説明

高性能液体クロマトグラフィにおける成分分別収集

【課題】液体クロマトグラフィにおけるサンプル収集の過程で生じる組成変化によるバンドの広がりを最小限に抑えることのできるシステムを提供する。
【解決手段】成分分別収集のためのシステム(100)は、第1の出力ポート(108)及び第2の出力ポート(110)を有する流体スイッチ(102)、及び制御デバイス(104)を含む。流体スイッチ(102)は、制御デバイス(104)によって、液体クロマトグラフィデバイスから受け取った流体流を第1の出力ポート(108)に向ける第1の状態、又は第2の出力ポート(110)に向ける第2の状態のいずれかになるように制御される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高性能液体クロマトグラフィの技術に関し、特に、サンプル成分を分別又は分離して取り出す技術に関する。
【背景技術】
【0002】
高性能液体クロマトグラフィは、物質をその成分イオン又は分子に分離することができる工程を含む。通常、その物質は溶媒に溶解され、ポンプによってカラムに流し込まれる。カラムは、「固定相」として知られている充填材料で満たされる。その溶液の種々の成分が、固定相との相互作用に起因して、異なる速度で固定相を通り抜ける。言い方を変えると、種々の成分が、様々な持続時間にわたって、カラム内に保持される。それゆえ、そのカラムから流出する流体の組成は時間に応じて変化するため、カラムから流出するときに、その溶液のサンプルを収集することによって、種々の成分を分離することができる。そのカラムの出力は、カラム流出液内の分析物の存在を検出するために、紫外線検出器のような検出器に提供することができる。
【0003】
検出器によって測定した後に、流出液は、出口が終端されている管の中に誘導され、その出口はドレーン上に向けられ得る。収集システムでは、その管から流出する流出液を収集するために、バイアル又は皿のような収集デバイスが出口の下に配置される。特定の収集デバイスについて、そのデバイスが満たされていた期間と(そして、通常は他のデータとも)関連付けるために、コンピュータシステムと検出器とがインタフェースされる。収集デバイスは、或る時間の経過後に充填エリアから取り出され、別の収集デバイスが出口の下に配置される。
【発明の開示】
【発明が解決しようとする課題】
【0004】
上記の方式にはいくつかの欠点がある。たとえば、収集デバイスが充填エリアから取り出されるとき、流出液は管から流れ続けており、次の収集デバイスが所定の場所に配置され、次のサンプルを収集するまで、ドレーン内にこぼれてしまう。それゆえ、ドレーン内にこぼれる量は無駄になる。そのような無駄を防ぐために、その管はバルブによって終端することができ、1つの収集デバイスが取り出され、別の収集デバイスが充填エリア内に配置されるまで、そのバルブが閉じられる。しかしながら、以下にさらに説明されるように、そのような方策はバンドの広がりを悪化させる。
【0005】
理想的には、収集デバイスが、時刻tとt+Δとの間に充填エリアに配置されるとき、収集デバイスの内容物は、Δの関数である組成変化を示す。言い換えると、Δに等しい時間の長さにわたって流出液を収集することによって、その収集デバイスは、Δに等しい時間の長さにわたって検出器から流出する流出液を混合する。バルブを導入することにより、さらに混合が引き起こされる。たとえば、バルブは大きな内容積を有することができ、実効的にはバルブ内にプールが生成され、その中で異なる時間からの流出液が混合する。さらに、バルブの機械的な動作が、予測できないように流出液を攪拌する傾向があり、それにより再びさらに混合される。それゆえ、所与の収集デバイスにおいて、組成変化の幅が広くなり、その影響はバンドの広がりとして知られている。バンドの広がりは正確な物質分析という目的には不利であり、それゆえ、バンドの広がりを最小限に抑えることが望ましい。
【0006】
したがって、本発明は、液体クロマトグラフィにおけるサンプル収集の過程で生じる組成変化の幅、すなわち、バンドの広がりを最小限に抑えることのできるシステムを提供することを目的とする。
【課題を解決するための手段】
【0007】
概略して、本発明は、1つの入力ポートと、複数の出力ポートと、どの出力ポートが使用状態であるかを決定する複数の状態とを有する流体スイッチを対象とすることができる。
【0008】
