説明

Fターム[4K070BC04]の内容

炭素鋼又は鋳鋼の製造 (7,058) | スラグ (552) | フォーミング・スロッピングの抑制 (45)

Fターム[4K070BC04]に分類される特許

1 - 20 / 45


【課題】スピッチングやスロッピングの発生を低減しつつ、製鋼における転炉の脱炭処理を高速化することが可能な、転炉の精錬方法を提供する。
【解決手段】事前の転炉脱炭処理における操業実績から、スラグ1トン当たりの炉内残留酸素濃度を計算する工程S1と、その処理後の実績値と対比して、その差から排ガス流量の補正係数を求める工程S2と、現在の転炉脱炭処理における酸素供給量、並びに、求めた排ガス補正係数を用いて補正した排ガス流量、排ガス組成、溶銑成分及び副原料使用量から炉内残留酸素濃度を逐次算出してスラグ性状の絶対値を把握する工程S3と、炉内残留酸素濃度の値に応じて、酸素供給量、ランス高さ、及び底吹きガス流量のうち少なくとも何れか1つを調整する調整工程S4と、を有する転炉の精錬方法とする。 (もっと読む)


【課題】 転炉内の溶銑浴面に上吹きランスから酸素ガスを吹き付けて溶銑を脱炭精錬する際に、スピッティング及びスロッピングの発生を抑制してダストの発生量を低減する。
【解決手段】 上吹きランス先端に複数のラバールノズル7が配置された上吹きランス1を用いて溶銑11を脱炭精錬するに際し、上吹きランスから噴射される酸素ガス噴流によって溶銑浴面に形成される火点の凹みの体積を下記の(1)式で定義したとき、(1)式で定義される火点の凹みの体積が1.0〜2.0m3になるように予定される吹錬条件に基づいて設計された上吹きランスを用い、且つ、(1)式で定義される火点の凹みの体積が1.0〜2.0m3になるように酸素ガス供給量及びランス高さを調整して酸素ガスを前記上吹きランスから吹き付ける。但し、(1)式において、Vは火点の凹みの体積、nはノズル孔数、Lは火点深さ、Aは火点面積である。 V=n×L×A…(1) (もっと読む)


【課題】溶銑脱燐処理を行った溶銑を対象として、その溶銑を転炉を用いてスピッティングやダストの発生量を抑制しつつ、高能率かつ高効率で脱炭処理する方法を提供する。
【解決手段】上底吹き型の転炉を用いて、溶銑脱燐処理を施された溶銑に該溶銑トン当たり4.0〜5.5Nm/minの速度で上吹き酸素を吹き付けて脱炭処理を行う。その際に、上吹き酸素の吹付け時間が全吹付け時間の1/5経過するまでに取鍋スラグを転炉内に投入すると共に、上吹き酸素の吹付け終了時点での転炉内スラグ中Al質量%とCaO質量%との比が0.05〜0.09の範囲になるように調整する。さらに、上吹き酸素吹付けによるL/Lを、上吹き酸素の全吹付け時間の1/4が経過する時点までは0.03〜0.10に、その後その上吹き酸素の吹付け終了までは0.20〜0.35に制御する。 (もっと読む)


【課題】吹錬中のスロッピングを安定的に回避しうる溶銑脱りん方法を提供する。
【解決手段】上底吹き転炉型容器を用い、上吹き酸素流量1.5〜4.0Nm/min/溶銑t、底吹きN流量0.1〜0.6Nm/min/溶銑tとして、生石灰および酸化鉄を添加し、処理後のスラグ塩基度は1.5〜2.5で、吹錬中にサブランスからスラグへコークス粉を吹き付ける溶銑脱りん方法において、コークス粉吹き付け速度を、上吹き酸素流量および処理前溶銑中[Si]濃度と[Ti]濃度の和によって規定される所定の範囲とし、コークス粉吹き付け量を、上吹き酸素流量および上記の濃度の和により規定されたコークス粉吹き付け速度に基づき設定される所定の範囲とする。 (もっと読む)


【課題】シュレッダーダストをプラスチックの代替物として用いてフォーミング抑制材を製造する。
【解決手段】大きさによる選別処理301では、シュレッダーダストから、例えば、約12mm以上の粒度の破片を選別する(301:大)。約12mmより小さな粒度(301:小)の破片はシュレッダーダストの原料として貯蔵する(304)。重さによる選別処理302では、大きさによる選別処理301で選別された約12mm以上の粒度の破片の中から重量の小さい軽量物を選別する(302:軽)。重さによる選別処理302で選別されなかった(302:重)重量物からは、鉄や非鉄金属が回収される。破砕処理303では、重さによる選別処理302で選別された軽量物を例えば約10mmより小さい破片に破砕し、破砕された軽量物をシュレッダーダストの原料として貯蔵する(304)。貯蔵されている破片からフォーミング抑制材製造用に適切な配合量を切り出す。 (もっと読む)


