説明

Fターム[5C178BC02]の内容

FAXの帯域、冗長度の圧縮 (10,198) | 符号化要素 (2,666) | 非可逆、ロッシー圧縮 (125)

Fターム[5C178BC02]に分類される特許

1 - 20 / 125


【課題】 透明度情報を含む画像情報について、圧縮率と画質の双方の考慮しつつ、効率的に圧縮伸長処理を行う。
【解決手段】 当該ブロックに、完全透明及び/又は完全不透明の領域が含まれているかを判断しステップS2)、含まれている場合には、非可逆圧縮処理(ステップS3)及び非可逆伸長処理(ステップS4)を行う。完全透明及び/又は完全不透明の領域が同一に復元されなかった場合は、可逆圧縮処理を行い(ステップS6)、その旨の圧縮モード情報を付加する(ステップS7)。完全透明及び/又は完全不透明の領域が含まれていなかった場合や、完全透明及び/又は完全不透明の領域が同一に復元された場合は、非可逆圧縮処理を行い(ステップS8)、その旨の圧縮モード情報を付加する(ステップS9)。以上の処理をブロックごとに、全てのブロックに対して行う(ステップS10)。 (もっと読む)


【課題】本発明は、画像データの圧縮率を低下させることなく、圧縮した画像データの画質の劣化を抑えることができる画像圧縮回路、画像圧縮方法、半導体装置、およびスマートフォンを提供する。
【解決手段】本発明に係る画像圧縮回路1は、画像演算部11、圧縮方式決定部12、圧縮処理部13を備える。圧縮方式決定部12は、画素の輝度Yのバラツキ、または画素の輝度Yおよび彩度Sのバラツキに基づいて、隣接する4つの画素の画像データのバラツキを判断し、隣接する4つの画素の画像データのバラツキが小さい場合、量子化誤差の小さいRGB色空間で表現する1つまたは2つの画素の画像データに圧縮(RGB888方式、RGB787方式)し、隣接する4つの画素の画像データのバラツキが大きい場合、4つの画素の輝度と、量子化誤差の大きいYCbCr色空間で表現する2つの画素の画像データとを含むデータに圧縮(YCbCr422方式)する。 (もっと読む)


【目的】非可逆圧縮をする場合に,比較的短い時間で所望のSSIM値を得る圧縮画像を得る。
【構成】非可逆圧縮の圧縮率と非可逆圧縮後の画像の画像劣化指標値であるSSIM値との関係を表わす二次曲線G2が規定されている。非可逆圧縮後の画像の目標のSSIM値であるOBと等しいSSIM値が二次曲線G2と交差する点に対応する圧縮率P4が計算される。その圧縮率P4で画像が非可逆圧縮され,圧縮された画像が復号されてSSIM値S5が算出される。算出されたSSIM値S5が目標のSSIM値の許容範囲外であると,圧縮率P4とSSIM値S5との交点C4を通るように二次曲線G2が補正されて,二次曲線G3が得られる。二次曲線G3を利用して,同様に算出されたSSIM値が許容範囲内となるまで二次曲線の補正,圧縮率の計算等が繰り返される。 (もっと読む)


【課題】点順画像を受け付けて、符号量制御された面順画像の符号を生成するようにした画像処理装置を提供する。
【解決手段】画像処理装置の受付手段は、点順である画像を受け付け、点面変換手段は、前記受付手段によって受け付けられた画像に対して、点面変換処理を行い、複数の非可逆符号化手段は、前記点面変換手段によって点面変換された画像に対して、非可逆符号化処理を行い、制御手段は、前記点面変換手段から前記非可逆符号化手段への画像の送信を制御して、複数の該非可逆符号化手段による非可逆符号化処理を同期させ、該非可逆符号化手段による処理結果の符号量に基づいて、該各非可逆符号化手段が符号化処理に用いる処理変数を変更することによって制御する。 (もっと読む)