一つの特徴として、成分分別収集の方法は、分析物を含む流体流を第1の出力ポート及び第2の出力ポートを有する流体スイッチに与えることを含む。第1の出力ポート及び第2の出力ポートのうちの選択された方に分析物を選択的に向けるために、流体スイッチに方向指示流体が与えられる。その分析物は、選択された出力ポートから第1の収集デバイス内に収集される。第2の収集デバイスは、分析物が収集されている時間の少なくとも一部において、スイッチの選択されていない出力ポートの下に動かされる。
【0009】
他の特徴として、成分分別収集のためのシステムは、第1の出力ポート及び第2の出力ポートを有する流体スイッチを含む。流体スイッチは流体流入力ポートを経由して液体クロマトグラフィデバイスから流体流を受け取るように構成される。流体スイッチは、流体流が第1の出力ポートに向けられる第1の状態になるように、又は流体流が第2の出力ポートに向けられる第2の状態になるように制御されることができる。制御デバイスは、流体スイッチの状態を判定し、それにより、流体流が第1の出力ポートを経由して流体スイッチから流出するか、第2の出力ポートを経由して流体スイッチから流出するかを決定する。
【発明を実施するための最良の形態】
【0010】
以下に添付図面を参照して、本発明の最良の実施形態となるシステム及び方法について、詳細に説明する。なお、複数の図面を通して、同様に作用する部品及びアセンブリには同じ参照番号を付して示す。種々の実施形態を参照するが、本明細書に添付の特許請求の範囲はそれには限定されない。さらに、本明細書において述べられる全ての例は、添付の特許請求の範囲の数多くの実現可能な実施形態を限定することを意図するものではなく、実現可能な実施形態のいくつかを述べるにすぎない。
【0011】
図1は、連続した成分分別収集のためのシステム100を示す。そのシステム100は、流体スイッチ102と、制御デバイス104とを備える。図に示されるように、流体スイッチ102は、1つの入力ポート106と、2つの出力ポート108及び110とを備える。原理的には、流体スイッチ102は、任意の数の出力ポートを有することができるが、例示のために、本明細書では2つの出力ポート108及び110を含むものとして説明される。
【0012】
動作中、液体クロマトグラフからのカラム流出液が、流体スイッチ102を通して供給され(たとえば、ポンプで注入され)、入力ポート106を経由して流体スイッチ102に入る。その流出液は、第1の出力ポート108、第2の出力ポート110のいずれかを通ってスイッチから流出する。流出液が出力ポート108又は110のどちらから流出するかは、流体スイッチ102の状態によって決定される。流体スイッチ102の状態は、制御デバイス104によって判定することができる。したがって、流体スイッチ102の状態を判定することによって、制御デバイス104は、2つの出力ポート108又は110のどちらを使用状態にすべきか(すなわち、クロマトグラフ流出液が、出力ポート108又は110のどちらから流出することになるか)を選択する。たとえば、流体スイッチ102の状態は、流体スイッチ102の入力ポート106と出力ポート108及び110のうちの一方との間に圧力勾配が示されることによって判定することができる(これが如何に達成されるかを示す例示的な一実施形態が後に示される)。それゆえ、クロマトグラフ流出液は、圧力勾配によって決定される進路を進み、選択された出力ポート108又は110を経由して流体スイッチ102から流出する。
【0013】
連続成分分別収集を達成するために、図1のシステム100は以下のようにして用いることができる。制御デバイス104が、流体スイッチ102の状態を判定する。上記のように、制御スイッチ104によって、流体スイッチ102の入力ポート106と出力ポート108及び110のうちの一方との間に圧力勾配を示すことができる。それゆえ、クロマトグラフ流出液は、その圧力勾配によって決定される進路を進み、選択された出力ポート108又は110を経由して流体スイッチ102から流出する。たとえば、制御デバイス104は、流体スイッチ102を第1の状態にすると、第1の出力ポート108が使用状態になり、それは、スイッチ102に注入される流出液が第1の出力ポート108を経由して流出することを意味する。バイアル又は皿のような収集デバイス(図1には示されない)が、使用状態の出力ポートから流出する流出液を収集する場所に配置される(この例との関連では、使用状態のポートは第1の出力ポート108である)。たとえば、収集デバイスを、第1の出力ポート108の下(出力側)に配置することができる。
【0014】
