説明

国際特許分類[G01N23/22]の内容

国際特許分類[G01N23/22]の下位に属する分類

国際特許分類[G01N23/22]に分類される特許

1 - 10 / 36


【課題】高エネルギーの荷電粒子ビームにより測定試料中の物質ごとに1μm〜0.1μm等といった高空間分解能で定量的に材料分析できるとともに、前述した高精度の材料分析を研究室規模の施設で可能とする材料分析装置を提供する。
【解決手段】パルスレーザを射出するパルスレーザ射出部1と、前記パルスレーザが照射される金属薄膜Fを有し、当該金属薄膜Fから荷電粒子ビームを生成する荷電粒子ビーム生成部2と、前記荷電粒子ビーム生成部2から射出された荷電粒子ビームを磁場又は電場により収束して、測定試料Sに照射する荷電粒子ビーム収束部3と、前記荷電粒子ビームが測定試料Sに照射された際に生じる放射線Rを測定する放射線測定部4と、を備えた。 (もっと読む)


【課題】高エネルギーの荷電粒子ビームにより測定試料中の物質ごとに1μm〜0.1μm等といった高空間分解能で定量的に材料分析できるとともに、前述した高精度の材料分析を研究室規模の施設で可能とする材料分析装置を提供する。
【解決手段】パルスレーザを射出するパルスレーザ射出部1と、前記パルスレーザが照射される金属薄膜Fを有し、当該金属薄膜Fから荷電粒子ビームを生成する荷電粒子ビーム生成部2と、前記荷電粒子ビーム生成部2から射出された荷電粒子ビームIBを磁場又は電場により収束して、測定試料Sに照射する荷電粒子ビーム制御部3と、前記荷電粒子ビームIBが測定試料Sに照射された際に生じる放射線Rを測定する放射線測定部4と、を備えた。 (もっと読む)


【課題】高エネルギーの荷電粒子ビームにより測定試料中の物質ごとに1μm〜0.1μm等といった高空間分解能で定量的に材料分析できるとともに、前述した高精度の材料分析を研究室規模の施設で可能とする材料分析装置を提供する。
【解決手段】パルスレーザを射出するパルスレーザ射出部1と、前記パルスレーザが照射される金属薄膜Fを有し、当該金属薄膜Fから荷電粒子ビームを生成する荷電粒子ビーム生成部2と、前記荷電粒子ビーム生成部2から射出された荷電粒子ビームIBを磁場又は電場により収束して、測定試料Sに照射する荷電粒子ビーム制御部3と、前記荷電粒子ビームJBが測定試料Sに照射された際に生じる放射線Rを測定する放射線測定部4と、を備えた。 (もっと読む)


【課題】識別するための標識物質の組み合わせが事実上無制限であり、微量の標識物質を用いるのみで識別でき、対象物の素材や製品形状、物性によらずに適用することができる放射線を用いる識別方法を提供する。
【解決手段】カーボンナノチューブを構成する物質以外の物質を標識物質として、ナノチューブの中空部分に内包した内包カーボンナノチューブ、あるいはナノサイズの細孔を有する多孔体を構成する物質以外の物質を、標識物質として細孔に内包した内包多孔体を、識別材料として識別対象物に付与し、対象物に放射線を照射し、標識物質から放射される2次放射線を検知して、識別材料が付与された対象物を識別する識別方法。 (もっと読む)


【課題】加速器施設を用いることなく材料内部の非破壊成分分析を行うことを可能とする、非破壊成分分析装置を提供する。
【解決手段】宇宙線ミュー粒子Mが入射して停止したことを検出するための入射検出手段1と停止検出手段2と、特性X線Xのエネルギーを測定するX線エネルギー測定手段3とを備えた。入射検出手段1と停止検出手段2により宇宙線ミュー粒子Mが試料Sの内部に入射して停止したことを検出し、X線エネルギー測定手段3により試料Sの内部から出てくる特性X線Xのエネルギーを測定することにより、加速器施設を用いることなく、宇宙線ミュー粒子を用いて材料内部の非破壊成分分析を行うことができる。 (もっと読む)


