説明

Fターム[5E040CA06]の内容

硬質磁性材料 (8,571) | 磁気特性・用途 (1,594) | 半硬質 (230) | 磁気記録用 (183)

Fターム[5E040CA06]に分類される特許

161 - 180 / 183


【課題】 所望の粒径の強磁性規則合金相の磁性ナノ粒子を有する磁性材料を効率よく得る。
【解決手段】 支持体上に、強磁性規則合金相を形成し得る合金ナノ粒子及び融合防止剤を含有するナノ粒子分散液を塗布して塗布膜を形成することと、該塗布膜に加熱処理を施して合金ナノ粒子を強磁性化することと、を含む。ここで、前記融合防止剤が、耐熱温度が500℃以上で、かつナノ粒子分散液の分散溶媒に可溶な無機物であることが好ましい。また、前記加熱処理が、レーザー光の照射によって実施されることが好ましい。 (もっと読む)



【課題】 粒子サイズが小さく、かつ極めて高い保磁力を有し、しかも高密度記録に最適な飽和磁化を有し、さらに保存安定性にすぐれた窒化鉄系磁性粉末を提供する。


【解決手段】 鉄と窒素を少なくとも構成元素とし、希土類金属元素、アルミニウム、シリコンのうちの少なくともひとつの元素を含有し、かつFe162 相を少なくとも含み、鉄に対する窒素の含有量が1.0〜20.0原子%であり、粒子の平均サイズが5〜20nmの範囲の粒状ないし楕円状である窒化鉄系磁性粉末の製造にあたり、Fe162 相の生成後に、希土類金属元素、アルミニウム、シリコンのうちの少なくともひとつの元素を含む無機化合物または/および有機カルボン酸、有機スルホン酸、有機リン酸、これらの酸のエステル化物もしくはアミド化物からなる有機化合物を粒子表面に被着させる被着処理を行うことを特徴とする窒化鉄系磁性粉末の製造方法。 (もっと読む)


【課題】高出力でかつ良好な再生出力ノイズ比(C/N)、良好な温度サイクル特性を示す磁気テープを提供する。
【解決手段】磁気テープの最上層磁性層が、粒子サイズ30nm以下の略粒状の磁性粉末を含有し、磁気テープの長手方向の保磁力が220〜400kA/mで、かつ−100℃と50℃間の保磁力の変化率を10%以下にする。また、特定相の窒化鉄を含有し、略粒状の微粒子で、表面が特定元素の化合物で構成され構成され、かつ特定温度間の保磁力の変化率が小さい磁性粉末を、磁気テープ用として使用する。 (もっと読む)


【課題】高密度磁気記録に好適で耐酸化性に優れ高出力可能な磁気記録媒体用の金属磁性粉末を提供する。
【解決手段】Coを含有しFeを主成分とする粒子からなり、BET比表面積値と真密度値の積が250m2/cc以上であり、かつ粒子の平均長軸長が10〜200nm、真密度が5.0g/cc以上である塗布型磁気記録媒体用金属磁性粉末である。好ましくは、AlとRを含有し、飽和磁化値と真密度値の積が450kAm2/cc以上であり、原子%比でCo/Fe=10〜50%、Al/(Fe+Co)=1〜50%、R/(Fe+Co)=1〜30%の範囲でCo、Al、およびRを含有する。 (もっと読む)


高保磁力を維持しつつ、超常磁性粉の含有率の低い、記録媒体に利用する上で磁気特性の優れた磁性材料である。仕込み時の組成式が(CoO)0.5−(NiO)0.5−y(MO)x+y・n/2(Fe)(Mは、Co及びNiを除く、2価の金属)で表され、n=Fe/(Co+Ni+Zn)(モル比)の値が、スピネル型フェライトの化学量論量(n=2)より大きく化学量論量の1.5倍未満である2.0<n<3.0であり、x,yの値が、0≦x<0.5、0≦y<0.5、0<x+y<0.5、を満たすスピネル型フェリ磁性粉であって、かつ、当該スピネル型フェリ磁性粉に含有される超常磁性粉が5質量%以下である。
(もっと読む)