上記の構成を仮定すると、クロマトグラフ流出液は、入力ポート106を通って流体スイッチ102に入り、第1の出力ポート108を経由して流出し、第1の出力ポート108に隣接する充填位置に配置される収集デバイスによって収集される。その収集デバイスは、1秒程度の短い時間にわたって、又は1秒よりも長い任意の時間にわたって、充填位置に留まることができ、その時間中に、収集デバイスは流体スイッチ102から流出液を受け取る。
【0015】
収集デバイスがクロマトグラフ流出液を受け取っている間の或る時点で、第2の収集デバイスが、第2の出力ポート110に隣接する充填位置に動かされる。第2の収集デバイスが第2の充填位置に配置された後に、制御デバイス104は流体スイッチ102を第2の状態にし、それにより第2の出力ポート110が使用状態になり、第1の出力ポート108が非使用状態になる。それゆえ、クロマトグラフ流出液が、入力ポート106を通って流体スイッチ102に入り、第2の出力ポート110を経由して流出し、第2の出力ポート110に隣接する充填位置に配置される第2の収集デバイスによって収集される。第2の収集デバイスがクロマトグラフ流出液を受け取っている間に、第1の収集デバイスがその充填位置から取り出され、第1の収集デバイスの代わりに、別の収集デバイスがその充填位置に戻される。その後、制御デバイス104は流体スイッチ102をその第1の状態に戻し、流出液が第1の出力ポート108を経由して流出する。こうして、流体スイッチ102は、第1の出力ポート−第2の出力ポート−第1の出力ポートの交互パターンでクロマトグラフ流出液を誘導するように制御することができる。
【0016】
上記の実施形態の効果は、クロマトグラフ流出液を連続して収集できることである。言い換えると、その流出液は常に、第1の出力ポート、又は第2の出力ポートのいずれかから収集されている。さらに、出力ポートが使用状態になる前に、収集デバイスが、出力ポートから流出液を受け取るために既に配置されているので、流出液は無駄にならない。最後に、切替を達成するために用いられるデバイスが流体スイッチ102であるので、その流出液は、その流れの攪拌作用又は他の摂動を引き起こす機械的な切替力を受けない。
【0017】
図2は、図1のシステム100の1つの実現可能な実施形態を示す。図1のシステムと同様に、図2のシステム200は、流体スイッチ202と、制御デバイス204とを備える。後に詳細に説明されるように、制御デバイス204は機械式スイッチであり、それを用いて、流体スイッチ202の状態が制御される。
【0018】
図2の流体スイッチ202は、「ディーンズスイッチ」の一つの型である。流体スイッチ202は、第1の切替ポート206と、第2の切替ポート208とを備える。第1の切替ポート206及び第2の切替ポート208はそれぞれ、チャネル210及び212によって、第1の出力ポート214及び第2の出力ポート216に接続される。こうして、チャネル210及び212によって、第1の切替ポート206及び第2の切替ポート208はそれぞれ、第1の出力ポート214及び第2の出力ポート216に流体連通する。
【0019】
流体スイッチ202は入力ポート218も含み、その中にクロマトグラフ流出液を送り込むことができる。入力ポート218はチャネル220及び222によって出力ポート214及び216にそれぞれ接続され、それゆえ、出力ポート214及び216のそれぞれに流体連通する。
【0020】
動作中に、クロマトグラフ流出液が、入力ポート218を経由して、流体スイッチ内に注入される。同時に、第1の切替ポート206、第2の切替ポート208のいずれかの中に、方向指示流体供給源224から方向指示流体を注入することができる。方向指示流体が第1の切替ポート206に注入されるものと仮定すると(図2の例に示されるように)、方向指示流体はチャネル210を経由して流体スイッチ202の中を流れ、方向指示流体の大部分は第1の出力ポート214において流体スイッチ202から流出する。しかしながら、方向指示流体は、クロマトグラフ流出液よりも高い圧力で、流体スイッチ202の中に注入されるので、方向指示流体のうちの相対的に少ない量が、第1の出力ポート214と入力ポート218とを相互接続するチャネル220を横断する。入力ポート218に達すると、方向指示流体はクロマトグラフ流出液と混合し、チャネル222を通って出力ポート216に向かってクロマトグラフ流出液を押し流し、クロマトグラフ流出液は第2の出力ポート216から流出する。当然ながら、同様の物理的な原理によって、方向指示流体を第2の切替ポート208に送り込むことにより、クロマトグラフ流出液を第1の出力ポート214に向かって誘導することができる。
【0021】
