説明

Fターム[5F082AA06]の内容

バイポーラIC (6,722) | 目的 (872) | 高速化(高周波数化) (44)

Fターム[5F082AA06]に分類される特許

1 - 20 / 44


【課題】 メモリの動作特性の向上を図る。
【解決手段】実施形態の抵抗変化型メモリは、ビット線BLとワード線WLと、第1エミッタ21と、第1ベース23と、第1コレクタ22とを有する、第1駆動型の第1バイポーラトランジスタ2と、第2エミッタ31と、第2ベース33と、第2コレクタ32とを有する第2駆動型の第2バイポーラトランジスタ3と、第1及び第2端子を有する抵抗変化型メモリ素子1と、を具備し、メモリ素子1の第1端子は第1及び第2エミッタ21,31に接続され、メモリ素子1の第2端子は、ビット線BLに接続され、第1及び第2ベース23,33はワード線WLに接続される。 (もっと読む)


【課題】MOSプロセスへの導入が容易で、エミッタ−ベース間のリーク電流(電界強度)を低減し、ノイズやサージ電圧の影響を受けにくい高性能な半導体装置とその製造方法の提供。
【解決手段】導電膜をマスクとして、2回のイオン注入を行ってエミッタを形成する。第2エミッタ領域111bは、低濃度の不純物イオン注入によって形成し、第1エミッタ領域111aは、高濃度の不純物イオン注入によって形成する。その結果、エミッタの周縁部に低濃度の第2エミッタ領域が形成され、電界が緩和され、リーク電流が低減する。また、導電膜とエミッタ電極116とが接続され、ノイズの影響を受けにくくなる。 (もっと読む)


【課題】 半導体構成体がバイポーラトランジスタ(101)及び間隔構成体(265−1又は265−2)を包含している。
【解決手段】 該トランジスタはエミッタ(241)、ベース(243)、コレクタ(245)を有している。該ベースはベースコンタクト部分(243−1)、該エミッタの下側で且つ該コレクタの物質上方に位置されているイントリンシックベース部分(243I−1)、該イントリンシックベース部分とベースコンタクト部分との間に延在しているベースリンク部分(243L−1)を包含している。該間隔構成体は、間隔コンポーネント及び上部半導体表面に沿って延在する分離用誘電体層(267−1又は267−2)を包含している。該間隔コンポーネントは、該ベースリンク部分の上方で該誘電体層上に位置されており、好適には多結晶半導体物質であるほぼ非単結晶の半導体物質の横方向間隔部分(269−1又は269−2)を包含している。該横方向間隔部分の両側の第1及び第2下部端部(305−1及び307−1)は該ベースリンク部分の両側の第1及び第2上部端部(297−1及び299−1)に対して横方向に適合し、その長さを決定し且つそれにより制御する。 (もっと読む)


【課題】入出力ボンディングワイヤ若しくは入出力伝送線路のインダクタンス分布を調整して、信号位相を同相化し、利得および出力電力を向上させ、かつ各FETセルのアンバランス動作による発振を抑制する。
【解決手段】ゲート端子電極G1〜G10、ソース端子電極S1〜S11およびドレイン端子電極Dを有するFET24と、FETに隣接する入力回路パターン17,出力回路パターン18と、ゲート端子電極G1〜G10と入力回路パターン17とを接続する複数の入力ボンディングワイヤ12,12Lと、ドレイン端子電極Dと出力回路パターン18とを接続する複数の出力ボンディングワイヤ14,14Lとを備え、複数の入力ボンディングワイヤ12,12Lのインダクタンス分布を調整して、入力信号の位相を同相化し、かつ複数の出力ボンディングワイヤ14,14Lのインダクタンス分布を調整して、出力信号の位相を同相化した高周波半導体装置25。 (もっと読む)


【課題】現在、半導体集積回路で使用されているバイポーラトランジスタとMOSトランジスタは最初に発明された時よりその構造は変わっておりません。構造と原理を根本的に見直し、高速化・低消費電力化・微細化を進展させる。
【解決手段】サブミクロンスケールの微細加工技術を用い、新しい原理と構造のトランジスタによる半導体集積回路を形成する。 (もっと読む)