【課題】保存安定性を顕著に改善した窒化鉄系磁性粉末を提供する。
【解決手段】Fe162主体窒化鉄系磁性粉末(例えば平均粒径25nm以下)の粒子表面に、Si、P、Tiの1種以上を被着した粉末であって、C/Fe原子比が0.5〜30%であり、好ましくは(Si+P+Ti)/Fe原子比が0.1〜10%である窒化鉄系磁性粉末。特にΔHc=(Hc0−Hc1)/Hc0×100で定義されるΔHcが5%以下、Δσs=(σs0−σs1)/σs0×100で定義されるΔσsが20%以下のものが提供され、発火温度140℃以上、TAP密度1.0g/cm3以上のものが好適な対象となる。ここで、Hc0およびσs0はそれぞれ前記被着後における保磁力(kA/m)および飽和磁化(Am2/kg)、Hc1およびσs1はそれぞれ恒温恒湿容器内で60℃、90%RHに1週間保持したのちの保磁力および飽和磁化である。 (もっと読む)


組成式AFe2+a(1−x)axFe3+27(ただし、AはSr,BaおよびPbから選択される少なくとも1種の元素、MはZn,Co,MnおよびNiから選択される少なくとも1種の元素)で表されるフェライト磁石粉末において、0.05≦x≦0.80、1.5≦a≦2.2、12≦b≦17とする。このように、W型フェライトにおけるFe2+サイトの一部を、一定の範囲内でZn等のM元素で置換することで、高い飽和磁化4πIsが得られる。
(もっと読む)


【課題】耐候性を改善した微細な金属磁性粉末を提供する。
【解決手段】金属部分と表層とを有する粒子で構成される磁性粉末であって、「表層」のCo/Fe原子比をa、「金属部分」のCo/Fe原子比をb、「粒子全体」のCo/Fe原子比をcとしたとき、下記(1)〜(3)式の少なくとも1つを満たす金属磁性粉末。
0.3≦a/b≦1.0 ……(1)
b/c≧1.0 ……(2)
0.1≦a/c≦1.0 ……(3)
前記aおよびbは、透過型電子顕微鏡を用いて電子ビームを微小領域にピンポイント的に当てたEDS測定によって求めることができる。 (もっと読む)


【課題】高記録密度特性に優れた磁気テープを提供する。
【解決手段】塗布型の磁気テープにおいて、最上層磁性層に含まれる磁性粉末が、粒子サイズ30nm以下の略粒状粒子であり、長手方向の角形(Br/Bm)MDと幅方向の角形(Br/Bm)TDとの比[(Br/Bm)MD/(Br/Bm)TD]が3.0以上である構成とする。最上層磁性層に含まれる磁性粉末の粒子サイズは20nm以下が特に好ましい。 (もっと読む)


【課題】 粒度分布が良好である微粒子の六方晶フェライト磁性粉末およびその製造方法を提供することと、該六方晶フェライト磁性粉末を磁性層の成分として用いた、MRヘッドを使用して再生したとき短波長出力が高く、媒体ノイズが低い磁気記録媒体を提供すること。
【解決手段】 六方晶フェライト生成原料を溶融し、急冷して非晶質体を得る工程と、前記非晶質体を熱処理し六方晶フェライトを析出させる工程とを有する六方晶フェライト磁性粉末を製造する方法において、前記熱処理が、前記非晶質体をレーザー加熱する処理である製造方法。該製造方法により得られた、平均板径が10〜30nm、平均板径および平均板厚の変動係数が10〜25%、およびHcが135〜400kA/mであることを特徴とする六方晶フェライト磁性粉末。該六方晶フェライト磁性粉末を磁性層に含む磁気記録媒体。 (もっと読む)


