説明

走査電子顕微鏡及び寸法校正用試料

【課題】 同一寸法校正パターンへの位置決めを可能にする。
【解決手段】 不連続な格子状の寸法校正パターン26とその近傍に特定の位置決め用アライメントパターンを形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、走査電子顕微鏡と寸法校正用試料に関し、特に半導体ウェーハ上に露光された微細なパターンの寸法を測長するのに適した走査電子顕微鏡と寸法校正用試料に関するものである。
【背景技術】
【0002】
近年の半導体ウェーハ上のパターン寸法は、100nm以下の加工精度になってきており、パターンの寸法管理用ツールとして走査電子顕微鏡が一般的に利用されている。装置の性能面でのニーズは様々であるが、主に分解能・繰り返し測長精度および寸法校正精度の向上が上げられる。寸法校正精度に対する要求は、1nm以下となっている。そのような背景の中、走査電子顕微鏡の寸法校正用の試料に関するものとして、測長用校正部材の例が特許文献1に記載されている。また、寸法校正用試料の例が特許文献2に記載されている。さらに、微小寸法校正用二次標準試料の例が特許文献3に記載されている。
【0003】
【特許文献1】特開平7−071947号公報
【特許文献2】特開平8−031363号公報
【特許文献3】特開2003−279321号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1および特許文献2の走査電子顕微鏡の寸法校正用試料は、寸法校正パターンの位置については、自動的に位置決めが可能であっても、連続した格子パターンであるために、再び同一位置へ戻ることは困難であるという問題点があった。すなわち、同一の寸法校正用パターン位置での寸法校正は、不可能である。特許文献3では、ラインパターンピッチを容易に探索できるよう検索用ガイドを設けているが、その位置もラインパターンの上部位置にあり、目的としてはトレーサビリティ連鎖を容易に確認するための機能であり、光学顕微鏡用の倍率で目視にて確認できるようにトレーサビリティ連鎖確認用の英数字記号を付加したにすぎない。さらに、自動的に測長点を特定できる機能は備えていない。
【0005】
本発明の目的は、上記のような問題を解決し、従来では困難であった同一寸法校正パターンへの位置決めが可能な走査電子顕微鏡と寸法校正用試料を提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明では半導体ウェーハ上に露光された微細なパターンの寸法を測長する走査電子顕微鏡において、不連続な複数の寸法校正パターンと測長点への位置決め用アライメントパターンを形成した。複数の寸法校正パターンは、不連続に配置された複数の第1の方向のラインアンドスペースパターンと、不連続に配置された複数の、前記第1の方向と直交する第2の方向のラインアンドスペースパターンとからなる。また、位置決め用アライメントパターンは形状の異なる少なくとも4種類のパターンからなり、同じ形状の位置決め用アライメントパターンが隣接しないように配置されている。
【発明の効果】
【0007】
本発明によれば、不連続な寸法校正パターンと測長点への位置決め用アライメントパターンを形成した寸法校正用試料を、走査電子顕微鏡に備えることで、同一寸法校正パターンへの位置決めが可能になり、同一位置での寸法校正が可能になる。そのため、単一の装置においては、装置の長期間安定性を定量的に評価できるようになる。また、異なる複数台の装置においては、同一の寸法校正用試料を用いることによって、同一校正パターンを用いて装置の機差を定量的に評価できるようになる。
【発明を実施するための最良の形態】
【0008】
以下、図面を参照して本発明の実施の形態を説明する。
【実施例1】
【0009】