トランジスタデバイス(600)の製造方法であって、この製造方法が、基板(102)中に溝(106)を形成するステップと、この溝(106)を電気絶縁材料(202)により部分的にのみ充填するステップと、部分的にのみ充填された溝(106)を介して前記トランジスタデバイス(600)のバイポーラトランジスタ(608)のコレクタ領域(304)にインプラント処理するステップとを有するトランジスタデバイスの製造方法を提供する。
(もっと読む)


【課題】工程数を増加させることなく高速バイポーラトランジスタと高耐圧バイポーラトランジスタを同一半導体基板上に形成し、高耐圧バイポーラトランジスタを使用する回路の歪特性を低減できる半導体装置の製造方法の提供。
【解決手段】半導体基板101上に、コレクタの一部となる埋込み領域102を、第1、第2のバイポーラトランジスタの形成領域に同一工程で形成し、エピタキシャル層104を形成し、第1の縦型バイポーラトランジスタの形成領域においては、埋込み領域102をベース形成領域の全体に形成し、第2の縦型バイポーラトランジスタの形成領域においては、埋込み領域102をベース形成領域の1箇所に埋込み領域を形成しない領域を有して形成する。第2の縦型バイポーラトランジスタの埋込み領域を形成しない領域では、周囲からの不純物の拡散により、縦方向の拡散拡がり量が連続的に狭くなり、埋込み領域を形成しない領域が形成される。 (もっと読む)


【課題】複数の回路を搭載する場合において、回路間のノイズ伝播などの誤動作を抑制することが可能な半導体装置を提供すること。
【解決手段】支持基板と、前記支持基板上に設けられた絶縁層と、前記絶縁層上に設けられ第1回路を有する第1半導体層と、前記絶縁層上に設けられ、前記第1半導体層と絶縁され、第2回路を有する第2半導体層と、前記絶縁層上のうち前記第1半導体層と前記第2半導体層との間に設けられ、前記第1半導体層及び前記第2半導体層とそれぞれ絶縁され、電気的に接地された容量領域を有する分離層とを備える。 (もっと読む)


【課題】抵抗が増加するのを抑制するとともに、高速応答性(高周波特性)が低下するのを抑制することが可能な半導体装置の製造方法を提供する。
【解決手段】この半導体装置100の製造方法は、p型シリコン基板1上にイオン注入による欠陥の増加を抑制する窒化膜30を形成する第1工程と、窒化膜30上からイオンを注入し、p型シリコン基板1表面にソース領域12およびドレイン領域13などの素子活性領域を形成する第2工程と、窒化膜30を除去する第3工程と、素子活性領域の界面準位の上昇を抑制する第1酸化膜5を素子活性領域上に形成する第4工程とを含む半導体装置の製造方法であって、窒化膜30は、第1酸化膜5よりも欠陥の増加を抑制でき、第1酸化膜5は、窒化膜30よりも界面準位の上昇を抑制できることを特徴とする。 (もっと読む)


【課題】 コレクタ・エミッタ間の耐圧が異なる複数のバイポーラトランジスタを同一基板上に容易に混載可能な技術を提供ことにある。
【解決手段】 同一基板上に高周波バイポーラトランジスタと高耐圧バイポーラトランジスタとを混載した半導体装置において、高周波バイポーラトランジスタと高耐圧バイポーラトランジスタは、同一膜厚のエピタキシャル成長層上に形成されており、また、同一プロセスにより形成された同一の不純物プロファイルを持つ埋め込みコレクタ領域を備えた構造であり、高周波バイポーラトランジスタのベース直下には埋め込みコレクタ領域が存在し、高耐圧バイポーラトランジスタのベース直下には埋め込みコレクタ領域及びSIC領域が存在せずに、高耐圧バイポーラトランジスタのベース領域とコレクタプラグ領域との距離が高周波バイポーラトランジスタの同距離と比べて等しいか大きいことを特徴としている。 (もっと読む)