説明されたばかりの流体切替方式は高速且つ急峻な切替動作をもたらし、可動部品を含まない。さらに、比較的少ない方向指示流体流であっても、切替動作が生じるのに十分である。さらに、上記の切替方式は、300℃程度までの比較的高い温度まで有効である。
【0022】
図2のシステムには、図3の流れ図に示される方法を導入することができる。以下の説明では、図2及び図3の両方を参照する。図3に示されるように、方向指示流体は、動作300及び302においてそれぞれ示されるように、移動相流体を含む同じ容器から(すなわち、移動相流体が方向指示流体として用いられる)、又は個別の容器から(すなわち、方向指示流体は移動相流体と異なる化学組成を有することができる)、機械式スイッチ204に注入することができる。
【0023】
機械式スイッチ204には、制御信号が供給される(動作304)。機械式スイッチ204は、制御信号に応答して、方向指示流体が2つの出口のうちの1つに向けられる状態になるよう構成される(動作306)。言い換えると、方向指示流体が機械式スイッチ204の第1の出口に誘導されるべきであることを制御信号が指示する場合には、機械式スイッチ204の入力用ポートは、その第1の出口に接続される。一方、方向指示流体が機械式スイッチ204の第2の出口に誘導されるべきであることを制御信号が指示する場合には、機械式スイッチ204の入力用ポートは、その第2の出口に接続される。結果として、方向指示流体は、選択された出口を経由して、機械式スイッチ204から流出し、選択された出口に接続される切替ポート206又は208を経由して、流体スイッチ202に入る。
【0024】
一方では、動作308において示されるように、クロマトグラフ流出液を、供給源226から(たとえば、クロマトグラフから)、流体スイッチ202の入力ポート218に注入することができる。注目すべきは、方向指示流体が流体スイッチの中に注入される圧力が、クロマトグラフ流出液の圧力よりも高いことである。したがって、方向指示流体が、第1の切替ポート206を経由して、流体スイッチ202に入る場合には、先に述べられたように、方向指示流体の一部がチャネル210及びチャネル220を横断し、クロマトグラフ流出液と混合し、第2の出力ポート216を経由して、流体スイッチから流出する。一方、方向指示流体が、第2の切替ポート208を経由して、流体スイッチ202に入る場合には、方向指示流体の一部がチャネル212及び222を横断し、クロマトグラフ流出液と混合し、第1の出力ポート214を経由して、流体スイッチから流出する。こうして、動作310に示されるように、クロマトグラフ流出液が出力ポート214又は216のどちらを通って流体スイッチ202から流出するかは、方向指示流体がどちらの切替ポート206又は208から流体スイッチ202に入るかによって決定される(それはさらに、機械式スイッチ204の状態によって決定される)。
【0025】
選択された切替ポート206又は208から出た後に、動作312に示されるように、クロマトグラフ流出液は、収集デバイス228によって受け取られる。流出液で充填された後に、動作314に示されるように、収集デバイス228が、ロボットアームのような配列デバイスに運ばれる(たとえば、トラックシステムによる)。配列デバイスは収集デバイス228を受け取り、他の収集デバイスに対して相対的に、その収集デバイス228が満たされた時刻を表示する、トレイ上の場所のような、或る場所に収集デバイス228を配置する(動作316)。たとえば、配列デバイスは、最初に満たされた収集デバイスがトレイの左上角を占めるという方式に従って、収集デバイス228を配置することができる。上記の最初に満たされたデバイスの右隣の位置を占める収集デバイスは、2番目に満たされた収集デバイスであり、それ以降も同様である。一方では、収集デバイス228が、使用状態の出力ポートから流出する流出液を受け取っている間に、別の収集デバイスが、非使用状態の出力ポートに対応する充填位置に運ばれる(動作318)。
【0026】
図4は、図2のシステム200を使用した装置の構成の一実施形態を示す。図4に示す構成では、流体スイッチ202と、機械式スイッチ204とが設けられる。この実施形態は、移動相液体を液体クロマトグラフィカラム402の入力ポートに送り込むポンプ400をさらに備える。カラムに注入する前に、分析されるべき物質が移動相流体に溶解される。カラム402からの流出液は、紫外線検出器のような検出器404の中に送り込まれ、最終的には、図2及び図3を参照して説明されたように、成分分別収集のための流体スイッチ202に与えられる。