【課題】生石灰粉を上吹きして溶銑を脱りんする方法において、上吹き酸素流量を2.0〜5.0Nm3/min/溶銑tに増加して、上吹き酸素の供給時間が5〜8分間という短時間に高速で溶銑脱りん処理する場合に、上吹きした生石灰粉の飛散ロスをCaO純分換算で1.0kg/溶銑t以下に抑制するとともに処理後溶銑中[%P]を0.015質量%以下にまで低減する方法を提供する。
【解決手段】上底吹き転炉でCaO含有粉体を上吹き酸素と共に溶銑へ上吹きして溶銑脱りんする方法において、上吹き酸素と共に生石灰粉を3kg/min/溶銑t以下の速度で溶銑表面へ吹き付け、底吹きガス流量を0.2〜0.6Nm3/min/溶銑t、サブランスから0.1〜1.0Nm3/min/溶銑tのガスと共に生石灰粉を3kg/min/溶銑t以下の速度で溶銑表面へ上吹きし、CaO・FetO・SiO2・Al2O3を含有するプリメルトフラックス4〜10kg/溶銑tと、前記生石灰粉と前記プリメルトフラックスと塊生石灰とのCaO純分に対して前記生石灰粉中のCaO純分が40質量%以上となるように定めた量の生石灰粉とを吹錬開始前後に添加し、且つ処理後スラグ塩基度を2.0〜3.0とする。 (もっと読む)


【課題】マイクロ波を用いて転炉吹錬時における浴面レベルを安定して正確に測定する。
【解決手段】転炉1に脱燐処理を実施した溶銑を装入した後、マイクロ波レベル測定装置3を用いて、全チャージに対し80%以上の割合で転炉1内の浴面レベルを測定し、当該測定データを当該チャージの設定ランス高さに反映させ、3.0〜7.0Nm3/(分・トン)の送酸速度で、かつ3.3以上の装入塩基度で吹錬する。
【効果】安定して正確な浴面レベルを計測できるので、スピッティングやスロッピングの発生を抑制することができる。 (もっと読む)


【課題】スピッティングやダスト発生の抑制とスロッピング発生の抑制を両立して高速送酸処理を実現しつつ、さらに高脱燐能を得ることができる転炉型溶銑予備脱燐方法を提供する。
【解決手段】上底吹き型の転炉を用い、上吹き酸素を該転炉内の溶銑へ吹き付けて溶銑を脱燐処理する方法であって、脱燐処理中には上吹き酸素の供給速度を溶銑トン当たり2.5〜4.0Nm3/minとし、かつ、スラグ生成剤として脱炭スラグおよび取鍋スラグの少なくとも一方を該転炉内に投入した後に、サブランスより粉末状加炭剤をC質量換算で1.5〜5.5kg/t吹き付けることを特徴とする溶銑の脱燐処理方法。 (もっと読む)


【課題】スピッティングやダストの発生の抑制と、スロッピングの発生の抑制とを両立して高速送酸処理を実現しつつ、さらに高脱燐能を得ることができる溶銑の脱燐処理方法を提供する。
【解決手段】上底吹き型の転炉を用い、スラグ生成剤として取鍋スラグを転炉内に投入し、上吹き酸素とともに粉状CaO源を転炉内の溶銑へ吹き付けて溶銑を脱燐処理する方法である。取鍋スラグには最大粒径を30mm以下に調整したものを用い、上吹き酸素の供給速度を溶銑トン当たり2.0〜4.0Nm3/minとし、かつ取鍋スラグの転炉内への投入を上吹き酸素の供給時間が30%経過する時点より前に完了させて、脱燐処理終了時点におけるスラグの化学組成を、塩基度(CaO質量%/SiO2質量%):2.5以上3.5以下、Al2O3質量濃度:3%以上10%以下、T.Fe質量濃度:3%以上15%以下に制御する。 (もっと読む)


【課題】脱燐剤にフッ素を含む副原料を使わず、上吹き酸素の供給時間が5〜8分間でも、スピッティングやスロッピングを発生せずに脱燐率80%以上で溶銑から燐を除去する。
【解決手段】上底吹き転炉を用いて、脱燐剤として供給するCaO質量の40%以上を上吹き酸素の供給開始と同時に、または1分経過時点までに、溶銑への吹き付けを開始し、脱燐処理終了時のスラグ塩基度を2.0〜2.9とする。上吹き酸素の供給前に、或いは開始直後に、取鍋スラグまたはカルシウムフェライトを投入する第1の条件と、上吹き酸素の供給前に、或いは上吹き酸素の供給時間全体の21%が経過する前に、取鍋スラグを、かつ、上吹き酸素の供給前に、或いは供給時間の28%が経過する前に、カルシウムフェライトを投入し、脱燐処理終了時のスラグ中Al2O3濃度が6〜12%に調整する第2の条件とを満足する。 (もっと読む)


