説明

イムラ アメリカ インコーポレイテッドにより出願された特許

21 - 30 / 65


【課題】高エネルギピコ秒、ナノ秒パルス用ファイバベース光源の構築を目的とする。
【解決手段】ファイバ増幅器での非線形エネルギ制限を最小化することで、光ファイバの損傷閾値に近いパルスエネルギが発生され得る。少なくとも一つの非線形ファイバ増幅器を含む増幅器チェーンと共に最適化されたシード光源を実施することは、バンド幅制限近い高エネルギピコ秒パルスの発生を可能にする。高エネルギパルス化されるファイバ増幅器の最適化シード光源は、半導体レーザも伸長モードロックファイバレーザも含む。ファイバ増幅器から得られるパルスエネルギの最大化は、さらに高繰り返し周期で高エネルギ紫外、赤外パルスの発生を可能にする。 (もっと読む)


パルス状レーザを用いて透明な基板上にパターンを形成する方法が開示される。様々な実施形態は、極短パルス状レーザ、レーザ波長に透明な基板、及びターゲット板を含む。レーザビームは、透明基板を介してターゲット表面に集光される。ターゲット材料は、レーザによって剥離され、対向する基板表面に堆積される。パターンは、例えばグレイスケールであり、ターゲットに対するレーザビームの走査によって形成される。レーザビーム走査速度及び走査線密度の変化によって、材料堆積を制御し、堆積したパターンの光学性質を変化させ、グレイスケールの色彩効果を生成する。いくつかの実施形態において、パターンは、製造工程の間にマイクロ電子デバイスの一部に形成するようにすることができる。いくつかの実施形態において、高繰り返し率ピコ秒及びナノ秒ソースは、パターンを形成するように構成される。
(もっと読む)


本発明は、光撮像のための走査パルスレーザシステムに関する。コヒーレントデュアル走査レーザシステム(CDSL)とその適用例を開示する。高集積化構成を含む種々の実施例について例示する。少なくとも一実施形態において、コヒーレントデュアル走査レーザシステム(CDSL)は、2つの受動的モードロックファイバ発振器を備える。発振器は、繰り返し率の差δfrが発振器の繰り返し率の値fr1及びfr2と比較して小さくなるように、わずかに異なる繰り返し率で動作するように構成される。また、CDSLシステムは、各発振器に光接続された非線形周波数変換部を備える。変換部は、あるスペクトル帯域幅を有し、前記発振器の繰り返し率の高調波からなる周波数コムを有する周波数変換スペクトル出力を発生させる非線形光学素子を備える。CDSLは、光撮像、顕微鏡検査法、顕微分光法、及び/又は、THz撮像のうちの1以上のための撮像システムに配置することができる。
(もっと読む)


様々な実施の形態は、超高速パルスレーザアブレーションによって、化学純な且つ安定して分散された金属及び金属合金ナノ粒子コロイドを生成する方法を含む。この方法は、液体に沈められた金属又は金属合金ターゲットを、高繰返率の超短レーザパルスによって照射し、照射された領域を含む液体の一部を冷却し、レーザ照射及び液体の冷却によって生成されたナノ粒子を収集する。この方法は、高繰返率の超高速パルスレーザ発生源と、パルスレーザビームを集光し、移動させる光学系と、液体に沈められた金属又は金属合金ターゲットと、レーザ焦点体積を冷却し、ナノ粒子生成物を収集する液体循環装置とによって実行されてもよい。様々なレーザパラメータを制御することによって、オプションの液体の流れの振動によって、この方法は、分散された金属及び金属合金ナノ粒子の安定したコロイドを提供する。様々な実施の形態において、更なる安定化化学物質は、必要とされない。
(もっと読む)


【課題】 高いパルス伸長率と圧縮率を有する生産性の良いファイバチャープパルス増幅器システムを提供することにある。
【解決手段】 短光パルスを発生する種パルス光源、パルスを伸長する伸長器、及び複数の鎖状につながった偏光を保持しているファイバ区分とからなり、その偏光保持ファイバの少なくとも1つは増幅器であるチャープパルス増幅システムにより、課題が達成される。 (もっと読む)