【0027】
図4に示されるように、機械式スイッチ204に注ぎ込む入力線406は、ポンプ400からカラム402に移動相流体を送り込む管408から分岐する(tap)(「T字路を形成する」)。それゆえ、図4の実施形態によれば、機械式スイッチは方向指示流体として移動相流体を用いる。この構成は、移動相流体を2つの用途に利用し、ただ1つのポンプ400しか必要としないという利点を有する。一方、移動相流体とは化学組成の点で異なる方向指示流体の個別の供給源を用いることもでき、その場合には、そのシステムは、機械式スイッチ204に方向指示流体を運ぶために第2のポンプを利用することができる。そのような構成は、たとえば、移動相流体がスイッチ204にとって有害である化学組成から成るときに、好ましいであろう。
【0028】
また、図4には(第1の)ドレーン410も示される。ドレーン410は、第1の出力ポート214の下に配置されるように示される(図2を参照して説明される例との関連では、非使用状態の出力ポートである)。したがって、出力ポートの下の充填位置から収集デバイスを取り出した後で、且つ新たな収集デバイスを導入する前の期間に、第1の出力ポート214から流出する方向指示流体はドレーン410によって受け取られる。図4には示されないが、第2の出力ポート216の下に第2のドレーンが配置される。出力ポートが使用状態であるとき、収集デバイス412がドレーンと流体スイッチ202との間に置かれる。
【0029】
図5は、成分分別収集のための制御システム500の構成の一実施形態を示す。制御システム500は平面図にして概略的に示される。制御システム500は、先に説明されたように、流体スイッチ502と、流体スイッチ502の状態を制御する制御デバイス504とを備える。黒丸506及び508は、流体スイッチ502の出力ポートを表す。
【0030】
トラックシステム510が、流体スイッチ502の出力ポート506及び508を行き来して収集デバイス512〜516を搬送する。トラックシステム510は2つのブランチを備える。第1のブランチ518は第1の出力ポート506を行き来して収集デバイスを搬送し、第2のブランチ520は第2の出力ポート508を行き来して収集デバイスを搬送する。
【0031】
図5の制御システム500は、図3の方法の原理に従って動作する。図3から明らかなように、第1の収集デバイス514が充填場所に配置され、流体スイッチ502から流出液を受け取る。同時に、第2(充填済み)の収集デバイスが、第2の出力ポート508から離れるように搬送されており、第3の収集デバイス512が、そのポート508に向かって搬送されている。したがって、図5に示される時点では、ブランチ518が静止するように制御され、ブランチ520が移動中である。
【0032】
第1のシーケンサ522及び第2のシーケンサ524が、第1のブランチ518と第2のブランチ520とが交差する場所に隣接して配置される。第1のシーケンサ522によって、収集デバイス(たとえば収集デバイス512)が、トラックシステム510の第1のブランチ518又は第2のブランチ520のいずれかを選択的に横断する。第2のシーケンサ524は、第1のブランチ518又は第2のブランチ520から収集デバイスを戻すのを助ける。
【0033】
図5の制御システム500はコンピューティングシステム526を備える。コンピューティングシステム526は、単一のコンピュータとして、又は以下に記述される結果を達成するために互いに協動する複数のコンピュータとして具現することができる。
【0034】
コンピューティングシステム526は1つ又は複数の入力/出力(I/O)チャネル528を備えており、それにより、コンピュータシステム526と、第1のシーケンサ522、第2のシーケンサ524、制御デバイス504及び液体クロマトグラフ530との間でデータ及び制御信号を通信できるようになる。たとえば、コンピューティングシステム526は、コンピューティングシステムを、上記のデバイスも接続されるローカルエリアネットワーク(LAN)に接続するネットワークインターフェースカード(NIC)を備えることができる。そのような一実施形態によれば、コンピューティングシステム526及び上記のデバイスはLANを経由して通信する。別法では、各デバイスを、コンピューティングシステム526内のI/Oバスに接続される対応する周辺カードに接続することができる。こうして、コンピューティングシステム526は、或る特定の周辺カードに、それゆえ特定のデバイスにI/Oコマンドを指示することによって所与のデバイスと通信する。デバイスと通信するための他の方式も知られており、本発明の開示範囲内に含まれる。
