説明

Fターム[5F033QQ78]の内容

Fターム[5F033QQ78]に分類される特許

41 - 60 / 63


【課題】導体材料がキャパシタ電極材料に到達するのを抑制可能な半導体装置及びその製造方法を提供すること。
【解決手段】本発明の第1の態様に係る半導体装置は、半導体基板と;前記半導体基板上に形成される下部電極と、前記下部電極上に形成される容量絶縁膜と、前記容量絶縁膜上に形成される上部電極より構成されるキャパシタと;前記上部電極及び下部電極上に形成されるコンタクトホールと;前記コンタクトホール内に形成される、酸素を含有したバリア層と;内面に前記バリア層が形成された前記コンタクトホールに充填される導体層とを備える。 (もっと読む)


【課題】 半導体デバイスと後工程の相互接続体との間の誘電体材料層内にコンタクト構造体を製造する方法を提供すること。
【解決手段】 本発明の実施形態は、半導体デバイスと後工程の相互接続体との間の誘電体材料層内にコンタクト構造体を製造する方法を提供する。この方法は、誘電体材料層内に少なくとも1つのコンタクト開口部を作成するステップと、化学気相堆積プロセスによって第1のTiN膜を形成するステップであって、第1のTiN膜はコンタクト開口部をライニングする(内側を覆う)ステップと、物理的気相堆積プロセスによって第2のTiN膜を形成するステップであって、第2のTiN膜は第1のTiN膜をライニングするステップとを含む。本発明の実施形態によって製造されるコンタクト構造体も提供される。 (もっと読む)


【課題】プラグを介した導電接続構造を具備した半導体装置におけるデバイス構成層の結晶配向性を向上させた半導体装置を提供する。
【解決手段】本発明の半導体装置100は、基板10上の層間絶縁膜26に形成された貫通孔24内に設けられてなるプラグ20を介した導電接続構造を具備した半導体装置であり、前記プラグ20は、前記貫通孔24内に第1導電膜を埋め込んでなるプラグ導電層22を有しており、少なくとも前記プラグ導電層22上には、シリコンを含む導電材料からなる第2導電膜21が形成されており、前記第2導電膜21上には、自己配向性を有する導電材料からなる窒化チタン層12(第3導電膜)が形成されている。 (もっと読む)


【課題】下地に対する選択比が大きく、テーパー形状の配線を形成するドライエッチング方法を提供する。
【解決手段】基板上に導電性材料からなる膜を形成し、ICPエッチング装置を用いて前記導電性材料からなる膜をドライエッチングして、テーパー角が60°以下の配線を形成する。また、基板上に導電性材料からなる膜を形成し、ICPエッチング装置を用いて前記導電性材料からなる膜をドライエッチングして、テーパー角が60°以下のゲート配線を形成し、前記ゲート配線上にゲート絶縁膜を形成し、前記ゲート絶縁膜上に活性層を形成する。 (もっと読む)


【課題】 プラグ上にキャパシタを形成する際、プラグの破壊を防止できる半導体装置の製造方法を提供する。
【解決手段】 半導体装置の製造方法は、(ア)半導体素子を形成し、ポリシリコンプラグ15表面が露出した下地構造半導体基板上に層間絶縁膜を形成する工程と、(イ)層間絶縁膜中にポリシリコンプラグ15表面に達する接続孔を形成する工程と、(ウ)接続孔に埋め込まれて、ポリシリコンプラグ15に積層するWプラグ17を形成する工程と、(エ)窒化性雰囲気中で半導体基板を加熱し、前記Wプラグの表面のみを窒化する工程と、を含む。 (もっと読む)


【課題】高度に微細化が進んでもコンタクト抵抗、バリア性及び金属埋め込み特性の三者を同様に満足のいくものとする高信頼性のコンタクトプラグ構造を有した半導体装置の製造方法を提供する。
【解決手段】下層と上層の電気的接続をするため絶縁膜41にコンタクトホール42を形成し、コンタクトホール42内に第1の高融点金属膜43を堆積し、第1の高融点金属膜43の表面を窒化し、第1の高融点金属膜の窒化表面44上に第2の高融点金属膜45を堆積し、第2の高融点金属膜45を熱処理により窒化物46に変化させる。 (もっと読む)


