説明

Fターム[5E040CA06]の内容

硬質磁性材料 (8,571) | 磁気特性・用途 (1,594) | 半硬質 (230) | 磁気記録用 (183)

Fターム[5E040CA06]に分類される特許

101 - 120 / 183


【課題】強磁性から常磁性への転移が必要とされる、強磁性体を用いたデバイスを小型化することが可能な磁性制御方法を提供する。
【解決手段】強磁性半導体110の強磁性を常磁性に転移させる方法であって、光照射又は電界印加により強磁性半導体110に強磁性半導体110のバンドギャップエネルギー以上のエネルギーを与えて強磁性半導体110内に伝導電子を発生させ、該伝導電子により強磁性半導体110における強磁性を担うイオンの価数を変化させて強磁性半導体110の強磁性を常磁性に転移させる。 (もっと読む)


【課題】従来よりも小型の磁性材料を実現する。
【解決手段】有機化合物または無機化合物から構成され、側鎖の修飾または/及び側鎖間の架橋により磁性を有する。 (もっと読む)


【課題】低コストで均一な中空磁性球体、及びその製造方法を提供することを課題とする。
【解決手段】磁性成分が溶解した溶液を微粒子液滴とし、前記微粒子液滴を不活性ガス、又は不活性ガスと水素又は酸素との混合ガスによりプラズマ炎中に導入し、熱分解により生成する。ここで得られる中空磁性球体は、平均粒径が10μm以下で、球体外表面の厚さが数10nmであり、球体となる殻の表層に磁性成分が分布していることから、密度が小さく軽量であり、樹脂等との混合性にも優れている。 (もっと読む)


【課題】極めて粒子サイズが小さく、かつ球状ないし楕円状の形状であるにもかかわらず、高い保磁力を有する窒素含有磁性粉末、および、特に再生ヘッドに高感度ヘッドを使用する場合に、その窒素含有磁性粉末の特性を最大限に引き出して、飽和磁化を最適化することにより、出力対ノイズ比(SNR)において特に優れた特性を示す磁気記録媒体を提供する。
【解決手段】少なくとも鉄および窒素を構成元素とし、かつ少なくともFe16N2 相を含む平均粒子サイズが10〜20nmの球状ないし楕円状の磁性粉末であって、さらに希土類元素、アルミニウムおよび/またはシリコンを含有し、159.2〜318.5A/m(2000〜4000Oe)の保磁力、および40〜79Am2/kg(40〜79emu/g)の飽和磁化を有する磁性粉末、およびそれを用いた磁気記録媒体。 (もっと読む)


【課題】煩雑で粒径分布コントロールも困難な逆ミセル法を経ることなく、既存の粉末原料を用いてε−Fe23結晶を生成させる手法を提供する。
【解決手段】オキシ水酸化鉄(α−FeOOH)の粒子を水蒸気が混合された水素ガス雰囲気等の弱還元雰囲気下において300〜600℃の範囲の温度で熱処理することにより立方晶酸化鉄を生成させる熱処理工程Aと、熱処理工程Aで得られた粒子を大気等の酸化雰囲気下において700〜1300℃の範囲の温度で熱処理することにより立方晶酸化鉄からε−Fe23結晶を生成させる熱処理工程Bを有するε−Fe23結晶の製法が提供される。上記熱処理工程Aと熱処理工程Bでは、いずれもSi酸化物に覆われた状態の粒子に対して熱処理を施すことが望ましい。 (もっと読む)


【課題】窒化鉄系磁性粉末において「焼結防止」と「窒化促進」を両立させたものを安定して製造する技術を提供する。
【解決手段】Fe162相主体の粒子からなる平均粒子径20nm以下の粉末において、TAP密度が0.75g/cm3以下、かつX線回折パターンから算出される窒化率が70〜100%であることを特徴とする窒化鉄系磁性粉末。この窒化鉄系磁性粉末には、焼結防止剤として希土類元素(Yも希土類元素として扱う)がFeに対するモル比で4〜15モル%含有される。上記の特性を有する窒化鉄系磁性粉末は、オキシ水酸化鉄(原料粉)を合成する工程で、オキシ水酸化鉄の成長過程に酸化剤として過酸化水素水を用い、かつ希土類元素を十分に添加する製法によって製造される。 (もっと読む)


【課題】超微粒子磁性粉末が良好に分散されるように、その表面に分散剤、バインダ樹脂を均一に被覆させる表面処理方法を提供すること、またこの表面処理方法で得られた磁性粉末を用いた電磁変換特性に優れた磁気記録媒体を提供することを目的とする。
【解決手段】磁性粉末を分散剤および/または結合剤樹脂にて表面処理する表面処理方法において、固形分濃度が95重量%以下となるように、有機溶剤とともに分散剤および/または結合剤樹脂を用いてメカノケミカル手法により前記磁性粉末を表面処理することを特徴とする。 (もっと読む)


