説明

Fターム[4K037EB01]の内容

薄鋼板の熱処理 (55,812) | 薄鋼板の鋼種、組織 (6,203) | C上限 0.006%以下 (104)

Fターム[4K037EB01]に分類される特許

1 - 20 / 104


【課題】実際のプレス成形において良好な成形性を得ることができる、曲げ加工性に優れた冷延鋼板を提供する。
【解決手段】質量%で、C:0.005%以下、Si:0.1%以下、Mn:0.5%以下、P:0.03%以下、S:0.02%以下、N:0.005%以下およびAl:0.1%以下を含有し、さらにTi:0.020%以上0.1%以下を含有し、残部はFeおよび不可避不純物の組成にすると共に、TiNの大きさを0.5ミクロン以下、Ti硫化物および/またはTi炭硫化物の大きさを0.5ミクロン以下、フェライト粒径を30ミクロン以下とし、さらに(111)//NDのX線ランダム強度比を3以上、(100)//NDのX線ランダム強度比を1以下とする。 (もっと読む)


【課題】TS≧340MPaという高強度と共に、BH≧30MPa、均一伸び≧18%、促進時効後のYP-El≦1.0%を満足する焼付硬化性と成形性に優れた高強度薄鋼板を提供する。
【解決手段】質量%で、C:0.0010〜0.0040%、Si:0.05%以下、Mn:0.1〜1.0%、P:0.10%以下、S:0.03%以下、Al:0.01〜0.10%、N:0.0050%以下およびTi:0.005〜0.050%を含有し、かつ
(Ti−3.4×N−1.5×S)/C≦6.0、
Mn/C≧100
の関係を満足し、残部はFeおよび不可避的不純物の組成とする。
ただし、上記数式中における元素記号は、それぞれの元素の鋼中の含有量(質量%)を表す。 (もっと読む)


【課題】冷間圧延の圧下率が85%以下でも、確実にフェライト組織の平均結晶粒径が12.0μm以下で、-0.20≦Δr≦0.20が得られるイヤリング性に優れた冷延鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.0040%以下、Mn:0.14〜0.25%、Al:0.020〜0.070%、Nb:0.005%以上0.020%未満、下記の(3)あるいは(4)を満足するTi、および下記の(1)あるいは(2)を満足するBを含む冷延鋼板;(1)N-(14/48)Ti>0の場合、0.0003≦B-(11/14){N-(14/48)Ti}≦0.0010、(2)N-(14/48)Ti≦0の場合、0.0003≦B≦0.0010、(3)C/12-Nb/93≦0の場合、0.005≦Ti≦0.020、(4)C/12-Nb/93>0の場合、48×{(C/12+N/14)-Nb/93}≦Ti≦0.020。 (もっと読む)


【課題】自動車外板や内板用として有用な、成形後の表面品質に優れる冷延鋼板を提供する。
【解決手段】質量%で、C:0.0005〜0.0050%、Si:0.30%以下、Mn:0.50%以下、P:0.050%以下、S:0.020%以下、Ti:0.010〜0.100%、sol.Al:0.080%以下及びN:0.0070%以下を含有し、かつC、N、S、Tiが下記式(1)の関係を満足し、残部はFe及び不可避的不純物の組成とする。

([%Ti]/48−[%N]/14−[%S]/32)/([%C]/12)≧1.00
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。 (もっと読む)


【課題】自動車外板や内板用として有用な、成形後の表面品質に優れる高張力冷延鋼板を提供する。
【解決手段】質量%で、C:0.0005〜0.0050%、Si:0.50%以下、Mn:2.00%以下、P:0.100%以下、S:0.020%以下、Ti:0.010〜0.100%、sol.Al:0.080%以下及びN:0.0070%以下を含有し、かつC、N、S、Tiが下記式(1)の関係を満足し、残部はFe及び不可避的不純物の組成とする。

([%Ti]/48−[%N]/14−[%S]/32)/([%C]/12)≧1.00 ・・・(1)
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。 (もっと読む)


【課題】自動車外板や内板用として極めて有用な、成形後の表面品質に優れる焼付け硬化型冷延鋼板を提供する。
【解決手段】質量%で、C:0.0005〜0.0050%、Si:0.30%以下、Mn:1.50%以下、P:0.100%以下、S:0.020%以下、sol.Al:0.080%以下、N:0.0070%以下およびNb:0.003〜0.100%を含有し、かつC,Nbが下記式の関係を満足し、残部はFeおよび不可避的不純物の組成とする。

