位時間ΔXi(例えば、0.1秒)を乗算するようにしても、前記積分値Siと同値の被ろう付け材6のろう付け領域6cに供給される加熱エネルギーに相当する値を求めることができる。
【0022】
また、前記積分値Siを、前記基点Pから現時点までの経過時間Xi(=ΔXi×i)で除算して、前記基点Pを起点とする一次関数(F=aXi)の勾配aを求める第2演算作業を行う第2演算機能を備えている。この場合、前記積分値Siは、図2においてハッチングを施して示すように、時間軸である横軸側を底辺とする直角三角形の面積に相当するため、前記一次関数の勾配aは(2Si/Xi)の算式から求められる。
【0023】
前記勾配aを有する一次関数(F=aXi)を用いてろう付け設定温度Fnに達する設定温度到達予想時間Xkを求める第3演算作業を行う第3演算機能を備えている。さらに、前記第1演算作業乃至第3演算作業を順次繰返す第4演算作業を行うと共に、前記基点Pからの高周波加熱コイル2による加熱時間Xiと前記設定温度到達予想時間Xkとの長短を比較し、加熱時間Xiが設定温度到達予想時間Xkになった場合(Xi≧Xk)に、高周波加熱装置3に対して予め設定した所定時間の後熱後に、前記高周波加熱コイル2への電力の供給を停止させる電力停止指令信号を発する電力停止指令信号発信機能を備えている。
【0024】
ところで、本発明の実施の形態に係る高周波ろう付け装置1の場合は、放射温度計4として、放射率の影響をできるだけ少なくするために、300〜800℃の温度範囲を測定できる仕様のものを採用した。そこで、被ろう付け材6のろう付け領域6cの測定温度が300℃以下である場合には、測定温度は全て300℃と表示されると共に、300℃から320℃までの間の測定温度の支持値は必ずしも正確ではないため、基点Pの演算開始温度Fsを320℃と設定した。
【0025】
従って、前記基点Pの演算開始時間は、高周波加熱コイル2によるろう付け領域6cの加熱開始から、前記放射温度計4によるろう付け領域6cの測定温度が320℃に到達するまでの時間となる。なお、放射率の影響をそれなりに少なくすることができれば良い。
従って、測定温度範囲の仕様が300〜800℃の放射温度計でなければならないという訳ではないから、放射温度計の測定温度範囲の仕様に限定されるものではない。
【0026】
以下、上記構成になる本発明の実施の形態に係る高周波ろう付け装置1の作用態様を説明する。即ち、この高周波ろう付け装置1によれば、被ろう付け材6の第1アルミニウム材6aと、この第1アルミニウム材6aに設けた嵌合穴への第2アルミニウム材6bの嵌合位置のろう材7を高周波加熱コイル2による加熱により溶融させてろう付け部位をろう付けするに当り、先ず制御装置5により制御される高周波加熱装置3から高周波加熱コイル2に加熱用の電力の供給が開始される。電力の供給開始と同時に、放射性温度計4から前記制御装置5に被ろう付け材6のろう付け領域6cの測定温度が温度信号として送られる。そして、電力の供給開始からの経過時間と、前記放射性温度計4から送られる前記経過時間に対応する測定温度が、前記制御装置5に設けられてなる図示しないモニタの画面に表示される。
【0027】
前記高周波加熱コイル2による加熱の継続により、放射性温度計4で測定される被ろう付け材6のろう付け領域6cの測定温度が演算開始温度Fsである320℃になると、制御装置5により下記のとおりの演算が開始される。即ち、320℃を含む基点Pから単位時間ΔXiを経過する毎に、この単位時間ΔXiと、測定温度と前記演算開始温度の温度差Fiとが順次乗算されて乗算値(ΔXi・Fi)が演算されると共に、前記基点Pから現時点までの経過時間Xi中の各乗算値(ΔXi・Fi)の積分値Si(Si=ΣΔXi・Fi)が演算される。そして、この積分値Siを前記経過時間Xiで除算することにより、前記基点Pを始点とする一次関数(F=aXi)の勾配aが演算される。
【0028】