【課題】微粒子でありながらも凝集発生がきわめて低減された分散性の良い金属磁性粉末を提供する。
【解決手段】表面官能基を粉末の単位表面積当たり1.2×1020個/m2以上有する金属磁性粉末。この粉末はFeを主成分とする磁性粉末であって、平均粒子径が20〜150nm、BET比表面積が60m2/g以上であるものが好適な対象となる。この粉末は塗料に混合されて磁性塗料を構成し、さらに磁気記録媒体を構成するものである。この金属磁性粉末は、安定な酸化膜を有する金属磁性粉末に対し、飽和水蒸気の充満した容器内で水蒸気に曝す処理を最終仕上げとして施す金属磁性粉末の製法、あるいは炭酸ガスの充満した容器内で炭酸ガスに曝す処理を最終仕上げとして施す製法によって得られる。 (もっと読む)


【課題】耐食性に優れた被覆金属微粒子の粉末および磁気ビーズを提供する。
【解決手段】Ti酸化物中に金属粒子を内包した被覆金属微粒子の粉末であって、前記金属はその酸化物の標準生成自由エネルギーがΔGM−O>ΔGTiO2の関係を満たす金属であり、前記金属粒子の粒径に対する個数分布が複数のピークを有することを特徴とする被覆金属微粒子の粉末を用いる。この粉末はTi酸化物中に複数の金属粒子を内包した被覆金属微粒子と、Ti酸化物中に1つの金属粒子を内包した被覆金属微粒子とを有する。 (もっと読む)


【課題】MRヘッドを使用する磁気記録再生システムにおいて、高出力と低エラーレートを両立し得る磁気記録媒体を提供すること。
【解決手段】非磁性支持体上に非磁性粉末および結合剤を含む非磁性層ならびに強磁性金属粉末および結合剤を含む磁性層をこの順に有する磁気記録媒体。前記強磁性金属粉末は、平均長軸長が20〜50nmの範囲であり、かつFeを主体としFeに対して2〜9at.%の量のYを含み、前記磁性層の表面電気抵抗は10+4〜10+7Ω/sqの範囲であり、前記磁性層に含まれる結合剤は、結合剤総量に対して50質量%以下の塩化ビニル樹脂を含む。 (もっと読む)


【課題】耐食性に優れた均一で微細な被覆金属微粒子、及びかかる被覆金属微粒子を安価に製造する方法を提供する。
【解決手段】Fe、Co、Niのいずれかの酸化物粉末とTiを含む非酸化物粉末とを混合し、更にアルミナ粉末を全体量の20〜85mass%添加して混合粉末を作製し、前記混合粉末を非酸化性雰囲気中で650〜1100℃の温度で熱処理することにより、アルミナ粒子の周囲に粒径0.05〜0.3μmの金属微粒子(前記金属微粒子は、Fe、Co、Niから選ばれる少なくとも1つの元素を主成分とする。)が担持されていて、平均粒径が0.5〜5μmである磁性粒子を得る。 (もっと読む)


【課題】磁気特性、および液中や高分子基材中への分散性が改善されたε−Fe23結晶の粉末を提供する。
【解決手段】ε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の表面にSi酸化物を有する複合粒子からなり、Si/(Fe+M)×100で表されるSi含有量が0.1〜30モル%に調整されている磁性粉末。
ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。 (もっと読む)


【課題】磁気特性、および液中や高分子基材中への分散性が改善されたε−Fe23結晶の粉末を提供する。
【解決手段】ε−Fe23結晶(Feサイトの一部が金属元素Mで置換されたものを含む)を主相とする鉄酸化物の粒子からなり、TEM写真により測定される粒子径において、平均粒子径が10〜200nm、かつ、粒子径10nm未満の粒子の個数割合が25%以下である磁性粉末。
ただし、上記鉄酸化物におけるMとFeのモル比をM:Fe=x:(2−x)と表すとき、0≦x<1である。 (もっと読む)


【課題】ε−Fe23結晶の極めて高い保磁力Hcを磁気記録媒体等の種々の磁性用途で使用可能な範囲に調整可能な実用的価値の高い磁性材料を提供する。
【解決手段】 ε−Fe23結晶と空間群が同じであり、かつε−Fe23結晶のFeサイトの一部がAlで置換された構造の結晶を主相にもつ鉄酸化物相を有し、その鉄酸化物相におけるAlとFeのモル比をAl:Fe=x:(2−x)と表すとき、0<x<1を満たす磁性粉体。前記xは例えば0.3〜0.7の範囲とすることができる。この粉体のTEM写真から求まる平均粒子径は5〜200nm、好ましくは10〜100nmである。この磁性粉体は、逆ミセル法とゾル−ゲル法を組み合わせた手法により製造できる。 (もっと読む)