【課題】 電磁変換特性に優れた磁性粒子およびその製造方法、並びに、磁気記録媒体を提供する。
【解決手段】 粒子直径5〜50nmで希土類−遷移金属−半金属の単結晶からなることを特徴とする磁性粒子である。
また、上記磁性粒子の製造方法であって、希土類−遷移金属−半金属粒子からなる急冷薄帯を作製する工程を含むことを特徴とする磁性粒子の製造方法である。
さらに、非磁性支持体上に磁性層が形成されている磁気記録媒体であって、上記磁性粒子と、結合剤とを前記磁性層中に含有することを特徴とする磁気記録媒体である。 (もっと読む)


【課題】 生成速度の向上と均質な柱状結晶の集合体であるフェライト膜の製造装置を提供する。
【解決手段】 フェライト形成面を下方向から横方向にの範囲に保持し、少なくとも第一鉄イオンを含む反応液および、少なくとも酸化剤、もしくは少なくとも酸素を含んだ酸化媒体を基体3に接触させる機構によって、固体表面以外で副次的に形成されたフェライトの微粒子を効率的に除去して生成速度を向上させ、均質な柱状結晶の集合体であるフェライト膜を製造する。 (もっと読む)


【課題】工業的利用に適した生産性の高い方法で、絶縁性が高く、飽和磁化の劣化が小さく、さらには生体物質抽出能に優れた金属微粒子を提供する。
【解決手段】 磁性金属を主成分とする平均10μm以下の粒径を有する金属粒子核1が、互いに異なる2種以上の無機材料で多層に被覆されて成ることを特徴とする。さらに金属粒子核に接して一部分または全体を被覆する前記無機材料は炭素または窒化ほう素を主体として構成された被覆膜2であり、前記無機材料の外側の無機材料はケイ素を主体とする被覆膜3であることを特徴とする。 (もっと読む)


【課題】 R−Co含有M型フェライトにおいて、Coの一部をZn等で置換した場合でも、保磁力の低減を抑制することのできる技術を提供する。
【解決手段】 A1-xx(Fe12-y(Co1-mMemyz19(ただし、AはSr、Ba、Ca、およびPbから選択される少なくとも1種、Rは希土類元素(Yを含む)及びBiから選択される少なくとも1種で、Laを必ず含む。またMeはZn、Ni及びMgの1種又は2種以上、0.04≦x≦0.9、0.04≦y≦1.0、0.05≦m≦0.9、0.7≦z≦1.2)で表される組成物を主成分とし、かつ、x/yz=1.1〜1.8であるフェライト磁性材料。 (もっと読む)


【課題】高い磁気異方性を有する規則化されたFePtの微細結晶粒から成る記録層を有し、かつ、この結晶粒のc軸が膜面垂直方向に配向した高密度磁気記録媒体及びこれを製造する方法を提供する。
【解決手段】本発明の磁気記録媒体は、Fe酸化物のナノドットから成る層の上にFe層とPt層を順に積層し、所定温度に加熱してFe層とPtを合金化することにより形成する。Fe酸化物のナノドットから成る層は、Feの塩または錯体を混和した有機溶媒に対してアルコール還元法を用いる方法等を用いてFe微粒子を作製し、これを基板上に配列した後、酸化することにより形成する。 (もっと読む)


【課題】 FePtナノ粒子の粒子個々の間で発生する組成分布を小さくして磁気特性の
向上を図る。
【解決手段】 TをFeとCoの1種または2種、MをPtとPdの1種または2種としたとき、式〔TX1-X〕におけるXが0.3〜0.7の範囲となる組成比でTとMを含
有し、TとM以外の金属元素が(T+M)に対する原子百分比で30 at.%以下(0%を含む)、残部が製造上の不可避的不純物からなる金属磁性粉であって、TEM観察により
測定される平均粒径(DTEM) が50nm以下であり、下記の(1) 式を満たす粒子が100個のうち95個以上であり、且つ下記の(2) 式を満たす金属磁性粉である。ただし、X
avは、前記の組成式〔TX1-X〕のXの値について、粉体として実測された値を表し、X1,2,・・・X100は、当該粉体のTEM―EDX測定において、測定視野内に粒子が
1000個以上入っている状態で任意に選んだ100個の粒子について測定された個々の
該Xの値を表す。
0.90Xav≦X1,2,・・・X100≦1.10Xav ・・・(1)
1,2,・・・X100の標準偏差σ≦20% ・・・(2) (もっと読む)


