説明

Fターム[3G384AA06]の内容

内燃機関の複合的制御 (199,785) | 機関の形式又は用途 (14,281) | 筒内直接噴射型 (1,851)

Fターム[3G384AA06]に分類される特許

101 - 120 / 1,851


【課題】適正なCI燃焼(圧縮自己着火燃焼)を幅広い回転速度域にわたって行う。
【解決手段】エンジン回転速度Neが所定値よりも低い領域(A2)では、インジェクタ21から複数回に分けて噴射された燃料に基づき燃焼室6の異なる場所に形成された混合気X1,X2をそれぞれ自着火により燃焼させる多段CIモードを実行する。一方、エンジン回転速度Neが上記所定値よりも高い領域(A3)では、インジェクタ21から噴射された燃料に基づき燃焼室6全体に混合気X3が形成された状態で着火アシスト手段(20)を作動させることにより、圧縮上死点以降に自着火による燃焼を開始させるSA−HCCIモードを実行する。 (もっと読む)


【課題】噴射形態の切替時における空燃比の乱れを抑えることのできる内燃機関の空燃比制御装置を提供する。
【解決手段】エンジン11は、ポート噴射用インジェクタ22と筒内噴射用インジェクタ17とを備える。電子制御装置30は、エンジン11の実空燃比が目標空燃比となるように燃料噴射量を補正する空燃比補正値を算出する。この空燃比補正値は、目標空燃比と実空燃比との偏差に基づいて算出されるフィードバック補正値と、目標空燃比と実空燃比との定常的なずれを補償する学習値とで構成されている。噴射形態の切替に際して、切替前の噴射形態における学習値及び切替後の噴射形態における学習値の少なくとも一方の学習が完了していないときには、切替前のフィードバック補正値による燃料噴射量の補正を抑制するためにフィードバック補正値を初期化する。 (もっと読む)


【課題】直接噴射のエンジン騒音、特にエンジン回転数が1000rpm以下の低速運転時の騒音を低減するための方法及び装置を提供する。
【解決手段】
多気筒の直接燃料噴射エンジンの騒音低減方法に関する。内燃機関は、燃料供給源に接続されたポンプ吸入弁と加圧された燃料配管に接続された吐出弁を有する高圧燃料ポンプと、加圧燃料を直接、エンジン燃焼室に供給する燃料噴射弁とを備える。騒音低減のために、特にエンジン回転数が低速回転時のときに、ポンプ吸入弁或いはポンプ吐出弁の開タイミングのいずれかを、エンジンの燃料噴射弁の開タイミングと一致する方向に制御する。 (もっと読む)


【課題】複数回の燃料噴射によって燃焼室内での燃焼が行われる圧縮自着火式の内燃機関における燃焼状態の評価の容易化を図る。
【解決手段】パイロット噴射での燃焼開始からメイン噴射での燃焼終了までの期間における燃料の単位体積当たりの発生熱量の最大値であるトータル燃焼基準熱発生効率と、その期間において実際に燃焼室3内で燃料が燃焼している際の燃料の単位体積当たりの発生熱量であるトータル燃焼実熱発生効率とを比較する。パイロット噴射での燃焼及びメイン噴射での燃焼のそれぞれにおいて、その燃焼期間における燃料の単位体積当たりの発生熱量の最大値である燃焼基準熱発生効率と、その期間において実際に燃焼室3内で燃料が燃焼している際の燃料の単位体積当たりの発生熱量である燃焼実熱発生効率とを比較する。これら比較により、パイロット噴射量の補正及びメイン噴射量の補正を行う。 (もっと読む)


【課題】ディーゼルエンジンのメイン噴射に先立つ先行噴射を、広範囲に渡る運転領域で最適に制御する。
【解決手段】基本プレ噴射量設定部51にてプレ噴射量のベース値である基本プレ噴射量Gpbaseを設定し、1サイクル毎に連続爆発しない異なる気筒を対象として、プレ噴射量調整部52で基本プレ噴射量Gpbaseを順次減量補正する。そして、プレ噴射量の減量前後の燃焼状態の変化をプレ噴射量限界判定部53で判定し、その判定結果に応じて減量分を調整する。これにより、広範囲に渡る運転領域でプレ噴射量を最適化する最適に制御することが可能となる。 (もっと読む)