【課題】同一半導体基板上にフォトダイオードとトランジスタとを混載した半導体装置の動作速度の更なる高速化と、フォトダイオードにおけるパルスの応答遅延の改善を図る。
【解決手段】第一導電型の半導体基板と、この半導体基板上に形成された第一導電型のエピタキシャル層と、第一導電型のエピタキシャル層上に形成された第二導電型のエピタキシャル層と、第一導電型のエピタキシャル層内に形成された第二導電型のコレクタ領域を有するトランジスタと、第一導電型のエピタキシャル層上に第二導電型の半導体領域を形成してなるフォトダイオードとを有する半導体装置において、コレクタ領域の下方における半導体基板表面の不純物濃度を、コレクタ領域と第一導電型のエピタキシャル層との接合により生じる空乏層の下端が半導体基板に達する不純物濃度とし、フォトダイオードの下方における半導体基板に、トラップ準位を形成した。 (もっと読む)


【課題】高周波特性が良好で、出力段の耐圧が高い差動電流モード伝送回路を提供する。
【解決手段】Si−BJT(接合型バイポーラシリコントランジスタ)を用いて構成された第一のバッファ3と、SiGeHBT(シリコン−ゲルマニウムへテロ接合型バイポーラトランジスタ)、またはSiGeHBTとSi−BJT、またはSiGeHBT、シリコンMOSFETおよびSi−BJTを用いて構成された信号処理回路4と、SiGeHBTとSi−BJT、またはSiGeHBTとシリコンMOSFETを用いて構成された最終段の第二のバッファ5とを備え、第一のバッファ、信号処理回路および第二のバッファが、同一半導体チップに集積される。 (もっと読む)


【課題】LCRを外付け可能で、汎用性が高く容量、抵抗及びインダクタンスを自由に調整することができ、さらなる高周波領域での要求に耐え得るバイポーラトランジスタ装置を提供する。
【解決手段】半導体素子搭載部と、前記半導体素子搭載部の相対向する2辺に沿って配列された複数のリードとを具備したリードフレームと、バイポーラトランジスタと、前記バイポーラトランジスタに接続された回路要素とが搭載され、高周波信号入力端子を構成する入力パッドと高周波信号出力端子を構成する出力パッドとが相対向する辺上に、相対向するように配列され、前記半導体素子搭載部に搭載されると共に電気的接続のなされた半導体素子と、前記素子搭載部に搭載された前記半導体素子を覆うとともに、前記リードの先端を導出するように形成された封止体とを備え、前記半導体素子搭載部と前記リードのひとつとが一体的に形成されたことを特徴とする。 (もっと読む)


本発明は、一態様では、半導体デバイスを製作する方法を提供する。一態様では、この方法は、バイポーラ・トランジスタのタブの二重の注入を実現する。バイポーラ領域内のタブは、MOSトランジスタの製作時に、非バイポーラ領域内に異なる電圧のデバイスを製作するためのMOSに関連するタブに注入するのにも用いられる別々の注入マスクを通じてタブに注入することによって注入される。
(もっと読む)


【課題】従来の静電保護回路においては、信号電位の大きさが保護素子の耐圧に満たないにも関わらず、当該保護素子の絶縁破壊が起こることがある。
【解決手段】静電保護回路1は、バイポーラトランジスタQ1、バイポーラトランジスタQ2、およびFET10を備えている。バイポーラトランジスタQ1,Q2は、信号線12とGNDとの間に、互いに直列に接続されている。FET10は、ソースおよびバルクがバイポーラトランジスタQ1,Q2間のノードNに接続され、ゲートが信号線12に接続され、ドレインが電源に接続されている。 (もっと読む)