【0035】
コンピューティングシステム526は、制御信号を、制御デバイス504に、並びに第1のシーケンサ522及び第2のシーケンサ524に送信する。コンピューティングシステム526は、制御デバイス504が或る動作を実行し、結果として、流体スイッチ502が所望の状態に遷移するようにするために、制御デバイス504に制御信号を与えるようにプログラミングされる。たとえば、一実施形態によれば、制御デバイス504は図2を参照して説明されるように構成されるスイッチであり、コンピューティングシステム526は、スイッチ504が方向指示流体を所望の切替ポートに運ぶために、スイッチ504に第1の制御信号を送信する。こうして、コンピューティングシステム526は流体スイッチ502の状態を制御する。
【0036】
コンピューティングシステム526は、任意のタイミング方式に従って、流体スイッチの状態を制御するようにプログラミングすることができる。たとえば、コンピューティングシステム526によって、流体スイッチは、第1の状態−第2の状態−第1の状態のタイプのパターンにおいて、規則的な間隔で第1の状態と第2の状態との間で交互に切り替わることができる。別の例によれば、或る特定の収集デバイスが、或る特定の時点でクロマトグラフから流出した流出液を受け取るように、コンピューティングシステム526によって、不規則な間隔で状態を遷移させることができる。
【0037】
コンピューティングシステム526は、第1のシーケンサ522及び第2のシーケンサ524にも制御信号を送信する。それゆえ、コンピューティングシステム526によって、収集デバイス(たとえば512)が、トラックシステム510の一方のブランチ(たとえばブランチ520)を横断するが、他方のブランチ(たとえばブランチ518)は、収集を行うことができるようにするために静止したままである。
【0038】
コンピューティングシステム526は、内部クロックを作動して、所与の収集デバイス512〜516が流体スイッチから流出液を受け取る期間(充填時間)を記録する。またコンピューティングシステム526は、液体クロマトグラフ530からもデータを受信し、そこからのデータを組み合わせて、各収集デバイスに対応するデータレコードを作成する。たとえば、コンピューティングシステムは、数あるデータの中でも、保持時間及び充填時間を各収集デバイスに関連付けることができる。
【0039】
流出液で満たされた後に、収集デバイス512〜516は、トラックシステム510によって、ロボットアームのような配列デバイス534まで搬送される。配列デバイス534は収集デバイス512〜516を受け取り、他の収集デバイスに対して相対的に、特定の収集デバイスが満たされた時刻を表示するトレイ536上の場所に、収集デバイス512〜516を配置する。たとえば、配列デバイス534は、最初に満たされた収集デバイスがトレイの左上角を占めるという方式に従って、収集デバイスを配置することができる。上記の最初に満たされたデバイスの右隣の位置を占める収集デバイスは、2番目に満たされた収集デバイスであり、それ以降も同様である。
【0040】
本明細書において示される流体スイッチの実施形態は、高性能液体クロマトグラフィとともに用いられるものとして説明されてきた。しかしながら、そのスイッチの用途は、そのように用いることには限定されない。そのスイッチは、流体が収集される必要がある任意の環境において用いることができる。
【0041】
コンピューティングシステム526によって実行されるものとして説明される実施形態、又はデータの制御及び操作の方法として別のやり方で説明される実施形態の態様は、ハードウエア、ファームウエア及びソフトウエアのうちの1つ、又はそれらの組み合わせにおいてインプリメントすることができる。それらの実施形態は、本明細書に記述される動作を実行するために少なくとも1つのプロセッサによって読み出され、実行されることができる、機械読取り可能媒体上に格納される命令としてインプリメントすることもできる。機械読取り可能媒体は、機械(たとえば、コンピュータ)によって読取り可能な形態の情報を格納又は送信するための任意の機構を含むことができる。たとえば、機械読取り可能媒体は、リードオンリーメモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、光学記憶媒体、フラッシュメモリデバイス、電気的、光学的、音響的又は他の形態の伝搬される信号(たとえば、搬送波、赤外線信号、デジタル信号等)等を含むことができる。