【課題】フィード圧力を変更したときに生じる、燃料の筒内壁面付着や内燃機関のトルク変動を抑制することができる内燃機関の燃料供給装置を提供する。
【解決手段】ECUは、ポート噴射用インジェクタに要求される燃料噴射量を算出するとともに(ステップS1)、低圧側デリバリーパイプ内の燃圧に基づいて、最低許容噴射量Qminを決定し(ステップS2)、燃料噴射量が最低許容噴射量Qmin以上であるか否かを判断し(ステップS3)、燃料噴射量が最低許容噴射量Qmin以上であると判断した場合には、ポート噴射用インジェクタによる燃料の噴射を許可し(ステップS4)、燃料噴射量が最低許容噴射量Qmin以上でないと判断した場合には、ポート噴射用インジェクタによる燃料の噴射を禁止する(ステップS5)。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、プレイグの発生を良好に回避可能な内燃機関の制御装置を提供することを目的とする。
【解決手段】図4に示すルーチンでは、プレイグ抑制噴射の終了時期CAed(m)と、プレイグ抑制噴射の終了限界時期CAlmt(m)との差ΔCAが算出され(ステップ120)、このΔCAについて、ΔCA≦0となるか否かが判定される(ステップ130)。ΔCA≦0の場合には、次回のプレイグ抑制噴射の開始時期CAst(m+1)がΔCAだけ遅角側に設定される(ステップ140)。ΔCA>0の場合には、不足分の噴射量ΔQが算出され(ステップ150)、この噴射量ΔQが次回の目標噴射量Qt(m+1)に加算され(ステップ160)、次回のプレイグ抑制噴射の開始時期CAst(m+1)がΔCA×2だけ進角側に設定される(ステップ170)。 (もっと読む)


【課題】液化ガス燃料のリークが検出できる燃料ノズル及びリーク検出装置を提供する。
【解決手段】燃料ノズル1は、サック室7内の温度を検出するサック室温度センサ8と、ノズル室2内の温度を検出するノズル室温度センサ9とを備え、リーク検出装置21は、ノズル室温度センサ9が検出するノズル室2内温度とサック室温度センサ8が検出するサック室7内温度との温度差を検出する温度差検出部23と、温度差検出部23が検出した温度差が閾値以上のとき、ノズル室2からサック室7への液化ガス燃料のリークがあると判定するリーク判定部24とを備える。 (もっと読む)


【課題】この発明は、燃料噴射弁の着座に影響されることなく、プレイグニッションを正確に検出することを目的とする。
【解決手段】ECU50は、運転領域及びクランク角の履歴データに基いて、プレイグニッションが発生し易い状態を要監視状態として検出する。そして、要監視状態を検出した場合には、個々の気筒における燃料噴射弁26,28の燃料噴射期間が他の気筒における圧縮行程の後半と重複しないように燃料噴射期間を制限する。具体的には、マルチ噴射制御において分割噴射の回数及び/又は間隔を減少させ、複数回の分割噴射が他気筒の圧縮行程の後半までに終了するように制限する。これにより、プレイグニッションの発生時に燃料噴射弁26,28が着座するのを回避することができ、振動センサ44の出力に基いてプレイグニッションを正確に検出することができる。 (もっと読む)


【課題】エンジンの触媒早期暖機制御時の混合気の着火性や燃焼性を向上させながらスモークやPMの排出量を低減できるようにする。
【解決手段】排出ガス浄化用の触媒25を早期に暖機するために点火時期を遅角する触媒早期暖機制御の実行中に吸気行程で燃料噴射弁21により筒内に燃料を噴射する吸気行程噴射と圧縮行程で燃料噴射弁21により筒内に燃料を噴射する圧縮行程噴射を実行するシステムにおいて、触媒早期暖機制御の実行中に排気バルブ31と吸気バルブ30が両方とも閉弁した状態になるNVO期間(負のバルブオーバーラップ期間)を設けるように吸気側及び排気側の可変バルブタイミング装置32,33を制御し、NVO期間中に燃料噴射弁21により筒内に燃料を噴射するNVO噴射を実行し、NVO噴射量(NVO噴射の燃料噴射量)に応じて圧縮行程噴射量(圧縮行程噴射の燃料噴射量)を減量補正する。 (もっと読む)