前記勾配aを用いた一次関数(F=aXi)からろう付け設定温度Fnに達する設定温度到達予想時間Xkが演算されると共に、上記各演算が順次繰返される。そして、前記基点Pからの加熱時間Xiが前記設定温度到達予想時間Xkに到達すると、前記制御装置5は、前記加熱時間Xiが設定温度到達予想時間Xkに到達した時点における放射温度計4からの測定温度の如何に拘わらず、被ろう付け材6のろう付け部位における実際の温度がろう付け設定温度Fnに到達したと判定する。
【0029】
つまり、前記制御装置5はろう付け設定温度Fnに達するに必要な加熱エネルギーが被ろう付け材6のろう付け部位に供給されたということを認識し、この認識に基づいて被ろう付け材6のろう付け部位の実際の温度がろう付け設定温度Fnに到達したと判定する。
前記加熱時間Xiが前記設定温度到達予想時間Xkに到達したと判定した制御装置5により、高周波加熱装置3に対して予め設定した所定時間(例えば、2.5秒程度)の後熱後に、高周波加熱コイル2への電力の供給を停止させる電力停止指令信号が発せられる。
そして、前記高周波加熱装置3からの高周波加熱コイル2への電力の供給が停止されると、被ろう付け材6のろう付け部位のろう付が終了することとなる。なお、被ろう付け材6のろう付け部位を後熱するのは、このろう付け部位にろうを良く回らせることにより、ろう付け部位に瑕疵のない信頼性に優れたろう付け製品を製造するためである。
【0030】
前記放射温度計4によって測定される被ろう付け材6のろう付け部位の測定温度は、その上昇過程において上昇状態が大きく変動するのに加えて、被ろう付け材6のアルミニウム材同士の寸法形状が同じであっても上昇状態が相違する。そのため、放射温度計4による測定温度がろう付け設定温度Fnに到達する加熱時間は大きくばらつく。
【0031】
しかしながら、本発明の実施の形態に係る高周波ろう付け装置1によれば、上記のとおり、ろう付け設定温度Fnに達するに必要な加熱エネルギーが被ろう付け材6のろう付け部位に供給されたという認識に基づいて、制御装置5によりろう付け部位の実際の温度がろう付け設定温度Fnに到達したと判定されて、高周波加熱装置3からの高周波加熱コイル2への電力の供給が停止される。従って、信頼性に優れたアルミニウム材からなるろう付け製品を製造することが可能になる。
【0032】
なお、本発明の実施の形態に係る高周波ろう付け装置1においては、加熱時間Xiが設定温度到達予想時間Xkに到達した場合に、被ろう付け材6のろう付け領域6cの温度がろう付け設定温度になったと判定するようにした。しかしながら、単位時間ΔXi毎に1つの測定温度の温度サンプルが取込まれるので、基点Pからの温度サンプル数が、演算で求められた温度サンプル数になった場合に、被ろう付け材6のろう付け領域6cの温度がろう付け設定温度になったと判定するようにすることができる。
【実施例】
【0033】
以下、添付図面の図3を参照しながら、本発明の実施の形態に係る高周波ろう付け装置1によって、被ろう付け材6のろう付け部位をろう付けした本発明の実施例を説明する。
図3は、モニタ画面に示されたものを図面化したもので、縦軸に放射温度計による測定温度(単位:℃)をとり、横軸に加熱開始時からの加熱時間(単位:×10−1s)をとって示すろう付け作業状況説明図である。この図3には、3個の被ろう付け材をろう付けした場合のろう付け部位の測定温度の上昇状態と、それぞれの測定温度の上昇状態に基づく、基点Pを起点とする一次関数が示されている。この場合、3個のろう付け部位の測定温度の上昇状態と一次関数は下記のとおりである。なお、この実施例における放射温度計による測定温度の単位時間ΔXiは0.1秒に設定されているが、特に0.1秒でなければならない訳ではなく、例えば0.1秒未満であっても、また0.2秒であっても良いので、単位時間ΔXiの設定秒間に限定されるものではない。
【0034】
(1)被ろう付け材A
測定温度の上昇状態は黒丸印で示され、一次関数Aは実線で示されている。