【課題】垂直磁気記録が可能な上、粒径の制御が容易な磁性体粒子及びその製造方法を提供する。
【解決手段】本発明の磁性体粒子(1)は、Pd、Fe及びCoを含むことを特徴とする。また、本発明の磁性体粒子(1)の製造方法は、i)岩塩型単結晶基板(20)の主面(20a)上に、岩塩型単結晶基板(20)を加熱しながらPd粒子を配置する工程と、ii)Pd粒子上に、岩塩型単結晶基板(20)を加熱しながらCo及びFeを配置して、Pd、Fe及びCoを含む磁性体粒子(1)を形成することを特徴とする。 (もっと読む)


本発明は、情報を磁気的に記憶するための媒体中に磁化可能成分として、少なくとも95重量%の磁鉄鉱(Fe)粒子を含む粉末組成物の使用に関する。磁鉄鉱粒子の少なくとも99.9重量%は5μmより小さい粒径を有し、磁鉄鉱粒子は多面体形及び本質的に等方的磁気的性質を有する。磁鉄鉱粒子は、10kOeで75〜95emu/gの飽和磁化、20〜40emu/gの残留磁化、及び250〜500 Oeの飽和保磁力を有する。本発明は、磁鉄鉱粒子を含む、情報を磁気的に記憶するための媒体にも関する。 (もっと読む)


【課題】低コストで、保磁力の高い磁性ナノ粒子、このような特徴を有する磁性ナノ粒子の製造法、およびそれを用いた磁気記録媒体を提供する。
【解決手段】ABAgからなる多元系合金磁性ナノ粒子であって、該AはFeまたはCoを表し、該BはPtまたはPdを表し、Agが31原子%以上で80原子%以下であることを特徴とする多元系合金磁性ナノ粒子。さらに、その製造方法、並びにそれを用いた磁気記録媒体が得られる。 (もっと読む)


【課題】窒化鉄系磁性粉末において、優れた磁気特性を維持しながら、磁気特性の経時劣化に対する抵抗力(耐候性)を顕著に改善したものを提供する。
【解決手段】Fe162相主体のコアを持ち、コアの外側に窒化鉄が還元されて生じた金属Fe相に由来する酸化物相を有する平均粒子径20nm以下の磁性粒子からなり、耐候性指標Δσsが飽和磁化σsとの関係において、Δσs≦0.8×σs−30を満たす窒化鉄系磁性粉末。ここで、Δσs=(σs−σs1)/σs×100、(ただしσs1は当該磁性粉末を60℃、90%RHの雰囲気に1週間保持したのちの飽和磁化)である。この粉末は、Fe162相主体の粉末粒子を還元性ガスに曝して粒子の表面から一部領域を金属Fe相とし(徐還元処理)、その後、酸化性ガスに曝して前記金属Fe相の表面から一部領域を酸化物相とする(徐酸化処理)ことにより得ることができる。 (もっと読む)


【課題】高密度記録に適する磁性層が形成できる塗布型磁気記録媒体用の強磁性粉末を得る。
【解決手段】Co:5超え〜50at.%,Al:0.1〜30at.%,希土類元素(Yを含む):0.1〜10at.%,周期律表第1a族元素:0.05重量%以下,周期律表第2a族元素:0.1重量%以下(0重量%を含む)を含有した鉄を主体とする強磁性粉末であって,平均長軸長:0.01〜0.40μm,X線結晶粒径(Dx):50〜250オングストロームであり,且つ,長軸と直角方向に切断した短軸断面が長い方の幅と短い方の幅をもち,この長幅と短幅の短軸断面比が長軸方向にほぼ一様に1より大きく,好ましくは1.5以上となっている平針状粒子からなり,飽和磁化率(σs)とX線結晶粒径(Dx)の比(σs /Dx)が0.7以上である塗布型磁気記録媒体用の強磁性粉末。 (もっと読む)


【課題】粒子サイズが小さく、かつ極めて高い保磁力を有し、しかも高密度記録に最適な飽和磁化を有し、さらに保存安定性にすぐれた窒化鉄系磁性粉末を提供する。
【解決手段】Fe162 相を少なくとも含み、粒子の平均サイズが5〜20nmの範囲の粒状ないし楕円状である窒化鉄系磁性粉末の製造にあたり、出発原料として鉄系酸化物または水酸化物を使用し、これに希土類金属元素、アルミニウム、シリコンのうちの少なくともひとつの元素を被着させたのち、還元処理および窒化処理を行うことにより、Fe162相を生成し、このFe162相の生成後に、希土類金属元素、アルミニウムのうちの少なくともひとつの元素を含む無機化合物または/および有機カルボン酸、有機スルホン酸、有機リン酸、これらの酸のエステル化物もしくはアミド化物からなる有機化合物を粒子表面に被着させる被着処理を行うことを特徴とする窒化鉄系磁性粉末の製造方法。 (もっと読む)


101 - 120 / 183