図1は、本発明に基づく走査電子顕微鏡の基本構成例を説明した図である。電子銃1より放出された一次電子線4は、アノード2により制御・加速され、コンデンサレンズ3および対物レンズ6によって試料ステージ9上に保持された半導体ウェーハ等の測長すべきパターンが形成された試料に収束・照射される。これらのコントロールは、主制御部15によって行われる。一次電子線4の経路には、偏向器5が設けてあり、コンピュータ部16に接続されたマウス20もしくはキーボード21から設定された任意の設定倍率にしたがって、偏向制御部19から所定の偏向電流が供給され、これにより一次電子線4が偏向され、試料の表面を二次元的に走査する。測長点への移動は、ステージ制御部10が試料ステージ9をコントロールすることで、任意の位置への位置決めができる構成になっている。また、コンピュータ部16に登録されたテンプレート画像によりテンプレートマッチングをして測長点への位置決めを行う機能を備えた構成になっている。したがって、試料上に存在する任意の測長点への移動が可能である。試料に電子線を照射することで発生した二次電子7は、二次電子検出器11によって検出され、増幅器12によって増幅され、画像記憶部13に記憶される。そして、記憶された画像を使用し、測長処理部14により測長が行われる。また、この時の画像信号は、表示部17に表示される。
【0010】
走査電子顕微鏡の寸法校正を行うときは、通常の試料の代わりに寸法校正用試料8を試料ステージ9上に載置して測長を行う。このとき、コンピュータ部16に登録されたテンプレート画像によりテンプレートマッチングをして測長点への位置決めを行う。したがって、寸法校正用試料8上に存在する校正パターン18の任意の測長点への移動が可能である。寸法校正用試料8上に電子線を照射することで発生した二次電子7は、二次電子検出器11によって検出され、増幅器12によって増幅され、画像記憶部13に記憶される。そして、記憶された画像を使用し、測長処理部14により測長が行われる。また、この時の画像信号は、表示部17に表示される。装置の寸法校正は、偏向電流の制御および測長処理部14の倍率係数を制御することにより行われる。メモリ34には、寸法校正用試料8に関する情報が記憶されている。
【0011】
次に寸法校正用試料8の形態を図2により説明する。寸法校正用試料8は、半導体ウェーハの形態をしており、図2(a)に示すように、その中央部付近に縦方向パターン領域23、横方向パターン領域24が存在する。縦方向パターン領域23は、図2(b)の拡大図に示すように二次元的に配列された複数の校正パターン領域25を有し、各校正パターン領域25には図2(c)に示すように数μmの大きさの縦方向のラインアンドスペースパターン26が形成されている。したがって、寸法校正用試料8上には、複数のラインアンドスペースパターン26が不連続に存在していることになる。なお、ラインアンドスペースパターン26は、ピッチ寸法が100nm程度になるように形成されている。横方向パターン領域24も同様に二次元的に配列された複数の校正パターン領域からなり、各校正パターン領域内には、ピッチ寸法が100nm程度の横方向のラインアンドスペースパターンが数μmの大きさに形成されている。
【0012】
寸法校正用試料8には、グローバルアライメント用マーク22が形成されており、並進方向と回転方向のアライメント(グローバルアライメント)ができる構成になっている。ラインアンドスペースパターン26の近傍には、位置決め用アライメントパターン27が形成されている。
【0013】
上記した形態によれば、寸法校正パターンを不連続なパターンとすることで、測長位置を明確に把握することができるようになるため、同一位置での寸法校正が可能になる。なお、寸法校正用試料8は、半導体ウェーハからダイシングしてチップ状に切り出した後に試料台上に貼り付けた形態でもよい。
【0014】
次に位置決め用アライメントパターンについて説明する。試料ステージ9上の寸法校正用試料8に形成された寸法校正パターン18への移動は、ステージ制御部10が試料ステージ9をコントロールすることにより行われる。試料ステージ9の位置決め精度は一般的に数μmであるため、最終的な測長点への位置決めは、あらかじめ、ガイドとなる特徴的なパターンを含む画像部分(テンプレート画像)をコンピュータ部16に登録しておき、テンプレートマッチングによって検出したパターン位置からの距離によって、正確な測長点の位置へ移動する。ラインアンドスペースパターン26のみでは、同一形態をしたパターンが複数存在するために類似したパターンのみとなり、隣接したパターンと識別できない。本発明では、テンプレート画像として位置決め用アライメントパターンを寸法校正用試料8上のラインアンドスペースパターン26の近傍に配置している。