【課題】 被測定体(被測定物質)から試験片を切り出さなくても精度よく陽電子の消滅特性を測定する。
【解決手段】 陽電子消滅特性測定装置10は、陽電子線源と、陽電子線源で生成された陽電子が消滅するときに発生する放射線を検出する放射線検出手段14と、陽電子線源で生成された陽電子のうち被測定体に入射されなかった陽電子を検出する陽電子検出手段40を有している。陽電子線源は、被測定体Sと陽電子検出手段とに挟まれた状態で配置されている。消滅特性算出手段50は、放射線検出手段14で検出される放射線のうち、陽電子検出手段40で検出された陽電子が消滅したときに発生したと推定される放射線を除いて、被測定体S内における陽電子の消滅特性を算出する。 (もっと読む)


【課題】単純な構成で高精度のNRF分析を行う。
【解決手段】電子加速装置111によって、高エネルギーまで加速された電子線112が図中右方向に放射される。一方、レーザー光源12によって発せられたレーザー光13は、回転式波長板14を透過し、反射鏡113で反射され、電子線112中の高エネルギー電子と正面衝突するように設定される。レーザー光13はLCSガンマ線15となり、図中右側に発せられる。試料100における原子核は、このLCSガンマ線15を吸収し、核共鳴散乱によって、NRFガンマ線21を発する。このNRFガンマ線21は、NRFガンマ線検出器(ガンマ線検出部)22で検出される。回転式波長板(偏光方向切替部)14は、垂直偏光されたレーザー光13の偏光方向を制御する。特に、レーザー光13の光軸を変えずに、その偏光方向を垂直な2方向に制御する。 (もっと読む)


【課題】対象試料を実条件に近い状態で計測でき、且つ、単純な構成のイオンビーム分析装置を提供することを目的とする。
【解決手段】試料3に向けてイオンビーム6を照射するイオンビーム照射手段1と、該イオンビーム照射手段1に接続され、前記イオンビーム6の通路となる低圧部2と、該低圧部2の外部に配置されて、前記試料3に前記イオンビーム6が照射されるよう試料3を保持する試料保持手段と、前記イオンビーム6によって前記試料3から放射された放射エネルギーを検出する検出手段4とを備え、前記低圧部2が、イオンビーム6の出口部分となる開口部を有し、該開口部には、隔壁部材5が前記低圧部2の内部を気密保持可能に設けられ、前記隔壁部材5が、イオンビーム透過性を有し、且つ、前記低圧部2の内外の圧力差に耐えうる強度を有する材料からなるイオンビーム分析装置10。 (もっと読む)


【課題】X線照射中は遮蔽扉が開かないようにロックする信頼性の高い電動式ロック機構を備えたX線分析装置を供給する。
【解決手段】ソレノイド14を保持する支持部12は板バネ31を介して筐体3に保持されており、突出した心棒15はラッチ板11で押され移動し、ストッパ13に当たり停止する。したがって、電動式ロック機構を構成するソレノイド14の心棒15に加わる力は板バネ31が有するバネ力であり、突出したソレノイド14の心棒15にその耐荷重を超えた押しボタン16による操作力が繰り返し加えられることはなく、信頼性の高い電動式ロック機構を備えたX線分析装置を供給できる。 (もっと読む)


本発明は、標的ボリューム(23)に与えられる粒子線(22)の貫通深さを検出する、少なくとも1つの検出手段(25,52)を備える検出器デバイスに関する。検出デバイス(100,150)は、標的ボリューム内で生成された光子、特にガンマ量子、を検出するように構成及び設計されている。本発明はさらに、物体(24)、特に物体(24)の標的ボリューム(23)に与えられる粒子線(22)の貫通深さを判定する方法に関し、粒子線(22)の相互作用によって物体(24)内で生成された光子、特にガンマ量子、が検出器デバイス検出される。
(もっと読む)


1 - 10 / 36