【課題】 制御電極と電荷蓄積層との間に優れた絶縁膜を形成することが可能な半導体装置の製造方法を提供する。
【解決手段】 半導体基板11上に形成された第1の絶縁膜12と、第1の絶縁膜上に形成された電荷蓄積層13と、電荷蓄積層上に形成された第2の絶縁膜20と、第2の絶縁膜上に形成された制御電極とを備えた半導体装置の製造方法であって、第2の絶縁膜を形成する工程は、酸素及び金属元素を含有した下層絶縁膜201を形成する工程と、下層絶縁膜に対して酸化性ガスを含む雰囲気下で熱処理を施す工程と、熱処理が施された下層絶縁膜上に水素及び塩素の少なくとも一方を含んだ成膜ガスを用いて上層絶縁膜202を形成する工程とを備える。 (もっと読む)


【課題】強誘電体層の結晶配向性が良好に制御された強誘電体メモリおよびその製造方法を提供する。
【解決手段】
本発明にかかる強誘電体メモリ100の製造方法は、絶縁層26を形成する工程と、前記絶縁層を貫通するコンタクトホール22を設ける工程と、コンタクトホールの側面および底面と、絶縁層の上方に配向制御層12を形成する工程と、配向制御層の上方に導電層20aを成膜する工程と、絶縁層の上方において配向制御層が露出するように、導電層を研磨する工程と、配向制御層の上方に第1電極32を形成する工程と、第1電極の上方に強誘電体層34を形成する工程と、強誘電体層の上方に第2電極36を形成する工程と、を含む。 (もっと読む)


【課題】キャパシタ等のデバイスを構成する各層の結晶配向に優れた半導体装置を提供する。
【解決手段】本発明の半導体装置は、基板10上の層間絶縁膜26に形成された貫通孔24内に設けられてなるプラグ20を介した導電接続構造を具備した半導体装置であり、前記プラグ20が前記貫通孔24内に第1導電膜を埋め込んでなるプラグ導電層22を有しており、少なくとも前記プラグ導電層22上には、シリコンからなる第2導電膜21と、自己配向性を有する導電材料からなる窒化チタン層12とが積層されている。 (もっと読む)


【課題】 別個の拡散層及びシード層を利用する必要性を排除した、導電性材料、好ましくはCuの、向上した拡散特性を有するメッキシード層を含む相互接続構造体を提供すること。
【解決手段】 特に、本発明は、相互接続金属の拡散特性向上のためにメッキシード層内に酸素/窒素遷移領域を設ける。メッキシード層はRu、Ir又はそれらの合金を含むことができ、相互接続導電性材料は、Cu,Al、AlCu、W、Ag、Auなどを含むことができる。好ましくは、相互接続導電性材料はCu又はAlCuである。より詳細に言えば、本発明は、上部及び底部シード領域間に挟持された酸素/窒素遷移領域を含む単一のシード層を提供する。メッキシード層内に酸素/窒素遷移領域が存在することで、メッキシードの拡散バリア抵抗が顕著に向上する。 (もっと読む)


【課題】コンタクト抵抗の低いトランジスタを提供する。
【解決手段】P型又はN型を付与する不純物元素を含む半導体膜と、その上に形成された絶縁膜と、少なくとも前記絶縁膜に形成されたコンタクトホールを介して前記半導体膜と電気的に接続された電極又は配線とを有し、前記半導体膜は、所定の深さよりも深い領域に含まれる前記不純物元素の濃度が第1の範囲(1×1020/cm以下)であり、且つ前記所定の深さより浅い領域に含まれる前記不純物元素の濃度が第2の範囲(1×1020/cmを超える)であり、前記半導体膜の、前記電極又は配線と接する部分よりも深い領域は、前記不純物元素の濃度が前記第1の範囲である。 (もっと読む)


【課題】 低温領域で成膜しても、その膜ストレスを向上させることが可能な成膜方法を提供する。
【解決手段】 被処理体Wの表面に所定の特性を有するシリコン窒化膜を形成する成膜方法において、シラン系ガスと窒化ガスとを用いて第1の温度で前記被処理体の表面にシリコン窒化膜を形成するシリコン窒化膜形成工程と、前記被処理体を前記第1の温度よりも高い第2の温度で窒化ガスの雰囲気下にてアニールして前記シリコン窒化膜を改質する改質工程とを行う。これにより、低温領域で成膜しても、その膜ストレスを向上させることが可能となる。 (もっと読む)


【課題】 層間絶縁膜に与えるダメージが抑制された、半導体装置の製造方法を提供する。
【解決手段】 第1の絶縁層に埋設される、導電材料よりなる配線構造を形成する配線構造形成工程と、前記第1の絶縁層を除去して前記配線構造を露出させる絶縁層除去工程と、
前記配線構造を埋めるように第2の絶縁層を形成する絶縁層埋設工程と、を有することを特徴とする半導体装置の製造方法。 (もっと読む)