(2)被ろう付け材B
測定温度の上昇状態は黒四角印で示され、一次関数Bは破線で示されている。
(3)被ろう付け材C
測定温度の上昇状態は黒三角印で示され、一次関数Cは一点鎖線で示されている。
【0035】
図3によれば、被ろう付け材Aの場合、放射温度計で測定された測定温度がろう付け設定温度Fnに達する加熱時間Xaと、一次関数Aから求められるろう付け設定温度Fnに達する設定温度到達予想時間Xkはほぼ同じであるが、被ろう付け材B,Cの場合は相違している。即ち、被ろう付け材Bの場合は、放射温度計で測定された測定温度がろう付け設定温度Fnに達する加熱時間Xbは、一次関数Bから求められるろう付け設定温度Fnに達する設定温度到達予想時間Xkよりも0.2秒程度短く、被ろう付け材Cの場合は、放射温度計で測定された測定温度がろう付け設定温度Fnに達する加熱時間Xcは、一次関数Cから求められるろう付け設定温度Fnに達する設定温度到達予想時間Xkよりも0.8秒程度短くなっている。
【0036】
ところで、前記被ろう付け材Aの場合、上記のとおり、放射温度計4で測定された測定温度がろう付け設定温度Fnに達する加熱時間Xaと、一次関数Aから求められたろう付け設定温度Fnに達する設定温度到達予想時間Xkとはほぼ同じである。しかしながら、これは全くの偶然であると理解することができる。このことが全くの偶然であるということは、放射温度計で測定された測定温度の上昇状態がほぼ直線に近似しているということから容易に想定することができる。
【0037】
また、被ろう付け材A,Cの放射温度計で測定された測定温度のそれぞれがろう付け設定温度Fnに達する加熱時間Xaと加熱時間Xcとの相違は1.6秒程度であるのに対して、一次関数A,Cから求められるろう付け設定温度Fnに達する設定温度到達予想時間Xkの相違は0.7秒程度であり、加熱時間のばらつきが大幅(約0.9秒短縮)に改善されていることが分かる。
【0038】
改善された約0.9秒という時間は極めて短時間であって、被ろう付け材のろう付けにそれほど悪影響を与えないようにも考えられる。しかしながら、図3から良く理解されるように、これら被ろう付け材A,B,Cの場合、加熱開始からろう付けが完了するまでのろう付け所要時間は13.5秒程度であって7%程度に相当するから、約0.9秒という加熱時間の相違はろう付け製品の品質に対して大きな影響を及ぼすということができる。
【0039】
即ち、本発明の実施例によれば、被ろう付け材のろう付け部位の加熱時間不足が改善され、また加熱時間のばらつきが少なくなるため、アルミニウムろう付け製品の信頼性の向上に対して大いに寄与し得る効果が得られることが分かる。因みに、被ろう付け材A,B,Cろう付け状況を目視検査した結果、加熱時間不足によるろう材の溶け不足、ろう付け領域の隙間への浸透不足や、加熱時間超過によるろう付け領域6cの第1アルミニウム材と第2アルミニウム材の表面溶け、ろう材の垂れ流れ等の外観上の不具合はなく、被ろう付け材A,B,Cのろう付け部位のろう付け状態は、何れも極めて良好であった。
【0040】
なお、以上の実施の形態においては、形態がT字型の被ろう付け材6のろう付けに適用した場合を例として説明した。しかしながら、形態がT字型の被ろう付け材に限らず、例えば、アルミニウム材同士を直状にろうウ付けする被ろう付け材に対しても、本発明の高周波ろう付け装置を適用することができる。従って、特に形態がT字型の被ろう付け材への適用限定されるものではない。また、本発明の実施の形態に係る高周波ろう付け装置によれば、放射温度計による測定温度が安定しないアルミニウム材同士のろう付けに多大な効果を発揮することができるが、アルミニウム材以外の金属材料同士のろう付けに対しても適用することができるのは勿論である。
【図面の簡単な説明】
【0041】
【図1】本発明の実施の形態に係る高周波ろう付け装置の模式的構成説明図である。