【0042】
上記の種々の実施形態は、単なる例示として与えられており、本明細書に添付の特許請求の範囲を限定するように解釈されるべきではない。本明細書において図示及び説明される例示的な実施形態及び応用形態に従うことなく、且つ添付の特許請求の範囲の真の精神及び範囲から逸脱することなく、種々の変更及び変形を行うことができることは当業者には容易に理解されよう。
【0043】
上述の実施形態に即して、本発明を説明すると、本発明は、第1の出力ポート(108)及び第2の出力ポート(110)を有する流体スイッチ(102)であって、流体流入力ポート(106)を経由して液体クロマトグラフィデバイス(402)から流体流を受け取るように構成され、流体流が第1の出力ポート(108)に向けられる第1の状態になるように、又は流体流が第2の出力ポート(110)に向けられる第2の状態になるように制御されることができる、流体スイッチと、流体スイッチ(102)の状態を判定し、それにより、流体流が第1の出力ポート(108)を経由して流体スイッチから流出するか、第2の出力ポート(110)を経由して流体スイッチから流出するかを決定する制御デバイス(104)とを備えることを特徴とする、成分分別収集のためのシステムを提供する。
【0044】
好ましくは、制御デバイス(104)は、第1の出口及び第2の出口を有する機械式スイッチ(204)を備え、機械式スイッチ(204)の第1の出口は流体スイッチ(202)の第1の切替ポート(206)に接続され、機械式スイッチ(204)の第2の出口は流体スイッチ(202)の第2の切替ポート(208)に接続され、機械式スイッチ(204)は、方向指示流体を、機械式スイッチ(204)の第1の出口及び第2の出口のうちの選択された方に選択的に誘導するように構成される。
【0045】
好ましくは、流体スイッチ(202)は、方向指示流体が第1の切替ポート(206)によって受け取られる時間中に、分析物を含む流体流を第2の出力ポート(216)に誘導するように構成され、且つ方向指示流体が第2の切替ポート(208)によって受け取られる時間中に、分析物を含む流体流を第1の出力ポート(214)に誘導するように構成される。
【0046】
好ましくは、流体スイッチは、第1の切替ポート(206)と第1の出力ポート(214)と流体連通するチャネル(210)と、第2の切替ポート(208)と第2の出力ポート(216)と流体連通するチャネル(212)と、流体流入力ポート(218)と、流体流入力ポート(218)と第1の出力ポート(214)と流体連通するチャネル(220)と、流体流入力ポート(218)と第2の出力ポート(216)と流体連通するチャネル(222)とを、さらに備える。
【0047】
好ましくは、空の収集デバイス(512)の供給源と、空の収集デバイスのうちの1つ(514)を第1の出力ポート(506)又は第2の出力ポート(508)のうちの選択された方の近くに動かすように構成される搬送システム(510)とを、さらに備える。
【0048】
好ましくは、収集デバイス(512)はバイアル又は皿を含む。
【0049】
好ましくは、流体スイッチ(102)に接続される液体クロマトグラフィデバイス(402)を、さらに備える。
【0050】
好ましくは、収集デバイス(516)を、他の収集デバイス(514)に対して相対的に、収集デバイス(516)が満たされた時刻を表示する物理的な場所に誘導するように構成されるシーケンサ(524)を、さらに備える。
【0051】
好ましくは、シーケンサ(524)は、収集デバイス(516)を、収集バイアルの逐次的な列内の場所に誘導するように構成される。
【0052】
好ましくは、信号を生成するように構成されるコントローラ回路(526)をさらに備え、制御デバイス(504)は、信号に基づいて、流体スイッチ(502)の状態を判定するように構成される。
【図面の簡単な説明】
【0053】
【図1】本発明の実施形態となる、連続成分分別収集を行うためのシステム構成を示す概略図である。
【図2】図1のシステム構成をさらに具体化した、連続成分分別収集を行うためのシステム構成を示す概略図である。
【図3】図2のシステムに適用可能な、連続成分分別収集を実行する方法を示す流れ図である。
【図4】図2のシステムを含む装置構成の全体を例示的に示す概略図である。
【図5】図3の方法によって動作する制御システムの実施形態を示す概略図である。
【符号の説明】
【0054】
100 システム
102 流体スイッチ
106 入力ポート
108 第1の出力ポート
110 第2の出力ポート
200 システム
204 制御デバイス