【課題】高速送酸下でも送酸速度を低下させることなくスロッピングを防止でき、炭材の使用量も削減でき、設備費も安価なスロッピング防止方法を提供する。
【解決手段】上底吹き型の転炉を用いて、上吹き酸素流量2.0〜4.0Nm3/min/tonで溶銑へ向けて4〜8分間上吹き酸素を吹き付け、かつ、上吹き酸素の吹き付け開始から1〜4分経過中に溶銑トン当たりMkg(10≦M≦30)の酸化鉄を一括して又は断続的に転炉内に投入して、上吹き酸素の吹付け終了時のスラグ塩基度(CaO%/SiO2%)を2.0〜2.5、T.Fe濃度を5〜15%として溶銑を脱燐処理する。酸化鉄の投入完了時点から、{26/(M-1.4)-1.0}≦T≦{26/(M-1.4)}を用いて計算される時間T(T≧0)が経過した時点から、溶銑トン当たり0.4〜1.0kgの炭材を、サブランスを通じて溶銑トン当たり0.4〜1.0kg/minの速度でスラグ層内に吹き込むことにより、脱燐処理中のスロッピングを防止する。 (もっと読む)


【課題】脱珪処理と脱りん処理とを同一の転炉型精錬炉にて行うに際して脱珪及び脱りん処理の時間を十分に短縮しつつ精錬を行うことができるようにする。
【解決手段】溶銑を装入した後の転炉型精錬炉の空間容積を0.6〜1.5m3/tとした上で、スラグの塩基度を0.7〜1.0とし、脱珪に必要な計算必要酸素量の2.5〜4倍の酸素を固体酸素源と気体酸素とにより供給し、供給時の固体酸素源の平均酸素供給速度を1.5〜2.5kg−O/t/minとし且つ気体酸素の平均酸素供給速度を1.5〜3Nm3/t/minとした脱珪処理を1回以上行うと共に当該脱珪処理における珪素の低下量を0.5〜0.7質量%とし、脱珪処理を経ることにより脱りん処理前の溶銑の珪素濃度が0.4質量%以下になるようにし、脱珪処理終了後には転炉型精錬炉の傾動による脱珪スラグの排滓を行わずに、引き続き脱りん処理を行う。 (もっと読む)


【課題】脱珪処理と脱りん処理とを同一の転炉型精錬炉にて行うに際して脱珪及び脱りん処理の時間を十分に短縮しつつ精錬を行うことができるようにする。
【解決手段】溶銑を装入した後の転炉型精錬炉の空間容積を0.2〜0.6m3/tとした上で、スラグの塩基度を0.7〜1.0とし、脱珪に必要な計算必要酸素量の2〜3倍の酸素を固体酸素源と気体酸素とにより供給し、供給時の固体酸素源の平均酸素供給速度を0.8〜2.5kg−O/t/minとし且つ気体酸素の平均酸素供給速度を0.9〜1.4Nm3/t/minとした脱珪処理を1回以上行うと共に当該脱珪処理における珪素の低下量を0.4〜0.6質量%とし、脱珪処理を経ることにより脱りん処理前の溶銑の珪素濃度が0.4質量%以下になるようにし、脱珪処理終了後には転炉型精錬炉の傾動による脱珪スラグの排滓を行わずに、引き続き脱りん処理を行う。 (もっと読む)


【課題】転炉スロッピングの予測及びランスの最適化のためのシステムの提供。
【解決手段】容器中の鉄鋼の表面に酸素を吹きつけるためのランスであって、ランスキャリッジに連結され、データ収集モジュール及びコンピュータと信号通信状態にある加速度計と通信状態にあるランスを準備し、上記容器に製鋼原料を仕込み、ランスを容器の中へ降下させて原料に酸素を注入し、ランス振動を示す加速度計からの信号を取得し、上記振動信号を処理してランス振動の周波数成分を決定し、該周波数成分のレベルと所望の動作値とを比較し、少なくとも1つの鉄鋼製造工程パラメータを、周波数成分のうちの少なくとも1つのレベルに基づいて調節することを含む、容器中で鉄鋼を製造する方法。 (もっと読む)