【課題】磁気カードに使用したときにスペーシングロスに強い、保磁力分布が小さく且つ低保磁力の磁性粉ならびにそれを用いた磁性塗料および磁気シートを提供する。
【解決手段】 保磁力800(Oe)以下、明細書記載の測定法によるSFD値0.30以下のフェライト磁性粉であって、特に、下記(1)式で表されるマグネットプランバイトの磁性粉ならびにそれを用いた磁性塗料および磁気シート。AO・n(Fe1-X-YxM'y)23…(1)。ただし、AはSr,Ba,Caの1種または2種以上、MはV,Sn,Ti,Zr,W,Nbの1種または2種以上、M'はMn,Zn,Cu,Co,Ni,Mgの1種または2種以上の元素で構成され、nは5〜6、xは0〜0.2、yは0〜0.2である。好適な性能を有するものとして、MがCoを含み、M'がTiを含むものが挙げられる。 (もっと読む)


【課題】25nm以下の微粒子において磁気特性の経時劣化を顕著に改善した信頼性の高い窒化鉄系磁性粉末を提供する。
【解決手段】平均粒径25nm以下のFe162主体窒化鉄系磁性粉末の表面に、Si,Pの1種以上の元素をSiとPの合計含有量がFeに対する原子割合で例えば0.1%以上となるように被着してなる耐候性の良い窒化鉄系磁性粉末。特に下記(1)式で定義されるΔHcが5%以下、下記(2)式で定義されるΔσsが20%以下である窒化鉄系磁性粉末が提供される。ΔHc=(Hc0−Hc1)/Hc0×100…(1)、Δσs=(σs0−σs1)/σs0×100…(2)。ここで、Hc1およびσs1は磁性粉末を60℃,90%RHの恒温恒湿下で1週間保持したのちの保磁力および飽和磁化、Hc0およびσs0は上記恒温恒湿保持前の保磁力および飽和磁化。 (もっと読む)


【課題】 σsを低下させることなく低ノイズ化を可能とし、MRヘッド、GMRヘッド等の高感度ヘッドで再生される高密度記録用磁気記録媒体に適した六方晶フェライト磁性粉末、その製造方法および磁気記録媒体を提供する。
【解決手段】 平均板径が15〜30nmであり、Hcが2000〜5000 Oeであり、かつσsが[平均板径(nm)×0.37+45]A・m/kg以上であることを特徴とする六方晶フェライト磁性粉末。この磁性粉末は、図1の三角相図において、斜線部(1)の領域内にある原料を含むものを溶融し、急冷して非晶質体を得、熱処理し、酸処理、洗浄して得られる。またこの磁性粉末を磁性層に添加して支持体上に塗布して磁気記録媒体を得る。 (もっと読む)


【課題】磁気特性の経時劣化を抑制した信頼性の高い窒化鉄系磁性粉末を提供する。
【解決手段】V,Sc,Ti,Cr,Mnのうち少なくとも1種以上の元素をFeに対する原子割合で1%以上含有してなるFe162主体磁性粉末。特に下記(1)式で定義されるΔHcが10%以下、下記(2)式で定義されるΔσsが20%以下である耐候性に優れたFe162主体の磁性粉末が提供される。ΔHc=(Hc0−Hc1)/Hc0×100…(1)、Δσs=(σs0−σs1)/σs0×100…(2)。ここで、Hc1およびσs1はそれぞれ磁性粉末を60℃,90%RHに1週間保持したのちの保磁力および飽和磁化、Hc0およびσs0はそれぞれ上記恒温恒湿保持前の磁性粉末の保磁力および飽和磁化である。 (もっと読む)


161 - 180 / 183