【0015】
図3は、位置決め用アライメントパターンの形態の一例を説明した図である。位置決め用アライメントパターンは、上に凸のパターン27、右に凸のパターン28、下に凸のパターン29、左に凸のパターン30、十字のパターン31の5種類の位置決め用アライメントパターンから成り立っている。走査電子顕微鏡で得られる画像は、パターンのエッジ部分から二次電子が多く放出されるエッジ効果により、エッジ部分の情報が主としたものになる。テンプレートマッチングは、二次元的に行われるため、登録するテンプレート画像には、縦方向・横方向ともに特徴的な情報を含んでいる必要がある。一般的に測長点近傍に形成された数字をテンプレート画像として登録することがあるが、例えば、数字の8と6は、エッジ部分の特徴が似ているために誤認識しやすい。本発明の位置決め用アライメントパターンによれば、凸となっている部分の情報が90°ずつ回転しているため、このエッジ部分の二次電子信号の情報が二次元的に特徴的となり、テンプレートマッチングを正確に行うことが可能になる。また、図2(c)に示したように、位置決め用アライメントパターンは、特徴のないラインアンドスペースパターン26の近傍に配置することで、隣接したラインアンドスペースパターン26との識別が可能になる。
【0016】
次に上記5種類の位置決め用アライメントパターンの配列方法について、その一例を図4により説明する。位置決め用アライメントパターンの配列は、図3の5種類の位置決め用アライメントパターンを1行毎に例えば左に2つシフトした図4に示すような組合せで配列させた構成になっている。このような組合せで位置決め用アライメントパターンを配列させれば、隣接したラインアンドスペースパターン26には、同一の位置決め用アライメントパターンが存在しない状態を作り出すことが可能になる。したがって、テンプレートマッチングを行う際の数万倍の倍率条件における同一視野領域32には、視野中央に位置する位置決め用アライメントパターンと同一の位置決め用アライメントパターンが存在しないため、テンプレートマッチングで誤認識して隣接したラインアンドスペースパターン26を測長することはない。図4では、X方向Y方向ともに位置決め用アライメントパターンを5つ並べた状態を図示しているが、この配列を繰り返し無数に配列した場合においても、隣接したラインアンドスペースパターン26には、同一の位置決め用アライメントパターンは存在しない。したがって、上記した配列方法によれば、5種類という少ない種類の位置決め用アライメントパターンの組合せで、二次元的にラインアンドスペースパターン26を無数に並べた状態においても、隣接したラインアンドスペースパターン26との識別が可能になる。なお、ラインアンドスペースパターン26の近傍には、目視での位置確認用として記号33が形成されていている。
【0017】
上記の実施例では、5種類の位置決め用アライメントパターン27〜31を組合せた配列方法の例について説明したが、4種類以上の位置決め用アライメントパターンを上記と同じような組合せで配列すれば、テンプレートマッチングを行う際の数万倍の倍率条件における同一視野領域32に、視野中央に位置する位置決め用アライメントパターンと同一の位置決め用アライメントパターンが存在しないため、隣接したラインアンドスペースパターン26との識別は可能である。
【0018】
作製された寸法校正用試料は、一度、寸法校正がなされた走査電子顕微鏡で縦方向及び横方向の全てのラインアンドスペースパターン26の計測を行い、縦方向のラインアンドスペースパターンの測長寸法値(ピッチ幅)の母分散及び横方向のラインアンドスペースパターンの測長寸法値(ピッチ幅)の母分散を求めておく。求めた母分散は、走査電子顕微鏡のメモリ34に記憶しておく。寸法校正用試料が複数ある場合には、各寸法校正用試料のIDとともにその試料の母分散を図6に示すようなテーブルに記憶しておく。使用済みパターンについては後述する。
【0019】
次に、本発明による寸法校正の動作について説明する。図5は、寸法校正の動作の一例を示すフローチャートである。
【0020】
