説明

Fターム[4J032BC28]の内容

Fターム[4J032BC28]の下位に属するFターム

Fターム[4J032BC28]に分類される特許

1 - 7 / 7


【課題】導電性が高く、かつ耐熱性が優れた導電性高分子が得られる導電性高分子の分散液の製造方法を提供し、その導電性高分子を導電体として用いて導電性が高く、かつ耐熱性が優れた帯電防止フィルムを提供し、また、その導電性高分子を固体電解質として用いて、ESRが小さく、かつ高温条件下における信頼性が高い固体電解コンデンサを提供する。
【解決手段】高分子のドーパントの存在下で、モノマーを水中または水と水混和性溶剤との混合液からなる水性液中で、陽極と陰極とをセパレータで隔離しつつ、電解酸化重合することによって導電性高分子の分散液を製造し、得られた導電性高分子の分散液を乾燥して導電性高分子を得、その導電性高分子を用いて帯電防止フィルムや固体電解コンデンサを構成する。 (もっと読む)


【課題】膜厚が厚くても透明性にすぐれた導電性薄膜を形成することができる導電性高分子微粒子を、効率良く得ることができる製造方法を提供する。さらにまた、微細でありながら粒径のそろった導電性高分子微粒子であり、しかもその電気特性等の各物性を調節・制御して得ることができ、この大量生産にも好適に対応しうる製造方法の提供、それにより得られる導電性高分子微粒子およびその水性分散液、並びにこれに用いられる流通式反応装置を提供する。
【解決手段】導電性高分子前駆体モノマー液を流通式反応装置の流路に導入して流通させ、この流通過程で前記モノマーを酸化重合するとともに微粒子化するに当たり、前記の流通導電性高分子前駆体モノマー液に磁場を印加することを特徴とする導電性高分子微粒子の製造方法。 (もっと読む)


【課題】膜厚が厚くても透明性にすぐれた導電性薄膜を形成することができる導電性高分子微粒子およびその水系分散液を提供し、またそれらを効率良くかつ高純度で得ることができる製造方法を提供する。さらにまた、微細でありながら粒径のそろった導電性高分子微粒子の大量生産にも好適に対応しうる製造方法、ならびにそれにより得られる導電性高分子微粒子およびその水系分散液を提供する。
【解決手段】導電性高分子前駆体モノマー液を流通式反応装置の流路に導入し、流通過程で前記モノマーを酸化重合するとともに微粒子化する導電性高分子微粒子の製造方法。 (もっと読む)


【課題】 細孔内部へモノマーを高効率で供給して、高強度のナノシリンダー型導電性高分子材を製造する。
【解決手段】反応用細孔を有する鋳型テンプレートと、前記鋳型テンプレートに配置された電極とを含む電解重合反応器を用いて、前記反応用細孔内で、置換もしくは非置換のπ共役系複素環式化合物、共役系芳香族化合物およびヘテロ原子含有共役系芳香族化合物から選ばれる少なくとも1種の単量体を、支持電解質の存在下に、反応媒体として超臨界流体あるいは亜臨界流体を含む電解媒体を用いて電界重合を行い、ナノシリンダー形状を有する導電性高分子材を形成する工程を含むことを特徴とする。 (もっと読む)


【課題】 導電性分子膜に生じる変化をリアルタイムで制御することにより、所望の導電性分子膜を作製する方法及び装置を提供する。
【解決手段】 導電性高分子膜を製造する方法であって、(1) 光照射部4からプリズム1に光を照射しながら、電源装置16から作用電極2及び対極8に通電することにより作用電極2上に導電性高分子膜Fを形成し、(2) プリズム1から出射した導電性高分子膜Fの反射光Lから受光部5により吸収スペクトルを求め、(3) 吸収スペクトルから得た導電性高分子膜Fの吸光度と導電性高分子膜Fのパラメータとの関係をコントローラ6に蓄積し、(4) 吸光度とパラメータとの関係に基づき、所望のパラメータを得るように作用電極2及び対極8への通電をコントローラ6により制御する方法。 (もっと読む)


【課題】 広く臨床において使用しうる、電極の感度を高め、センサーをなるべく細くした生体内で使用しうるスーパーオキシドアニオンラジカル用センサーを提供すること。
【解決手段】 金属ポルフィリン錯体を、超臨界二酸化炭素を溶媒に用いる電解重合法に付すことにより得られる金属ポルフィリン錯体重合膜およびその製造方法並びに導電性部材の表面に、前記金属ポルフィリン錯体重合膜を形成してなるスーパーオキシドアニオンラジカル用電極およびこの電極および対極を含むスーパーオキシドアニオンラジカル濃度測定用センサー。 (もっと読む)


【課題】 従来の二光子吸収による微小立体構造物の構築では、光重合の反応生成物は、紫外線硬化樹脂などの絶縁性の高分子に限られていた。ポリピロールなどの導電性高分子を同様に加工できれば、電気、情報、医療などの幅広い応用分野で活用できる。従来の導電性高分子の光重合によるパターン形成は、ルテニウム色素などを光増感剤として、その一光子吸収を利用して、間接的にモノマーを酸化重合してきた。この方法では、用いる光源の回折波長限界よりも短い長さの微細加工が困難であり、立体構造物の構築にも適していない。
【解決手段】 導電性高分子のモノマーと光増感剤を含む電解質溶液に、フェムト秒パルスレーザーを用いて、増感剤に吸収されない波長の光を集光して照射することで、増感剤の多光子吸収によりモノマーを酸化させ、基板上に導電性高分子の析出物を得る。 (もっと読む)


1 - 7 / 7