説明

Fターム[4K033BA01]の内容

電磁鋼板の製造 (7,545) | インヒビター (283) | Al−N (148)

Fターム[4K033BA01]に分類される特許

121 - 140 / 148


【課題】歪取焼鈍後に鉄損が劣化せず、変圧器鉄心として加工した後も低鉄損特性を得ることが可能な低鉄損方向性電磁鋼板を提案する。
【解決手段】本発明の方向性電磁鋼板は、圧延方向と略直交する向きに複数の溝を有しており、さらに、各溝の間には、板厚減少部が点在して形成され、前記板厚減少部における板厚減少量の合計が、前記板厚減少部が形成される前の鋼板に対する重量減少率で0.01〜0.05%である。例えば、板厚減少部として、45μmφで、深さ25μmで、重量減少率が0.03%の凹部を各溝の間に導入する。この板厚減少部を各線状溝の間に設けることで反磁界が形成され、反磁界が形成されることで、圧延方向以外に磁束が流れる場合の鉄損上昇を抑制することが可能となる。 (もっと読む)


【課題】著しいコスト高を招くことなく、優れた磁気特性、特に高周波数域で低鉄損の高珪素鋼板を製造できる方法を提供する。
【解決手段】質量%で、Si:5.0%以下、Mn:2.5%以下、残部Feおよび不可避的不純物からなり、かつFeの体心立方格子の[100]結晶軸を圧延面に垂直に射影した方向と圧延方向とのなす角のうち最小となるα角の平均値<α>が15°以下の方向性珪素鋼板に、圧下率40〜90%の冷間圧延を施して板厚0.03〜0.3mmとした後、浸珪処理を施し、前記方向性珪素鋼板の表面から板厚×0.1の深さまでの領域の平均Si濃度を5.5〜8.0%、板厚中心を挟んで板厚方向に板厚×0.1にわたる領域の平均Si濃度を2.0〜5.0%とすることを特徴とする高珪素鋼板の製造方法。 (もっと読む)


【課題】圧延直角方向の磁気特性に優れた電磁鋼板を、二次再結晶現象を活用して製造する手段を提供する。
【解決手段】C≦0.020%、Si:2.5〜4.0%、酸可溶性Al:0.022〜0.035%、N:0.0050〜0.010%、0.005%≦(S+0.405Se)≦0.014%、Mn:0.05〜0.15%を含有し、残部Feおよび不可避的不純物からなるスラブを、1200℃未満の温度域に加熱し、熱間圧延し、次いで熱延板焼鈍を施し、25%以上60%未満の圧下率を適用する最終冷間圧延によって最終板厚とした後、一次再結晶焼鈍を湿水素雰囲気で施し、走行するストリップ状態で窒化し焼鈍分離剤を塗布し、仕上焼鈍を施し二次再結晶現象を活用することを特徴とする圧延直角方向の磁気特性に優れた電磁鋼板の製造方法。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍において、0.002〜0.02%脱炭させることにより、焼鈍後の表面粒組織のラメラ間隔を20μm以上に制御するとともに、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは75〜125℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】鏡面方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、アルミナを主成分焼鈍分離剤を塗布して仕上げ焼鈍を施す鏡面方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは75〜125℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1350℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍において、脱炭処理を施して焼鈍後の表面粒組織においてラメラ間隔を制御するとともに、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは50〜250℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは75〜125℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1350℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは50〜250℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱装置を用いて制御して磁束密度の高い方向性電磁鋼板を安定して製造する方法を提案する。
【解決手段】珪素鋼素材を、熱間圧延し、熱延板を焼鈍し、次いで一回の冷間圧延または焼鈍を介して複数の冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際に、前記鋼板を脱炭焼鈍する際の昇温過程において、脱炭焼鈍炉内に複数の誘導加熱装置を直列に配置することにより、鋼板温度が550℃から720℃にある間の加熱速度の範囲を厳密に制御する。 (もっと読む)


【課題】方向性電磁鋼板の製造において、冷間圧延をタンデム圧延機で行ってパス間時効を省略しても、それを行った場合と同等の磁気特性を得ること。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、冷間圧延をタンデム圧延機で行い、さらに、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃/秒以上、好ましくは50℃/秒以上、さらに好ましくは75〜125℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、通常の設備を用いて、脱炭焼鈍後の一次再結晶粒組織中の{411}方位粒の存在する比率を高くできる方法を提供する。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施す方向性電磁鋼板の製造方法において、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、焼鈍後の粒組織においてラメラ間隔を20μm以上に制御する。 (もっと読む)


【課題】化学蒸着法における原料ガスの供給に用いるノズルに、原料ガスの吹き付けが金属ストリップの幅方向に均等となる構造を与える。
【解決手段】化学蒸着を行う処理炉内に導入された金属ストリップに向けて、原料ガスを吹き付けるノズルにおける、該原料ガスの供給側から原料ガスの吐出側へ延びる配管は、供給側から吐出側へ向かって順次2経路に分かれる分枝を少なくとも2段で繰り返し、最終段分枝の経路末端に吐出口を設け、各段の分枝後の経路におけるコンダクタンスを2経路相互で等しくする。 (もっと読む)


【課題】本発明は、主にトランス等の鉄芯として使用される充分析出窒化型の高磁束密度方向性電磁鋼板の製造方法を提供する。
【解決手段】熱間圧延板焼鈍条件を有効酸可溶性Al(AlNR)で規定される熱間圧延鋼帯の焼鈍条件を下記上限、下限の温度での一段化することにより整粒性を改善して、磁束密度を高位に確保して高Siの特徴を発揮させた充分析出窒化型の高磁束密度方向性電磁鋼板の製造方法。
Tmax.(℃)=15/22×AlNR+1000:(<1120℃)
Tmin.(℃)=15/22×AlNR+900:(≧925℃)
ここで、AlNR(ppm)=酸可溶性Al−27/14(N−14/48Ti) (もっと読む)