【課題】 装置構成の複雑化を招くことなく、対象となる画像に応じて、可逆符号化データ、非可逆符号化データ、可逆、非可逆混在符号化データのいずれを生成するかを決定し、画質劣化と符号量増大の両方を抑制する。
【解決手段】 符号化処理の初期段階では、可逆符号化部、非可逆符号化部を制御して、符号量の少ないのがいずれであったのかを示す判定情報をタイル単位に生成すると共に、目標符号量以下の可逆符号化データの生成処理を試みる。目標符号量以下の可逆符号化データの生成に失敗した場合、判定情報に基づき、非可逆符号化部を制御して非可逆符号化データの生成処理に移行するか、或いは、可逆、非可逆符号化部を制御し、タイル単位の可逆、非可逆混在符号化データの生成処理に移行するか判定する。 (もっと読む)


【課題】 各段の予測精度を向上させ、圧縮率及び画質を向上させる。
【解決手段】 複数のブロックで構成された画像情報から得られた各ブロックの直流成分で構成された直流成分画像データから、各ブロックについての交流成分を予測する交流成分予測方法に関する。まず、注目ブロックの直流成分Sと、その左右のブロックの直流成分L,Rとに基づき、注目ブロックの左右方向の交流成分V,Vを予測する処理を、全ブロックについて繰り返す。次に、予測された注目ブロックの交流成分V,Vと、その上下のブロックの予測された交流成分U,U,B,Bとに基づき、注目ブロックの上下方向の交流成分VUL,VBL,VUR,VBRを予測する処理を、全ブロックについて繰り返す。 (もっと読む)


【課題】イメージデータを縮小サイズに圧縮するためにのトランスコーディング技術を提供する。
【解決手段】符号化デバイスは、全体のイメージにわたってファイルサイズを一様に縮小するために、ビットレート(R)と0値量子化変換係数の数との間のほぼ直線関係の関数として、1つまたは複数の量子化テーブルをスケーリングする。次にスケーリングされた量子化テーブルを使用して、複数のブロックのピクセルを符号化する。このとき、複数のブロックのピクセルのn番目ブロックにおいて符号化されるビットの数とターゲットビットレートを達成する前記n番目ブロックにおいて理想的に符号化されるべきビットの数との間の差異をトラッキングし、差異がスレッシュホールドよりも大きいあるいは等しいとき、複数のブロックの部分を符号化するために使用された1つ以上のビットを取り除く。 (もっと読む)


【課題】 透明度情報を含む画像情報について、その透明度情報を含めて非可逆圧縮しても、伸長再生の際に、完全透明の領域及び完全不透明の領域の少なくとも一方において、画質を劣化させない。
【解決手段】 処理単位である矩形画像データを入力する(ステップS1)。次に、入力した矩形画素データを対象に、完全透明の領域と完全不透明の領域を抽出する(ステップS2)。次に、矩形画像データを、透明度情報、すなわちα値、を含めて、非可逆圧縮処理する(ステップS3)。ここで、静止画についての非可逆圧縮アルゴリズムとしては、例えば、JPEG(Joint Photographic Experts Group)やJPEG2000が典型的である。そして、上記ステップS3で得られた圧縮画像データと、ステップS2で得られた領域データとを併せて出力する(ステップS4)。 (もっと読む)


【課題】フレームバッファーを用いた画像処理を効率的に行うことが可能な画像処理装置、画像表示装置及びプロジェクターを提供する。
【解決手段】制御部51は、画像処理装置30の動作状況(負荷状況)に応じて圧縮処理部61の圧縮率を設定する。つまり、制御部51は、画像処理装置30が比較的高負荷で、フレームバッファー40の帯域が不足しやすい状況であるほど圧縮率を高めて、転送データ量を削減する。一方、制御部51は、画像処理装置30が比較的低負荷で、フレームバッファー40の帯域に余裕がある状況であるほど、圧縮率を下げて画像の劣化を抑制する。 (もっと読む)