ここで説明する様々な実施形態は、レーザ及び/又は増幅器装置であって、リンケイ酸ガラス中にイッテルビウムイオンを有するドープ利得ファイバ(1404)を含む。ここで説明する様々な実施形態は、ポンプ吸収を少なくとも約1000dB/m〜9000dB/mに増加させる。利得ファイバの使用は、増加したピークパワー及び/又はパルスエネルギーの増加を提供する。リンケイ酸ガラス中にイッテルビウムイオンを有するドープ利得ファイバ(1404)の様々な実施形態は、イッテルビウムドープシリカファイバの等価ドープレベルで得られる光黒化レベルと比較して光黒化レベルを低減することが示される。
(もっと読む)


形成されたフィルム形態をナノ粒子塊のものから粒子およびドロップレットの無い平滑な薄膜に連続的に調整することが可能なパルスレーザー蒸着(PLD)の方法。発明の様々な実施形態を使って合成されることができる材料は、金属、合金、酸化金属および半導体を含むが、それらに限定はされない。様々な実施形態において、超短パルスレーザーアブレーションおよび蒸着の「バースト」モードが提供される。フィルム形態の調整は、各バースト内のパルス数およびパルス間の時間間隔、バースト繰り返しレート、およびレーザーフルエンスのようなバーストモードパラメータを制御することによって達成される。システムは、超短パルスレーザーと、適切なエネルギー密度でターゲット表面上にフォーカスされたレーザーを配送するための光学システムと、その中にターゲットおよび基板が設置され背景ガスとそれらの圧力が適切に調節された真空チェンバーと、を含む。
(もっと読む)


【課題】 フェムト秒台の高出力光パルスを発生させる手段を提供すること。
【解決手段】 本発明の高出力光パルスの発生装置は、信号光を生成するファイバー発振器10と、非線形位相遅れをもち信号光を受光して増幅するとともに圧縮するソリトン・ラマン圧縮器(SRC)を兼ねた増幅ファイバー11と、増幅された光パルスを周波数変換して高出力光パルスとする周波数変換器であるPPLN(周期性ポーリングLiNbO3)20とを有する。分散補償ファイバー18により分散が補償される。また、ファラデー回転鏡(FRM)19により光パルスが反射されてダブルパス形態を取っている。ポンプ16から注入されるポンプ光からのエネルギーを得て、信号光は増幅されるとともに圧縮され、PPLN周波数変換器20により周波数変換された波長で、フェムト秒台の高出力光パルスが得られる。 (もっと読む)


様々な実施例を使用して、加工の処理能力及び/又は品質の改善を実現しながら、加工物のターゲット材料をレーザベースで変質させることができると有利である。加工方法の実施例は、十分に高いパルス繰返し率で加工物のある領域にレーザパルスを集束させて誘導し、従ってこの領域から材料を効率的に除去し、この領域内、領域近傍、又はその両方の望ましくない材料の量を、より低い繰返し率で得られる量に対して低減させることを含むことができる。少なくとも1つの実施例では、極短パルスレーザシステムがファイバ増幅器又はファイバレーザのうちの少なくとも1つを含むことができる。様々な実施例が、半導体基板の上又は内でダイシング、切削、スクライビング、及びフィーチャ形成のうちの少なくとも1つを行うのに適している。加工物材料はまた、フェムト秒及び/又はピコ秒のパルス、幾つかの実施例では最高数ナノ秒のパルス幅を用いて微細機械加工すべき金属、無機若しくは有機誘電体、又は任意の材料を含むことができる。
(もっと読む)


光学的に透明な材料の超短パルスレーザ処理のための方法、デバイス、及びシステムが、スクライビング、マーキング、溶接、及び接合における例示的な用途に関して開示される。例えば、超短レーザパルスは、材料にわたるレーザビームの1回のパスによってフィーチャをスクライブし、スクライブフィーチャの少なくとも1つのフィーチャは材料の表面下に形成される。超短パルスレーザ処理条件をわずかに修正することによってサブ表面マークを生成する。適切に配列されると、これらのマークは正しく位置合わせされた照明によって明瞭に見える。反射マークもまた、レーザパラメータの制御によって形成される可能性がある。ガラス以外の透明材料を使用し得る。透明材料を溶接する方法は超短レーザパルスを使用して局在化した加熱を通して接合を生成する。透明材料処理の一部の実施形態では、多焦点ビーム発生器は透明材料に対して深さ方向に離間した複数のビームウェストを同時に形成し、それにより処理速度を高める。
(もっと読む)


21 - 30 / 65