0.50≦([%Nb]/93)/([%C]/12)≦1.50
ここで、[%M]は、M元素の鋼中含有量(質量%)を表す。 (もっと読む)


【課題】焼付硬化性及び成形性に優れた高強度薄鋼板を提供する。
【解決手段】質量%で、C :0.0010〜0.0040%、Si:0.05%以下、Mn:0.1〜1.0%、P :0.10%以下、S:0.03%以下、Al:0.01〜0.10%、N :0.0050%以下及びNb:0.005〜0.025%を含有し、かつ、〔%Nb〕/〔%C〕≦10及び〔%Mn〕/〔%C〕≧100を満足し、残部がFe及び不可避不純物の組成からなり、引張強度(TS)が340MPa以上、焼付硬化量(BH)が30MPa以上、均一伸びが18%以上、促進時効後の降伏伸び(YP−EL)が1.0%以下であることを特徴とする。 (もっと読む)


【課題】従来に比べてプレス加工性が大幅に向上した薄鋼板を提供する。
【解決手段】質量%で、C :0.005%以下、Si:0.2%以下、Mn:0.5%以下、P :0.04%以下、S:0.03%以下、N :0.01%以下及びAl:0.1%以下を含有し、かつ、Ti:0.01〜0.1%及びNb:0.001〜0.1%のうちから選択される少なくとも一種を含有し、残部がFe及び不可避不純物の組成からなり、鋼中に、粒径が6nm以下のNb及び/又はTiの炭化物が、体積比で1×10-5〜5×10-4の範囲で分散してなることを特徴とする。 (もっと読む)


【課題】形状凍結性に優れた冷延鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.0010〜0.0030%、Si:0.05%以下、Mn:0.1〜0.5%、Ti:0.021〜0.060%、B:0.0005〜0.0050%を含み、かつBとCを、B/Cが0.5以上を満たすように含有する組成の鋼素材に、仕上圧延終了温度:870〜950℃とする仕上圧延を施し、巻取温度:450〜630℃で巻き取る熱延工程と、冷延圧下率:90%以下とする冷延工程と、冷延工程後、600℃以上の温度域を1〜30℃/sの平均加熱速度で、700〜850℃の範囲の均熱温度まで加熱し、30〜200s間保持した後、600℃までの温度域を平均で3℃/s以上の冷却速度で、冷却する焼鈍工程を施した、平均粒径:10〜30μmのフェライトを主体とする組織を有し、比例限が100MPa以下である、形状凍結性に優れた冷延鋼板。 (もっと読む)


【課題】座屈強度が高く成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法を提供する。
【解決手段】C:0.0005%以上0.0035%以下、Si:0.05%以下、Mn:0.1%以上0.6%以下、P:0.02%以下、S:0.02%未満、Al:0.01%以上0.10%未満、N:0.0030%以下、B:0.0010%以上かつB/N≦3.0(B/N=(B(質量%))/10.81)/(N(質量%)/14.01))を含有し、残部はFeおよび不可避的不純物からなり、鋼板の1/4板厚における板面の(111)[1-10]〜(111)[-1-12]方位における平均の集積強度fが7.0以上である組織を有し、かつ、EAVE≧215GPa、E0≧210GPa、E45≧210GPa、E90≧210GPa、-0.4≦Δr≦0.4、および圧延方向断面のフェライト平均結晶粒径が6.0〜10.0μmである。 (もっと読む)


【課題】本発明は、特定の結晶配向性を有する鋼板を所望の厚みで安定して製造することができ、結晶配向性を有する鋼板をより効率的に提供する。
【解決手段】特定の結晶配向性を有し、厚さが0.01mm以上10mm以下の鋼板を製造する方法であって、
(a)α−γ変態系マスターピース鋼板と該マスターピース鋼板より低いA3変態点を有するα−γ変態系マテリアル鋼板2を積層する工程、
(b)積層したマスターピース鋼板とマテリアル鋼板を接着することによって一体化する工程、
(c)マテリアル鋼板のA3変態点以上、マスターピース鋼板のA3変態点未満に加熱した後に、マテリアル鋼板
のA3変態点未満に冷却する工程、
から構成されることを特徴とする結晶配向性を有する鋼板の製造方法である。 (もっと読む)