206 第1の切替ポート
208 第2の切替ポート
214 第1の出力ポート
216 第2の出力ポート
218 入力ポート
226 (流出液)供給源
228 収集デバイス
410 ドレーン
412 収集デバイス
500 制御システム
504 制御デバイス
510 トラックシステム

【特許請求の範囲】
【請求項1】
第1の出力ポート及び第2の出力ポートを有する流体スイッチであって、流体流入力ポートを経由して液体クロマトグラフィデバイスから流体流を受け取るように構成され、該流体流が前記第1の出力ポートに向けられる第1の状態になるように、又は前記流体流が前記第2の出力ポートに向けられる第2の状態になるように制御されることができる、流体スイッチと、
前記流体スイッチの状態を判定し、それにより、前記流体流が前記第1の出力ポートを経由して前記流体スイッチから流出するか、前記第2の出力ポートを経由して前記流体スイッチから流出するかを決定する制御デバイスと
を備えることを特徴とする、成分分別収集のためのシステム。
【請求項2】
前記制御デバイスは、第1の出口及び第2の出口を有する機械式スイッチを備え、該機械式スイッチの前記第1の出口は前記流体スイッチの第1の切替ポートに接続され、前記機械式スイッチの前記第2の出口は前記流体スイッチの第2の切替ポートに接続され、前記機械式スイッチは、方向指示流体を、前記機械式スイッチの前記第1の出口及び前記第2の出口のうちの選択された方に選択的に誘導するように構成されることを特徴とする、請求項1に記載の成分分別収集のためのシステム。
【請求項3】
前記流体スイッチは、前記方向指示流体が前記第1の切替ポートによって受け取られる時間中に、分析物を含む前記流体流を前記第2の出力ポートに誘導するように構成され、前記方向指示流体が前記第2の切替ポートによって受け取られる時間中に、前記分析物を含む前記流体流を前記第1の出力ポートに誘導するように構成されることを特徴とする、請求項2に記載の成分分別収集のためのシステム。
【請求項4】
前記流体スイッチは、
前記第1の切替ポートと前記第1の出力ポートと流体連通するチャネルと、
前記第2の切替ポートと前記第2の出力ポートと流体連通するチャネルと、
流体流入力ポートと、
前記流体流入力ポートと前記第1の出力ポートと流体連通するチャネルと、
前記流体流入力ポートと前記第2の出力ポートと流体連通するチャネルと
をさらに備えることを特徴とする、請求項2に記載の成分分別収集のためのシステム。
【請求項5】
空の収集デバイスの供給源と、
前記空の収集デバイスのうちの1つを前記第1の出力ポート又は前記第2の出力ポートのうちの選択された方の近くに動かすように構成される搬送システムと
をさらに備えることを特徴とする、請求項1に記載の成分分別収集のためのシステム。
【請求項6】
前記収集デバイスは、バイアル又は皿を含むことを特徴とする、請求項5に記載の成分分別収集のためのシステム。
【請求項7】
前記流体スイッチに接続される液体クロマトグラフィデバイスをさらに備えることを特徴とする、請求項1に記載の成分分別収集のためのシステム。
【請求項8】
収集デバイスを、他の収集デバイスに対して相対的に、該収集デバイスが満たされた時刻を表示する物理的な場所に誘導するように構成されるシーケンサをさらに備えることを特徴とする、請求項1に記載の成分分別収集のためのシステム。
【請求項9】
前記シーケンサは、前記収集デバイスを収集バイアルの逐次的な列内の場所に誘導するように構成されることを特徴とする、請求項8に記載の成分分別収集のためのシステム。
【請求項10】
信号を生成するように構成されるコントローラ回路をさらに備え、前記制御デバイスは、前記信号に基づいて、前記流体スイッチの状態を判定するように構成されることを特徴とする、請求項1に記載の成分分別収集のためのシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2007−187663(P2007−187663A)
【公開日】平成19年7月26日(2007.7.26)
【国際特許分類】
【出願番号】特願2007−4582(P2007−4582)
【出願日】平成19年1月12日(2007.1.12)
【出願人】(399117121)アジレント・テクノロジーズ・インク (710)
【氏名又は名称原語表記】AGILENT TECHNOLOGIES, INC.
【住所又は居所原語表記】5301 Stevens Creek Boulevard Santa Clara California U.S.A.
【Fターム(参考)】