【課題】BiCMOSなどの半導体装置に搭載される用途の異なる各素子の性能を両立させることができる高性能な半導体装置の製造方法を提供する。
【解決手段】P型Si基板1上の高速用HBTの形成領域Aに高濃度のリンイオンを注入した後、Si基板1上にシリコン酸化膜3を形成する。その後N型Si層をエピタキシャル成長させると、高速用HBTの形成領域Aではまずシリコン酸化膜3の蒸発が起こり除去されてからN型Si層が成長する。このためラテラルPNP、PN接合型バラクタ、高耐圧用HBTトランジスタ等の素子よりも薄いN型Si層が得られるため用途の異なる各素子の性能を両立させることができる。 (もっと読む)


【課題】
スイッチングOFF遅延時間が短いトランジスタを提供する。
【解決手段】
N+型半導体基板の表面層に形成したNウエル領域に第1のトランジスタのP形のベース領域を形成し、その中央部にN+形のエミッタ領域を形成,半導体基板の他面側の表面層に第1のトランジスタのコレクタ電極を金属で形成する。Nウエル領域にダイオードのアノードを形成し電極を金属で形成する。エミッタ領域にエミッタ電極を金属で形成,ダイオードのアノード電極とを接続する。コレクタ電極とダイオードのカソードとが共通電極(コレクタ電極)となって同一チップ内に逆並列接続され,ダイオードのアノードとP形のベース領域との間にPNP寄生トランジスタが生成して,これのONのとき,第1のトランジスタのベース電流を減らすので第1のトランジスタのOFF遅延時間が短縮される。 (もっと読む)


本発明は、基板(11)および半導体本体(1)を有する半導体デバイス(10)であって、この半導体本体(1)は、順にコレクタ領域(2)、ベース領域(3)、およびエミッタ領域(4)を有するバイポーラトランジスタを備える該半導体デバイス(10)に関し、半導体本体は、コレクタ領域(2)およびベース領域(3)の少なくとも一部分を有する、突出するメサ(5)を備え、このメサを絶縁分離領域(6)によって包囲する。本発明によれば、半導体デバイス(10)は、さらに、ソース領域、ドレイン領域、介在させたチャネル領域、積層させたゲート誘電体(7)、およびゲート領域(8)を有する電界効果型トランジスタを備え、ゲート領域(8)は電界効果型トランジスタの最も高い部分を形成し、メサ(5)の高さはゲート領域(8)の高さより大きくする。このデバイスは本発明による方法によって安価かつ容易に製造することができ、このバイポーラトランジスタは優れた高周波数特性を有することができる。
(もっと読む)


【課題】省スペース性および高周波特性を両立する半導体装置およびその製造方法を提供する。
【解決手段】本発明に係る半導体装置100は、半導体基板1と、半導体基板1上に形成されたサブコレクタ層2と、サブコレクタ層2上に形成されたコレクタ層3と、コレクタ層3上に形成されたベース層4と、ベース層4上に形成されたエミッタ層5と、コレクタ層3と接続されるコレクタ電極8aと、ベース層4と接続されるベース電極7と、エミッタ層5と接続されるエミッタ電極6と、サブコレクタ層2をスパイラル状に区画する絶縁領域16と、スパイラル状に区画されたサブコレクタ層2の一端に接続される第1のインダクタ電極8bと、スパイラル状に区画されたサブコレクタ層2の他端に接続される第2のインダクタ電極8cとを備える。 (もっと読む)


半導体基板中にバイポーラ接合トランジスタBJTを形成するプロセス、および本プロセスに従って形成されたBJT。BJT構造体の下に重なる埋込分離領域がBJT構造体をp型半導体基板から分離するために形成される。BJTサブコレクタと埋込分離領域の間の静電容量を減少させるために、サブコレクタを注入する前に基板面に離間した構造体が形成される。サブコレクタは、離間した構造体を通じて、また離間した構造体の中間の領域にイオンを注入することによって形成される。形成されたBJTサブコレクタは、したがって本体部分およびそこから延在する端部を備え、端部は、端部に注入するイオンが離間した構造体を通過しなければならないために、本体部分よりも浅い深度に位置する。端部の浅い深度によって、静電容量が減少する。
(もっと読む)


1 - 20 / 44