【課題】溶接缶の耐圧強度を高く保つことが可能な高強度缶用鋼板およびその製造方法を提案する。
【解決手段】C:0.003%以下、Si:0.02%以下、Mn:0.05〜0.60%、P:0.02%以下、S:0.02%以下、Al:0.01〜0.10%、N: 0.0010〜0.0050%、Nb:0.001〜0.05%、B:0.0005〜0.002%を含有し、残部はFeおよび不可避的不純物からなる。そして、板厚中央部において、({112}<110>方位の集積強度)/({111}<112>方位の集積強度)≧1.0であり、圧延方向から90°方向の引張強度が550〜800MPaで、圧延方向から90°方向のヤング率が230GPa以上である。850〜960℃の熱間仕上圧延温度で熱間圧延を行い、550〜750℃で巻き取り、80%以上の圧延率で冷間圧延を行い、520〜700℃で焼鈍を行うことで得られる。 (もっと読む)


【課題】本発明は自動車の外板材等に使用されている冷間圧延鋼板及びこれを利用した溶融メッキ鋼板及び冷間圧延鋼板の製造方法に関するものである。
【解決手段】本発明は焼付硬化性、常温耐時効性及び耐2次加工脆性に優れた高強度冷間圧延鋼板及びその製造方法を提供することに、その目的がある。
本発明はTiを微量添加し、Al及びMoを同時に添加し、また製造条件の制御と共に、焼鈍後に結晶粒のサイズを微細化させる方法により鋼中の固溶元素を適切に制御することによりASTM No.9以上の焼鈍後の結晶粒のサイズ、30MPa以上の焼付硬化量(BH)及び30MPa以下のAI値を有する焼付硬化性に優れた高強度冷延鋼板及びこれを利用した溶融メッキ鋼板及び冷間圧延鋼板の製造方法をその旨としている。本発明によると、焼付硬化性、常温耐時効性及び耐2次加工脆性に優れた高強度冷間圧延鋼板及び溶融メッキ鋼板が提供されることができる。 (もっと読む)


【課題】溶接性、非時効性、加工性に優れ、缶高の減少が小さい軟質缶用鋼板及びその製造方法を提供する。
【解決手段】鋼成分が、質量%で、C:0.0015〜0.0050%、Mn:0.1〜0.8%、Al:0.01〜0.10%、N:0.0015〜0.0070%、Nb:4×C〜20×C(原子比では、0.52×C〜2.58×C)、B:0.15×N〜0.75×N(原子比では、0.20×N〜0.97×N)を含み、残部がFeおよび不可避的不純物からなり、連続焼鈍法により製造され、連続焼鈍条件として均熱時間tを20〜90秒、均熱温度Tを700〜780℃とし、かつ、前記均熱時間t(秒)、均熱温度T(℃)、鋼成分(質量%)の関係が770≦t/3+T−14.8×Loge(Nb)−32×B/N≦840を満たし、圧延率:0.5〜5%の調質圧延を行なって調質度T2〜T3.5の範囲とする。 (もっと読む)


【課題】降伏応力が低く深絞り性に優れるとともに、良好な耐二次加工脆性を有する冷延鋼板およびその製造方法を提供する。
【解決手段】C、Si、Mn、P、S、sol.Al、N、Ti及びNbを所定濃度含有し、残部がFe及び不純物からなるとともに下記式(1)及び(2)を満足する化学組成を有し、フェライト結晶粒度番号が9.0以下である鋼組織を有し、塗装焼付硬化量が10〜35MPaである機械特性を有する冷延鋼板。-0.0025≦C-(12/93)×Nb-(12/48)×Ti*<0(1)Ti*=max[Ti-(48/14)×N-(48/32)×S,0](2)ここで、式(1)および(2)における各元素記号は各元素の含有量(単位:質量%)を示し、式(2)におけるmax[]は[]内の引数のうち最大の値を返す関数である。 (もっと読む)