一般的に単一箇所の校正パターン18を用いた場合の寸法校正精度は、校正パターン18の母分散と等しくなるが、現在要求される寸法校正精度は1nm以下であり、校正パターン18の母分散より小さい。寸法校正精度をPとすると、寸法校正用試料8の持つ母分散σ、測長点数iは、P=σ/√iの式で表される。したがって、測長点数iを増やすこと、すなわち複数箇所の校正パターン18を測長して得られた測長値の平均値で寸法校正を行うことで寸法校正を高精度化することができる。例えば、寸法校正用試料8の母分散σ=3nm、寸法校正精度P=1nmとすると、必要な測長点数iは9箇所となる。
【0021】
本発明の走査電子顕微鏡は、寸法校正用試料8をローディングする前にマウス20などの入力装置からあらかじめ寸法校正用試料8の持つ母分散σの値と必要な寸法校正精度Pの値を入力することにより、必要な測長点数iの設定を自動的に初期設定する手段を備えている。
【0022】
この例では、最初に図7に示す入力画面で、キーボード21等により用いる寸法校正用試料のIDと、必要な寸法校正精度を入力する。走査電子顕微鏡は、寸法校正用試料のIDをもとにメモリ34に記憶してある図6のテーブルから、その寸法校正用試料の縦方向ラインアンドスペースパターンのピッチ幅の母分散、及び横方向のラインアンドスペースパターンのピッチ幅の母分散を検索し、必要な測長点数を演算し、初期設定する(S101)。また、本例では、図4のように整列している多数のラインアンドスペースパターンを予め決められた順番で用いて測長するものとする。前回最後に使用したラインアンドスペースパターンの位置は図6に示したテーブルの使用済みパターンの個所に書き込まれている。寸法校正用試料の縦方向及び横方向ラインアンドスペースパターンのピッチ幅の母分散は、母分散の数値を入力画面に直接入力するようにしてもよい。
【0023】
次に、マウス20などの入力装置からの設定で寸法校正用試料8を走査電子顕微鏡内にロードし(S102)、グローバルアライメントを行う(S103)。グローバルアライメントは例えば、寸法校正用試料8上の既知のグローバルアライメント用マーク22複数点を光学顕微鏡で検出して並進方向と回転方向のアライメントを行うもので、試料ステージ9上の寸法校正用試料8の座標系と走査電子顕微鏡のステージ座標系を整合させることを目的として行われる。
【0024】
その後、第1校正点へ移動し(S104)、位置決め用アライメントパターンを検出する。第1校正点は、図6のテーブルに使用済みパターンとして登録されている位置の次の位置のパターンとする。位置決め用アライメントパターンの検出(S105)は、位置決め用アライメントパターンと校正パターン18の測長点の位置関係を算出して測長点へ移動するためのもので、コンピュータ部16に登録されたテンプレート画像によるテンプレートマッチングにより行われる。なお、位置決め用アライメントパターンには、図3に示したパターン27〜31のいずれか1つを用いる。測長点へ移動した後、校正用パターン18を測長し(S106)、測長値Lnを取得してコンピュータ部16に記憶する。
【0025】
測長(S106)の後、入力された所定の箇所を全て測長したかを判定し(S107)、条件を満足しない場合は、次の校正点へ移動し(S109)、所定箇所の測長が終了するまで繰り返し測長を行う。条件を満足する場合は、最後に測長した縦方向及び横方向ラインアンドスペースパターンの番地を図6のテーブルに書き込んで寸法校正用試料8をアンロード(S111)し、コンピュータ部16で各測長値(L1、L2、L3・・・Ln)から平均値L=(L1+L2+L3+・・・+Ln)/nを求め、校正値を算出する(S108)。この校正値から偏向電流の制御あるいは測長処理部14の倍率係数を制御することで寸法校正を行う。異なる複数台の装置における寸法校正は、同一の寸法校正用試料8を用いて装置毎に実施すれば、定量的に装置機差の評価が可能になる。
【0026】
半導体ウェーハ上に露光された微細なパターンの寸法を測長する走査電子顕微鏡の寸法校正精度については、パターン幅が100nm以下となっているため、その校正精度に要求される値も厳しくなっている。本発明によれば、同一位置での寸法校正が可能になり、単一装置の走査電子顕微鏡の校正精度を定量的に把握できるばかりでなく、異なる複数台の装置の装置機差も評価できる。
【図面の簡単な説明】
【0027】
【図1】走査電子顕微鏡の基本構成を説明した図。
【図2】寸法校正用試料の形態を説明した図。