【課題】上底吹き転炉で、上吹き酸素流量を2.0〜5.0Nm3/min/溶銑t、底吹きガス流量を0.2〜0.6Nm3/min/溶銑t以下としてCaO含有粉体を上吹き酸素と共に溶銑へ上吹きして溶銑脱りんする方法において、スロッピングによる鉄歩留まり低下を抑制でき且つ高脱りん率が得られる方法を提供する。
【解決手段】CaO含有粉体中に含まれるCaOと上吹き酸素との質量比CaO/Oを式(A)の範囲とする。
0.036763×Qo2-0.26492×QB+0.366557
< CaO/O < 0.040893×Qo2-0.26492×QB+0.939606 (A)
ここで、
Qo2:上吹き酸素流量(Nm3/min/溶銑t)、
QB:底吹きガス流量(Nm3/min/溶銑t)、
CaO:CaO含有粉体上吹き期間中の、該粉体に含まれるCaOの平均質量供給速度(kg/min/溶銑t)、および
O:CaO含有粉体上吹き期間中の、上吹き酸素の平均質量供給速度(kg/min/溶銑t)
である。 (もっと読む)


【課題】 溶銑または溶鋼を酸化精錬するにあたり、効率的な酸化精錬が可能であると同時に転炉型精錬容器の付着地金を効率的に溶解するための上吹きランスを提供する。
【解決手段】 本発明の精錬用上吹きランス1は、上吹きランスの先端部に、鉛直下向きまたは斜め下向き方向の主孔ノズル11及び副孔ノズル12を有し、前記先端部から上方に隔離した位置の上吹きランスの側面部に、水平または斜め下向き方向の二次燃焼用ノズル13を有し、且つ、上吹きランスの内部には、固体酸素源とは異なる粉体を吹錬用の酸素含有ガスとともに前記主孔ノズルを通じて供給するか、または、吹錬用の酸素含有ガスを、前記主孔ノズルを通じて供給するための第1の供給経路と、二次燃焼用の酸素含有ガスを、前記二次燃焼用ノズルを通じて供給するための第2の供給経路と、粉体状の固体酸素源を、搬送用ガスとともに前記副孔ノズルを通じて供給するための第3の供給経路と、を有する。 (もっと読む)


【課題】転炉を用いる製鋼精錬プロセス全体として蛍石等のハロゲン化物やAl源を使用すること無く、低燐鋼を安定的に大量製造すると共に、製鋼精錬プロセスを高能率かつ高効率化する方法を提供する。
【解決手段】溶銑予備脱燐処理された溶銑を上底吹き型転炉で吹錬して低燐溶鋼を製造する際に、前記吹錬後のスラグの質量濃度をAl:3.5%以下、T.Fe:15%以上とし、さらにCaOとSiOとの質量濃度比(CaO%/SiO%)を4.0以上6.0以下とすることによって、該スラグ中のフリーCaO質量濃度を7%以上に調整した転炉スラグを同時に製造し、かつ、溶銑予備脱燐処理をされていない溶銑であってSi質量濃度が0.20%以上のものを上底吹き型転炉で溶銑予備脱燐処理する際に、前記のように製造した転炉スラグを脱燐剤の一部として用いてその脱燐処理を行う。 (もっと読む)


【課題】転炉型脱りん炉を用いて脱りんを行うに際して、脱りん効率を低下させることなくスラグのフォーミングを確実に抑制することができるようにする。
【解決手段】転炉型脱りん炉の溶銑2に対して脱りん処理を行って出湯するに際し、スラグのフォーミングを抑制すべく球換算直径が20〜50mmとなる酸化鉄源が、0.05×Wslag≦W≦0.2×Wslag(W:酸化鉄源、Wslag:スラグ量)を満たすように、吹錬終了時に投入し、溶銑2を出湯する。 (もっと読む)


【課題】蛍石等のハロゲン化物を使うことなく、高効率で、生産性の高い溶銑脱りん処理方法を提供する。
【解決手段】転炉型の溶銑予備処理炉において、脱りん処理後の目標塩基度を1.8〜2.2とし、微粉CaOの供給速度を、処理2分後に目標塩基度が1.0〜1.4、5分後に1.4〜1.8となりように制御することにより、初期のスラグの凝結を防止し、後半のスロッピングを防止する。処理前の珪素濃度が高い場合には、粒径5mm以上の転炉滓の上方添加を行っても良い。 (もっと読む)


【課題】脱りんを行うに際して、脱りん効率を低下させることなくスラグのフォーミングを確実に抑制することができるようにする。
【解決手段】脱りん用精錬容器1の溶銑3の脱りん処理中に、スラグSのフォーミングを抑制するために投入する酸化鉄源を投入するに際し、投入する酸化鉄源を、球換算直径が10mm〜50mmの粗粒酸化鉄源M1と、球換算直径が3mm〜10mmの細粒酸化鉄源M2とし、粗粒酸化鉄源M1及び細粒酸化鉄源M2の投入量を式(1)を満たすように設定し、粗粒酸化鉄源M1及び細粒酸化鉄源M2の投入の際には、細粒酸化鉄源M2を投入後に粗粒酸化鉄源M1を連続的に投入している。 (もっと読む)


1 - 20 / 45