【課題】深絞り性加工性に格段に優れ、筋状のめっきムラも無く外観に優れ、同時に優れためっき密着性を得ることができる合金化溶融亜鉛めっき鋼板及びその製造方法を提供する。
【解決手段】所定の質量%のC、Si、Mn、P、S、Al、N、Ti、及び、Nbを含有し、残部がFe及び不可避不純物からなり、下記式1で定義されるexCが、−0.02〜−0.001である鋼板の片面又は両面に、所定の質量%のCo、Al、Feを含有し、残部がZn及び不可避的不純物からなるめっき層を有することを特徴とする深絞り加工性と外観に優れた合金化溶融亜鉛めっき鋼板。
exC =[C]−(12/48)×([Ti]−(48/14)×[N])
−(12/93)×[Nb] … (式1)
[C]、[Ti]、[N]、[Nb]は、それぞれの元素の含有量(質量%)である。 (もっと読む)


【課題】 深絞り用冷延鋼板及び合金化溶融亜鉛めっき鋼板を製造するに際し、熱延鋼板の結晶粒微細化を板厚全厚に十分達成し、最終製品の深絞り性を達成するための、熱延鋼板の鋼板冷却方法を提供する。
【解決手段】 スラブを、熱間圧延、冷間圧延、連続焼鈍を行って冷延鋼板若しくは合金化溶融亜鉛めっき鋼板を製造するに際し、熱間圧延が連続して実施される熱延スタンド列における最終スタンドより2段あるいは1段前のスタンドにおいて仕上げ圧延を終了し、その後最終スタンドまでの間に冷却する際に、仕上げ温度(T)と冷却開始時間(t)が次式を満足する条件で製造する。
40/(log[t(秒)]+2)−20≦T−Ar3(℃)≦60/(log[t(秒)]+2) (もっと読む)


【課題】自動車分野、特に燃料タンク用途に適用可能なプレス成形性を有し、優れた耐二次加工脆性および優れたシーム溶接部低温靭性、更には優れた耐食性を有する340MPa以上の引張強度のSn−Znめっき高強度鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.0005〜0.0050%、Si:0.3超〜1.0%、Mn:0.70〜2.0%、P:0.05%以下、Ti:0.010〜0.050%、Nb:0.010〜0.040%、B:0.0005〜0.0030%、S:0.010%以下、Al:0.01〜0.30%、N:0.0010〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分の熱延鋼板の酸洗時に仕上圧延温度に対応する酸洗時間で酸洗し、Si表面濃度が0.3超〜1.5%以下とした後に、冷延、焼鈍、Sn−Znめっきを施すことを特徴とする。 (もっと読む)


【課題】気泡や非金属介在物、モールドフラックスの巻き込みによる欠陥が少なく、且つブリスター欠陥が少ない鋼板を製造する。
【解決手段】各々1対の上部磁極と下部磁極を備えるとともに、溶鋼吐出角度が10°以上30°未満の浸漬ノズルを備えた連続鋳造機を用い、前記上部磁極と下部磁極に各々印加される直流磁界により溶鋼流を制動しつつ、極低炭素鋼を連続鋳造するに際し、極低炭素鋼の化学成分を、凝固シェル前面の濃度境界層中の界面張力勾配を考慮した特定の範囲に調整するとともに、鋳造するスラブ幅および鋳造速度に応じて、上部磁極と下部磁極に各々印加する直流磁界の強度を最適化し、さらに、このような連続鋳造法で鋳造されたスラブを圧延して得られた熱延鋼板を、特定の条件で酸洗および冷間圧延する。 (もっと読む)


【課題】IF鋼タイプに近い成分系のNb添加極低炭素鋼を用い、安定したBH特性を有し、表面外観に優れた高強度冷延鋼板及びその製造方法を提供する。
【解決手段】質量%で、C:0.002〜0.005%、Si+Al:0.4〜0.6%、Mn:0.005〜0.05%、P:0.005%以下、S:0.010%以下、Nb:0.035〜0.065%、Ti:0.014〜0.020%、B:0.0005〜0.0010%、N:0.004%以下を含有し、残部がFe及び不可避的不純物からなる成分組成を有するスラブを、1100〜1200℃で30min以上加熱し、オーステナイト相域で熱間圧延後、500℃以上600℃未満で巻取り、冷間圧延後、連続焼鈍プロセスにより、平均2℃/sec以下の昇温速度で少なくとも750℃まで加熱し、820〜850℃で60ses以内の時間保持後、平均20℃/sec以上30℃/sec未満の冷却速度で少なくとも650℃まで冷却する条件で焼鈍する高強度冷延鋼板の製造方法。 (もっと読む)


1 - 20 / 104