【課題】空間領域において画像を8ビット画像に縮小せずに高ビット深度画像を符号化する方法を提供する。
【解決手段】画像の周波数領域表現が受信され、周波数領域表現は複数のビットプレーンを有する。周波数領域表現は、ビットプレーンの第1のセット及びビットプレーンの第2のセットに区画される。ここで、ビットプレーンの第1のセットはビットプレーンの第2のセットより上位のビットプレーンのセットである。ビットプレーンの第1のセット及びビットプレーンの第2のセットは、複数の区画に区画される。ビットプレーンの第2のセットからの少なくとも1つの区画は、ビットプレーンの第1のセットの複数の区画に挿入され、画像の複数の配置された区画を生成する。画像の配置された区画が格納される。 (もっと読む)


【課題】圧縮データの伸張後の色再現性をより高め、データ圧縮効率を向上させる画像処理装置を提供する。
【解決手段】画像を複数の領域に分解し、各領域内で決定した複数の代表色により前記領域内の各画素の色を置き換えることにより画像データを圧縮する画像処理装置であって、画像を複数の特定領域と特定領域内の複数のブロックとに分割する分割手段81、82と、特定領域内において共通に用いられる一以上のグローバル代表色を決定するグローバル代表色決定手段83と、ブロック内においてグローバル代表色と重複しない複数のブロック代表色を決定するブロック代表色決定手段84、85と、画像内の各画素をグローバル代表色またはブロック代表色に置き換える代表色置換手段86と、を有する。 (もっと読む)


【課題】 ブロックを単位とする可逆符号化データ、非可逆符号化データが混在しつつも、目標符号レートの符号化データを容易に生成することが可能になる。
【解決手段】 属性判定部は、入力した着目ブロックを解析することで、当該着目ブロックを非可逆符号化、可逆符号化のいずれで符号化すべきかを判定する。着目ブロックが可逆符号化すべきとして判定された場合、可逆符号化部は基礎となる画質の階層から予め設定された許容画質の階層までの符号化データを生成する。そして、生成された符号化データ量が予め設定された目標符号量を超えるか否かが判定され、超えると判定した場合には着目ブロックを非可逆符号化すべきブロックとして変更する。また、超えないと判定された場合には、可逆符号化部は、残りの階層の符号化データを可逆符号化部により生成させる。また、属性判定部で非可逆符号化すべきと判定されたブロック、或いは、可逆から非可逆へ変更されたブロックについては、非可逆符号化部で非可逆符号化する。 (もっと読む)


【課題】 階調データの圧縮処理に、打ち切りのできない符号化処理を用いた場合であっても、簡単な回路にて、打ち切りによる画像の欠損等による劣化などの問題を防止する為の技術を提供すること。
【解決手段】 着目画素ブロックについてパックを行うことで得られる符号化データの符号量が閾値を超えている場合、該符号量が該閾値を下回るように着目画素ブロックの符号化データから差分画像の非可逆符号化結果を打ち切る。そして、該打ち切りにより得られる符号化データを、着目画素ブロックの符号化データとして出力する。 (もっと読む)


【課題】文字画像の抽出処理を軽減した場合でも、所定の設定が選択されることにより、文字画像の再現性が高い画像圧縮を実現すること。
【解決手段】入力画像データから文字エッジを抽出する文字エッジ抽出部31と、文字エッジ抽出部31が抽出した文字エッジを含む文字画像データを可逆圧縮する可逆圧縮部32と、背景画像データの出力解像度を受け付ける解像度受付部125と、背景画像データの解像度を解像度受付部が受け付けた解像度に変換する解像度変換部35と、解像度受付部125が受け付けた解像度に基づいて背景画像データを非可逆圧縮する際の圧縮率を設定する圧縮率設定部39と、背景画像データを、前記圧縮率設定部39が設定した圧縮率により非可逆圧縮する非可逆圧縮部34aとを有する。 (もっと読む)