【課題】アルコール濃度を精度良く推定することができる内燃機関燃料のアルコール濃度推定装置を提供する。
【解決手段】演算処理装置40が、等回転で気筒Aの燃料量を所定値a2に、気筒Bの燃料量を所定値b2に変更する処理を実行する。演算処理装置40が、気筒Aの所定値a2に応じた燃焼および気筒Bの所定値b2に応じた燃焼について、発生熱量を把握する処理を実行する。演算処理装置40が、基本条件での発生熱量と所定値a1、a2、b1、b2に基づく平均の発生熱量との差分を求める処理を実行する。演算処理装置40は、燃料量変化分と発生熱量変化分との関係により、エタノール濃度を推定する処理を実行する。 (もっと読む)


【課題】本発明は、内燃機関の空燃比算出装置に関し、燃料リッチ側における特性変化の影響を考慮して、精度高く空燃比を算出可能な内燃機関の空燃比算出装置を提供することを目的とする。
【解決手段】筒内へ噴射された燃料の燃焼により生じた発熱量Qは、理論空燃比付近で最大となり、その両側では低下する。そのため、図中A,Bで示すように、求めた発熱量Qの値がQの場合、空燃比が燃料リッチ側の値(A)か燃料リーン側の値(B)か分からなくなってしまう。そこで、筒内要求燃料量を増加させ、増量前後のΔQ(=Qafter−Qbefore)の傾きによって、空燃比が燃料リーン側であるか燃料リッチ側であるかを判断する。 (もっと読む)


【課題】成層燃焼を実行するエンジンにおいて、点火プラグの破損を防止することを目的とする。
【解決手段】エンジン1を備えたハイブリッドシステム2は、断熱性能を高めたシリンダヘッド13により区画された燃焼室11内に、燃料を噴射する第1燃料噴射弁16と、燃焼室11内の燃料に点火する点火プラグ17と、ECU25トを備え、ECU25による制御では、エンジン1の始動時に、点火プラグ17の温度が所定値以上である場合、第1燃料噴射弁16からの噴射を中止する。 (もっと読む)


【課題】幾何学的圧縮比が比較的高く設定された高圧縮比の火花点火式ガソリンエンジン1において、高負荷域における異常燃焼を回避する。
【解決手段】制御器(PCM10)は、エンジン本体の運転状態が低速域にあるときには、高負荷域では、低負荷域よりも燃料圧力が高くなるように、燃圧可変機構(高圧燃料供給システム62)を駆動し、高負荷域では、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、筒内噴射弁(直噴インジェクタ67)を駆動する。制御器10はまた、高負荷域では、リタード期間内における、燃料の噴射後のタイミングで点火するように、点火プラグ25を駆動する。制御器10は、エンジン本体の運転状態が高負荷域内の中速域にあるときには、吸気行程中における燃料噴射をさらに実行する、又は、当該吸気行程中における燃料噴射による燃料噴射量を増量する。 (もっと読む)


【課題】 燃料の体積弾性係数等の燃料の性状が変化した場合であっても、高い精度で流量の算出を可能にする。
【解決手段】 給油されたと判定されたときに、必要吐出量Qnと実吐出量値Qrとの差に基づいて算出された誤差値Qer(=|今回の学習吐出量相当値Qeq−前回の学習吐出量Qe|)が、予め設定された予測学習変化範囲から外れていると判定されたときに(S17:YES)、燃料の性状が変化したものとみなして性状学習量Qe1を学習・変更することにより必要吐出量Qnを学習補正する(S19、S21)。これにより、燃料の性状が変化したか否かを判定しながら、燃料の体積弾性係数等の燃料の性状が変化した場合であっても、高い精度で高圧ポンプ3からの吐出量を算出することが可能となる。 (もっと読む)