【図2】縦軸に放射温度計による測定温度をとり、横軸に加熱開始時からの加熱時間をとって示す高周波ろう付け装置によるろう付け制御説明図である。
【図3】縦軸に放射温度計による測定温度をとり、横軸に加熱開始時からの加熱時間をとって示すろう付け作業状況説明図である。
【図4】アルミニウム材の放射温度計による測定温度の上昇状態説明図である。
【図5】従来例に係るろう付け装置を示すブロック図である。
【符号の説明】
【0042】
1…高周波ろう付け装置
2…高周波加熱コイル
3…高周波加熱装置
4…放射温度計
5…制御装置
6…被ろう付け材,6a…第1アルミニウム材,6b…第2アルミニウム材,6c…ろう付け領域
7…ろう材
a…一次関数の勾配
Fi…温度差
Fn…ろう付け設定温度
Fs…演算開始温度(320℃)
P…基点
Si…積分値
Xi…加熱時間
Xk…設定温度到達予想時間
ΔXi…単位時間

【特許請求の範囲】
【請求項1】
高周波加熱装置からの電力の供給により、アルミニウム材同士のろう付け部位を加熱する高周波加熱コイルを備え、前記ろう付け部位の温度を測定する放射温度計を備えると共に、前記放射温度計で測定された測定温度に基づいて前記高周波加熱装置を制御する制御装置を備えてなる高周波ろう付け装置において、前記制御装置は、前記放射温度計の仕様に基づいて設定した演算開始温度を含む基点から単位時間を経過する毎に、測定温度と前記演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値を求める第1演算作業と、前記積分値を前記経過時間で除算して前記基点を始点とする前記単位時間を加味する一次関数の勾配を求める第2演算作業と、前記勾配を用いた前記一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3演算作業と、前記第1演算作業乃至第3演算作業を順次繰返す第4演算作業を行うと共に、前記基点からの加熱時間が前記設定温度到達予想時間に到達した場合に、前記高周波加熱装置に対して予め設定した所定時間の後熱後に、高周波加熱コイルへの電力の供給を停止させる電力停止指令信号を発する電力停止指令信号発信機能を備えてなることを特徴とする高周波ろう付け装置。
【請求項2】
アルミニウム材同士のろう付け部位の温度を放射温度計で測定しながら、高周波加熱コイルにより加熱して前記ろう付け部位をろう付けする高周波ろう付け方法において、前記放射温度計の仕様に基づいて設定した演算開始温度を含む基点から単位時間を経過する毎に、前記放射温度計による測定温度と前記演算開始温度の温度差を求めると共に、前記基点から現時点までの経過時間中の各温度差の前記単位時間を加味する積分値を求める第1工程と、前記積分値を前記経過時間で除算して前記基点を始点とする前記単位時間を加味する一次関数の勾配を求める第2工程と、前記勾配を用いた一次関数からろう付け設定温度に達する設定温度到達予想時間を求める第3工程と、前記第1乃至3工程を順次繰返す第4工程と、前記基点からの加熱時間が前記設定温度到達予想時間に到達した場合に、前記高周波加熱装置に対して予め設定した所定時間の後熱後に、高周波加熱コイルへの電力の供給を停止させる電力停止指令信号を発する第5工程とからなることを特徴とする高周波ろう付け方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−262217(P2009−262217A)
【公開日】平成21年11月12日(2009.11.12)
【国際特許分類】
【出願番号】特願2008−117323(P2008−117323)
【出願日】平成20年4月28日(2008.4.28)
【特許番号】特許第4345033号(P4345033)
【特許公報発行日】平成21年10月14日(2009.10.14)
【出願人】(595034400)株式会社大進工業研究所 (2)
【出願人】(000233619)株式会社ニチリン (69)
【出願人】(592037217)サンライズ工業株式会社 (6)