【課題】画像圧縮装置において、高品質での画像の復元を可能にしつつ、所定の対象物を含む入力画像を高い圧縮率で圧縮する。
【解決手段】画像縮小手段11は、入力画像を縮小する。縮小画像圧縮手段12は、縮小画像を圧縮する。縮小画像伸長手段13は、圧縮された縮小画像を伸長する。関心領域設定手段14は、入力画像中に所定の対象物に対応する関心領域を設定する。高解像度変換手段15は、事前に所定の対象物を学習することで得られた学習結果を用いた予測処理を利用して、伸長された縮小画像における関心領域に対応する領域内の部分画像を高解像度の画像に変換する。差分画像生成手段16は、関心領域部分について、高解像度変換された画像と入力画像との差分を生成し、差分画像符号化手段17は、差分画像を符号化する。保存・伝送手段18は、縮小画像の圧縮データと差分画像の符号化データを出力する。 (もっと読む)


【課題】離散コサイン変換係数データの適応性サイズブロックおよびサブブロックを利用する形で、ハードウエア実現をより効率的にする画像圧縮のシステムおよび方法を提供する。
【解決手段】エンコーダのブロックサイズ割り当て要素は処理されるべき画素の入力ブロックのブロックまたはサブブロックを選択する。選択は画素値の分散に基づいて実施される。閾値より大きな分散を有するブロックは細分割され、一方閾値より小さい分散を有するブロックは細分割されない。変換要素は選択されたブロックの画素値を周波数領域に変換する。周波数領域値は量子化され、直列化され、送信のために可変長符号化される。 (もっと読む)


【課題】画像における高周波成分のディテイル感の劣化を抑えつつ画像を良好に圧縮することのできるエンコーダ装置及びデコーダ装置を提供する。
【解決手段】エンコーダ装置は、Wavelet変換により得られた高周波成分の画像中で分散値が閾値以上の領域を高周波不規則画像成分とする。エンコーダ装置は丸め処理部にて高周波不規則画像成分のピクセル値を表現するNビット列のうち下位(N>M)ビットを切り捨てて右ビットシフトさせることによって圧縮する。エンコーダ装置は圧縮された高周波不規則画像成分の符号系列をエントロピー符号化した後、エントロピー符号化された低周波成分および高周波画像成分と結合して圧縮画像とする。デコーダ装置は、乱数生成部にて、高周波不規則画像成分のピクセル周辺の、低周波成分および高周波画像成分の複数のピクセルの値をもとに(N−M)ビットの乱数を算出し、高周波不規則画像成分のピクセル値のMビットの下位に付加してNビットのピクセル値に戻す。 (もっと読む)


【課題】 圧縮後の画像特徴を失うことなく、ノイズを含んだ画像データを高圧縮率で圧縮することが可能な画像処理装置及び画像処理方法を提供すること。
【解決手段】 入力された画像に対して、ユーザによる入力または予め設定された2以上の整数を除数として用い、画像の各画素の画素値を除数で割ったときの商と剰余を算出し、商の画素値からなる商成分データと剰余の画素値からなる剰余成分データとに分離する剰余成分分離手段と、前記剰余成分分離手段によって分離された各成分をそれぞれ圧縮し、それぞれの成分の圧縮データを出力するデータ圧縮手段とを備えることを特徴とする。 (もっと読む)


【課題】本発明はデジタルイメージをコード化する方法に関する。
【解決手段】本方法において、デジタルイメージはブロック(C、L、U、UL、UR)に分割される。本方法においては、伝送されるべき情報量を減少させるために、ブロック(C)に関する空間予測が実施され、少なくとも1つの予測方法(P1−P13)が定義済みである。本方法においては、前述の隣接ブロック(L、U)の内容に従って予測されるべき既述ブロック(C)の少なくとも1つの隣接ブロック(L、U)に関して分類が決定され、予測方法(P1−P13)は、少なくとも1つの既述分類に基づいて現行ブロック(C)に関して選定される。 (もっと読む)


【課題】従来、画像データをHDDなどに保存する場合、JPEG圧縮を施してデータサイズを小さくして保存していた。しかし、地紋などを含む画像データにJPEG圧縮を行うと、画質劣化が生じることがある。
【解決手段】地紋などを含む画像データについては非可逆圧縮をせずに、中間調処理にてハーフトーン処理を施す。これにより、画像劣化を抑えつつデータサイズを小さくして、HDD等に画像データを保存することが可能となる。 (もっと読む)


1 - 20 / 125