【課題】 混載デバイスに対しても、前処理によって接合部位の自然酸化膜を確実に除去し、抵抗上昇を生じさせない成膜方法を提供する。
【解決手段】 被処理体に露出したSi含有部表面に金属含有膜を成膜する成膜方法は、Si含有部分の表面を、高周波を用いたプラズマにより物理的に処理する物理的表面処理工程と、プラズマによる処理が施されたSi含有部分の表面を反応性ガスにより化学的に処理する化学的表面処理工程と、化学的表面処理が施されたSi含有部分上に金属含有膜を成膜する成膜工程と、を具備する。 (もっと読む)


【課題】 水分の侵入に伴う劣化を抑制することができる半導体装置及びその製造方法を提供する。
【解決手段】 強誘電体キャパシタを形成した後、この強誘電体キャパシタに接続されたAl配線30(導電パッド)を形成する。次に、Al配線30の周囲にシリコン酸化膜32及びシリコン窒化膜33を形成する。そして、シリコン酸化膜32への水分の侵入を抑制する侵入抑制膜としてAl23膜35を形成する。 (もっと読む)


【課題】 強誘電体キャパシタのダメージを防止しながら、安定した特性を得ることができる半導体装置及びその製造方法を提供する。
【解決手段】 配線より厚いAl23膜41を保護膜として形成した後、CMPにより、導電性バリア膜18が露出するまでAl23膜41を研磨する。つまり、Al23膜41に対して、導電性バリア膜18をストッパ膜としてCMPを行う。次に、例えば高密度プラズマ法によりシリコン酸化膜19を全面に形成し、その表面を平坦化する。次いで、シリコン酸化膜19上に、水素及び水分の侵入を防止する保護膜としてAl23膜20を形成する。更に、Al23膜20上に、例えば高密度プラズマ法によりシリコン酸化膜23を形成する。その後、シリコン酸化膜23、Al23膜20及びシリコン酸化膜19に、導電性バリア膜18まで到達するビアホールを形成し、その内部にWプラグ24を埋め込む。 (もっと読む)


【課題】良好なコンタクトを得ることが可能なコンタクトホールを備えた半導体装置を提供する。
【解決手段】単結晶シリコン基板51の表面上にN型またはP型の不純物拡散層52を形成する際に、不純物拡散層52中の不純物濃度を適宜設定する。すると、図2(A)に示すRTN法を用いた熱処理時に、チタンシリサイド層57の成長を適度に抑制して最適化することができる。その結果、不純物拡散層52の接合深さが浅い場合でも、工程4におけるRTN法を用いた熱処理時に、コンタクトホール55の底面部に形成されたチタンシリサイド層57が成長し過ぎて不純物拡散層52を突き抜けるのを防止可能になり、チタンシリサイド層57と単結晶シリコン基板51とが直接接続されてショートするコンタクトリークが生じなくなる。 (もっと読む)


【課題】 ナノチューブ配線を備えた電子デバイス及びその製造方法に関し、製造工程を複雑化することなく、カーボンナノチューブ配線を任意の成長方向に成長させる。
【解決手段】 底面を除く全面が触媒4で覆われた導電体ブロック2のナノチューブ配線が延在しない方向において触媒4と導電体ブロック2との間に成長抑制マスク3を設ける。 (もっと読む)


【課題】開口径が微細化され、高アスペクト比化されたコンタクトホールに対して、Ti膜及びTiN膜の機能を保持したまま、W膜の埋め込み特性を向上させる半導体装置及びその製造方法を提供する。
【解決手段】半導体基板101の上面にNiSi層102を形成し、半導体基板101の上に層間絶縁膜103を堆積した後、層間絶縁膜103にコンタクトホール104を形成する。次に、層間絶縁膜103上に、コンタクトホールを覆うようにTi膜105を形成し、プラズマ窒化の処理を行う。これにより、Ti膜105における層間絶縁膜103の上面とコンタクトホールの底面にTiN膜106が形成される。次に、Ti膜105の上にコンタクトホールを埋め込むようW膜107を形成する。 (もっと読む)


【課題】アクティブマトリクス型の半導体装置のゲート電極とゲート配線の配置を工夫することにより、画面の大面積化を可能とする。
【解決手段】表示領域に設けられた画素TFTが含むゲート電極は、第1の導電層により形成されている。また、表示領域に設けられたゲート配線は、第2の導電層で形成されている。ゲート電極はゲート配線と接続部で電気的に接触している。接続部は、画素TFTが含む半導体層の外側に設けられている。 (もっと読む)


41 - 60 / 63