【課題】磁気特性とグラス被膜特性に優れた方向性電磁鋼板の製造方法とその製造方法で使用する焼鈍分離剤用MgOを提供する。
【解決手段】焼鈍分離剤を塗布した後、高温仕上げ焼鈍する方向性電磁鋼板の製造方法において、焼鈍分離剤として用いるMgOのゼータ電位の絶対値が20mV以上で、20℃の40%クエン酸活性度が100〜200で、かつ、平均粒径が1.5〜4.5μmで粒度分布の標準偏差が4以上である焼鈍分離剤を、冷間圧延方向性電磁鋼板に塗布し、高温仕上げ焼鈍する。 (もっと読む)


【課題】良好なグラス皮膜形成と優れた磁気特性を有する完全固溶窒化型高磁束密度方向性電磁鋼板の製造方法を提供する。
【解決手段】一次再結晶焼鈍時の水蒸気分圧と温度を810〜890℃で60〜180秒間均熱し、その雰囲気のPH2O/PH2を0.30〜0.70とし、引き続く後半部の温度条件を850〜900℃で5〜30秒間、その雰囲気のPH2O/PH2を0.20以下の2段とし、その後窒化し、二次再結晶焼鈍前の鋼板酸素が板厚0.30mm換算酸素で450ppm以上700ppm以下とし、引き続く二次再結晶焼鈍においてコイル外周部最熱点の温度が室温から950℃までの間の雰囲気を窒素25〜75%、残部水素、PH2O/PH2を0.01〜0.15とする磁気特性とグラス皮膜が優れた方向性電磁鋼板の製造方法。 (もっと読む)


【課題】コイル全長にわたって均一かつ良好な磁気特性を有する方向性電磁鋼板を提供する。
【解決手段】Siを1.0〜5.Omass%含有する方向性電磁鋼板の製造に際し、焼鈍分離剤の主剤として、少なくとも50%のマグネシアを含有し、かつ微量含有物として下記の組成になる複合酸化物を、マグネシア:100質量部に対して1〜10質量部含有するものを用いる。
(M+a,M2+b,M3+c)AOx
但し、2≦a+2b+3c≦6, 0≦a≦6, 0≦b≦3, 0≦c≦2
4≦x≦6
+ :Li,Na,K、 M2+:Mg,Ca,Sr,Ba,Cr,Co,Mn,Zn,Fe、
3+:Fe,Al,Cr,Mn、 A:Si,Zr,Mo,W (もっと読む)


【課題】磁歪振動が抑制され騒音低減効果をもたらす磁歪特性に優れる方向性電磁鋼板を提供する。
【解決手段】まず、方向性電磁鋼板の表面にフォルステライトを主体とする無機鉱物質被膜を、さらにその上層には、平均密度が3.1g/cm3以上で平均硬度が15GPa以上の被膜を有することとする。例えば、上記上層被膜はコロイダルシリカとアルミナゾルを種々の割合で混合し、この混合物をフォルステライト被膜のある鋼板に900℃から1050℃の温度範囲で焼き付けることで形成される。 (もっと読む)


【課題】歪取焼鈍後においても鉄損が劣化することなしに、安定して低い鉄損が得られる方向性電磁鋼板の製造方法について提案する。
【解決手段】方向性電磁鋼板用の溶鋼を出発素材として、熱間圧延、冷間圧延、一次再結晶焼鈍および仕上焼鈍の一連の工程を経て方向性電磁鋼板を製造するに当り、最終冷間圧延後の鋼板表面に、エッチング処理を施して所定の条件を満足する線状溝を形成した後、その後の一次再結晶焼鈍は、鋼板温度が500℃以上750℃以下の温度域における加熱速度を、線状溝以外の部分に比べて線状溝部分で速くする。 (もっと読む)


【課題】歪取焼鈍による鉄損劣化のない耐歪取焼鈍特性に優れた低鉄損の方向性電磁鋼板と、その安価な製造方法を提案する。
【解決手段】Siを1.5〜7.0mass%含有する方向性電磁鋼板の製造方向において、最終冷延後から二次再結晶焼鈍を経て絶縁被膜を形成するまでのいずれかの工程において、鋼板に1cm当たり0.2〜50個の貫通穴を、好ましくは、ハニカム状、格子状もしくはランダムに形成することを特徴とする耐歪取焼鈍特性に優れる低鉄損方向性電磁鋼板の製造方法。 (もっと読む)


【課題】コイル全長にわたって均一かつ良好な磁気特性を有する方向性電磁鋼板を提供する。
【解決手段】Si含有量が1.0〜5.0mass%の、フォルステライト質下地被膜の表面にガラス質の無機コーティングをそなえる方向性電磁鋼板コイルにおいて、コイル幅方向端部における地鉄部のTi,Mo,W,Ta,V,NbおよびZr濃度を合計で150ppm以下、コイル幅方向端部での被膜を含めたC濃度を30ppm以下で抑制し、かつコイル幅方向端部の幅方向中央部に対する被膜を含めたC濃度の差を20ppm以内に制限することにより、コイル全幅にわたり歪取焼鈍前後の鉄損の比率を1.2以下とする。 (もっと読む)


121 - 140 / 148