【図3】位置決め用アライメントパターンの形態を説明した図。
【図4】位置決め用アライメントパターンの配列方法を説明した図。
【図5】寸法校正の動作について説明した図。
【図6】寸法校正用試料についての情報を記憶したテーブルの説明図。
【図7】入力画面の例を示す図。
【符号の説明】
【0028】
1 電子銃
2 アノード
3 コンデンサレンズ
4 一次電子線
5 偏向器
6 対物レンズ
7 二次電子
8 寸法校正用試料
9 試料ステージ
10 ステージ制御部
11 二次電子検出器
12 増幅器
13 画像記憶部
14 測長処理部
15 主制御部
16 コンピュータ部
17 表示部
18 寸法校正パターン
19 偏向制御部
20 マウス
21 キーボード
22 グローバルアライメント用マーク
23 縦方向パターン領域
24 横方向パターン領域
25 校正パターン領域
26 ラインアンドスペースパターン
32 数万倍の倍率条件における同一視野領域
33 記号
34 メモリ

【特許請求の範囲】
【請求項1】
電子線を試料上に走査し、電子線照射によって試料から発生した二次電子を検出して得た画像から試料の微細なパターンの寸法を測長する走査電子顕微鏡において、
不連続に配置された複数の寸法校正用パターンと各寸法校正用パターンへの位置決め用アライメントパターンを形成した寸法校正用試料を備えたことを特徴とする走査電子顕微鏡。
【請求項2】
請求項1記載の走査電子顕微鏡において、前記複数の寸法校正パターンは、不連続に配置された複数の第1の方向のラインアンドスペースパターンと、不連続に配置された複数の、前記第1の方向と直交する第2の方向のラインアンドスペースパターンとからなることを特徴とする走査電子顕微鏡。
【請求項3】
請求項1又は2記載の走査電子顕微鏡において、前記位置決め用アライメントパターンは前記複数の寸法校正パターン各々の近傍に配置されていることを特徴とする走査電子顕微鏡。
【請求項4】
請求項3記載の走査電子顕微鏡において、前記位置決め用アライメントパターンは形状の異なる少なくとも4種類のパターンからなり、同じ形状の位置決め用アライメントパターンが隣接しないように配置されていることを特徴とする走査電子顕微鏡。
【請求項5】
請求項1〜4のいずれか1項記載の走査電子顕微鏡において、前記寸法校正用試料の前記寸法校正用パターンの寸法の母分散あるいは当該母分散を取得するための情報及び必要な寸法校正精度を入力する手段と、前記寸法校正用パターンの寸法の母分散及び必要な寸法校正精度をもとに必要な測長点数を演算し設定する手段とを備えたことを特徴とする走査電子顕微鏡。
【請求項6】
請求項1〜5のいずれか1項記載の操作電子顕微鏡において、前記寸法校正用パターンは半導体ウェーハ上に形成されていることを特徴とする走査電子顕微鏡。
【請求項7】
不連続に配置された複数の寸法校正用パターンと各寸法校正用パターンへの位置決め用アライメントパターンが形成され、
前記複数の寸法校正パターンは、不連続に配置された複数の第1の方向のラインアンドスペースパターンと、不連続に配置された複数の、前記第1の方向と直交する第2の方向のラインアンドスペースパターンとからなることを特徴とする走査電子顕微鏡の寸法校正用試料。
【請求項8】
請求項7記載の走査電子顕微鏡の寸法校正用試料において、前記位置決め用アライメントパターンは、形状の異なる少なくとも4種類のパターンからなり、同じ形状の位置決め用アライメントパターンが隣接しないように前記複数の寸法校正パターン各々の近傍に配置されていることを特徴とする走査電子顕微の寸法校正用試料。
【請求項9】
請求項7又は8記載の走査電子顕微鏡の寸法校正用試料において、半導体ウェーハ上に形成されていることを特徴とする走査電子顕微鏡の寸法校正用試料。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−10522(P2006−10522A)
【公開日】平成18年1月12日(2006.1.12)
【国際特許分類】
【出願番号】特願2004−188495(P2004−188495)
【出願日】平成16年6月25日(2004.6.25)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】