【課題】エンジンの圧縮自着火燃焼制御中に急峻燃焼の発生を抑制することができると共に低コスト化の要求を満たすことができるようにする。
【解決手段】エンジン11の運転領域が所定の圧縮自着火燃焼領域のときには、排気バルブ23と吸気バルブ22が両方とも閉弁した状態になるNVO(負のバルブオーバーラップ)期間中に筒内に燃料を噴射した後に吸気行程で燃料噴射を行って圧縮行程の圧縮により混合気を自着火させて燃焼させる圧縮自着火燃焼制御を実行する。この圧縮自着火燃焼制御中に急峻燃焼有りと判定されたときに、NVO期間中の燃料噴射量が所定の下限判定値(例えば燃料噴射弁19の最小噴射量)よりも大きい場合には、NVO期間中の燃料噴射量を低減させて急峻燃焼の発生を抑制し、NVO期間中の燃料噴射量が下限判定値以下の場合には、NVO期間中の筒内の酸素量を低減させて急峻燃焼の発生を抑制する。 (もっと読む)


【課題】圧縮着火燃焼を実行する圧縮着火モードと、火花点火燃焼を実行する火花点火モードとの間でモードの切り替えを行う火花点火式ガソリンエンジン1において、火花点火モードにおける燃焼安定性を高めることによって、吸気充填量の低減が必要となる負荷領域を可及的に縮小する。
【解決手段】制御器(PCM10)は、低負荷域では圧縮着火モードとし、高負荷域では、燃料圧力を高めると共に、圧縮行程後期から膨張行程初期にかけてのリタード期間内で燃料噴射を行う火花点火モードとする。火花点火モードでは、外部EGR制御を実行する。制御器はさらに、火花点火モードにおける所定負荷以下の領域では、EGR率を所定負荷よりも高い領域でのEGR率よりも高く設定すると共に、吸気充填量を圧縮着火モード時よりも低下させる充填量制御を実行する。 (もっと読む)


【課題】圧縮着火燃焼を実行する圧縮着火モードと、火花点火燃焼を実行する火花点火モードとの間で、モードの切り替えを行う火花点火式ガソリンエンジン1において、モードの遷移期間における制御遅れに起因する問題を回避する。
【解決手段】制御器(PCM10)は、所定の低負荷域では圧縮着火モードとし、それよりも負荷の高い高負荷域では、燃料圧力を相対的に高めると共に、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、燃料噴射弁67を駆動すると共に、点火プラグ25を駆動する火花点火モードとする。制御器はまた、圧縮着火モードから火花点火モードへと移行する際のモードの遷移期間内では、火花点火モードにおける特定タイミングよりも遅角したタイミングで燃料を噴射すると共に、その噴射後に点火する。 (もっと読む)


【課題】幾何学的圧縮比が比較的高く設定された高圧縮比の火花点火式ガソリンエンジン1において、高負荷域における異常燃焼を回避する。
【解決手段】制御器(PCM10)は、エンジン本体の運転状態が低速域にあるときには、高負荷域では、低負荷域よりも燃料圧力が高くなるように、燃圧可変機構(高圧燃料供給システム62)を駆動し、高負荷域では、低負荷域での燃料の噴射タイミングよりも遅角側のタイミングであって、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、燃料噴射弁(直噴インジェクタ67)を駆動する。制御器10はまた、高負荷域では、リタード期間内における、燃料の噴射後のタイミングで点火するように、点火プラグ25を駆動する。 (もっと読む)


【課題】ばらつき異常検出時におけるドライバビリティを向上させる。
【解決手段】第1および第2の気筒群と、各気筒に設けられた吸気通路噴射用インジェクタおよび筒内噴射用インジェクタとを有する多気筒内燃機関の気筒間空燃比ばらつき異常検出装置が提供される。ばらつき異常の検出時、気筒群毎に両インジェクタの噴射割合を変更してばらつき異常を検出すると共に、噴射割合の変更タイミングを第1および第2の気筒群の間で異ならせる。 (もっと読む)


101 - 120 / 1,851