説明

Fターム[2F067MM02]の内容

波動性又は粒子性放射線を用いた測長装置 (9,092) | 分光 (25) | E−H偏向  (7)

Fターム[2F067MM02]に分類される特許

1 - 7 / 7


【課題】検査装置の検査情報とレビュー装置で取得した観察情報とを用い、欠陥の高さ、屈折率、材質の情報を取得して欠陥材質・屈折率分析や、微細なパターン形状の三次元解析を行う方法、並びにこれを搭載した欠陥観察装置を提供する。
【解決手段】試料上の欠陥を観察する方法において、光が照射された試料からの反射・散乱光を受光した検出器からの検出信号を処理して検出した検査結果の情報を用いて観察対象の欠陥が存在する位置を走査電子顕微鏡で撮像して画像を取得し、この取得した観察対象の欠陥の像を用いて欠陥のモデルを作成し、作成された欠陥のモデルに対して光を照射したときに欠陥モデルから発生する反射・散乱光を検出器で受光した場合のこの検出器の検出値を算出し、この算出した検出値と実際に試料からの反射・散乱光を受光した検出器の検出値とを比較して観察対象の欠陥の高さ又は材質又は屈折率に関する情報を求めるようにした。 (もっと読む)


【課題】
本発明の目的は,試料の実際のパターンエッジ端に即した輪郭線情報を出力する電子顕微鏡システムを提供することにある。
【解決手段】
電子顕微鏡像のパターンエッジの各点において,パターンエッジに対して接線方向に該電子顕微鏡像を投影して局所投影波形を生成し,各点で生成した局所投影波形を,予め作成しておいた,試料の断面形状と電子線信号波形とを関連づけるライブラリに当てはめることによって,試料上に転写されたパターンの断面形状を推定し,断面形状に則したエッジ端の位置座標を求め,この位置座標の連なりとしてパターンの輪郭線を出力する。 (もっと読む)


【課題】2段電子線バイプリズム干渉計は1段での電子線バイプリズム干渉計に、飛躍的な自由度の増加を与える光学系であるが、フィラメント電極によって作られる電子線ホログラムの形状の1次元性、さらに干渉領域幅の方向と干渉縞の方位に関しては、1段電子線バイプリズム光学系と同じであった。すなわち、干渉領域幅はフィラメント電極の方向に一致してその長方向が定まり、干渉縞の方位は、干渉領域幅の長方向に一致かつ平行するのみであった。
【解決手段】上、中、下3段電子線バイプリズムを持った構造とするとともに、これら3段電子線バイプリズムのフィラメント電極間のアジムス角Φを操作することにより、干渉領域とその中に形成される干渉縞の方位角θを任意にコントロール可能とすることに加えて、フレネル縞発生の抑制と干渉縞間隔sと干渉縞の方位角θの独立したコントロールを可能とする。 (もっと読む)


【課題】ミラー電子を使った電子線式検査装置においては、ウェハ上で予備帯電された領域の境界が像となって現れてしまい、正しい検査ができなかった。また、予備帯電は検査と同時に行われるため、照射時間を長くする必要がある場合、ステージの移動速度を遅くせざるを得ず、検査速度が遅くなってしまっていた。
【解決手段】予備照射のビーム源とウェハとの間に、そのサイズが可変な開口を設け、その大きさの一辺をウェハのチップ列の幅と等しくなるように設定し、かつ、チップ列と垂直方向へのウェハの動きに合わせて、開口も移動するように制御する。また、ステージの移動速度を遅くすること無く、ウェハの検査時のステージ移動途中に十分なビーム照射ができるように、その開口をチップ列と平行な方向に大きくするよう設定できるようにした。 (もっと読む)


【課題】 荷電粒子線応用装置及び測長装置などにおける所要の倍率範囲における倍率誤差を小さくする。
【解決手段】試料に対する倍率を実測した第1の画像を記録し、試料に対する倍率が未知の第2画像を記録し、画像解析を用いて第1の画像に対する第2の画像の倍率を解析することによって、試料に対する第2の画像の倍率を実測する。以後、第2の画像を第1の画像として上記倍率解析を繰り返す事により、全倍率範囲において倍率を実測する。全倍率範囲で試料に対する画像の倍率を実測して校正することにより、倍率誤差を一桁小さくすることができる。 (もっと読む)


【課題】 同一寸法校正パターンへの位置決めを可能にする。
【解決手段】 不連続な格子状の寸法校正パターン26とその近傍に特定の位置決め用アライメントパターンを形成する。 (もっと読む)


【課題】
SEMの2次電子画像信号量の傾斜角依存性を利用して平坦な面や垂直に近い面についても高精度な立体形状計測を可能にしたSEMによる立体形状計測方法およびその装置を提供することにある。
【解決手段】
本発明は、被計測対象パターンにおいて傾斜角変化に対して感度が低い領域(平坦部領域)a、c1については、チルト像取得部1521で観察方向φ(2)からチルト像(チルト2次電子画像)I(2)を取得し、形状計測部1523,1524で取得されるチルト像を用いて勾配(表面傾斜角)を推定し、該推定された勾配推定値(表面傾斜角推定値)を積分することによって立体形状S2a、S2cの計測を行うことで、高精度な3次元プロファイル(立体形状)の計測を可能にすることにある。 (もっと読む)


1 - 7 / 7