説明

Fターム[5F172NQ15]の内容

レーザ (22,729) | 発振器自体の制御、調整 (2,232) | 能動制御・駆動 (937) | 共振器内の光学装置の駆動・制御 (455) | シャッタ (14)

Fターム[5F172NQ15]の下位に属するFターム

Fターム[5F172NQ15]に分類される特許

1 - 8 / 8


【課題】 波長掃引の高速化と、発振スペクトル線幅の狭小化と、を同時に達成し得る光源装置を提供する。
【解決手段】 光を増幅させる光利得媒体を備えた光共振器と、前記光利得媒体より放出された光を波長に応じて分散させる分散素子と、前記分散素子を経た特定の波長の光を反射または透過する波長選択部と、を有する光源装置であって、前記光利得媒体より放出された光が前記光共振器内を一往復する間に前記波長選択部で複数回の波長選択がなされ、該複数回の波長選択により得られた重複した波長帯域の光を出射させる光源装置。 (もっと読む)


【課題】レーザー照射時のレーザー安定性とレーザー遮光時のフラッシュランプ消耗軽減を兼ね備えたレーザー装置およびその制御方法を提供する。
【解決手段】レーザーの照射手段と、フラッシュランプを含む励起手段と、レーザーの遮光手段と、遮光手段による遮光とその解除を制御するとともに、フラッシュランプの設定条件を制御する制御手段を有し、制御手段が、レーザーの照射を停止する際に遮光手段によりレーザーを遮光する工程に続いて、フラッシュランプの消耗を軽減するように設定条件を制御する工程を行い、照射を再開する際に、レーザーが安定して照射されるように設定条件を制御する工程に続いて、遮光を解除する工程を行うレーザー装置の制御方法を用いる。 (もっと読む)


【課題】レーザー出力の安定化を図ることが可能な簡潔な構成のレーザー装置を提供する。
【解決手段】レーザー媒質と、レーザー媒質に光を照射して励起させるとともに温度を上昇させる光源と、レーザー媒質が励起されて発生する光のうち所定の波長の範囲の光を反射する第一の平面を含む反射手段と、レーザー媒質を間にして反射手段と対向して配置され、所定の波長の範囲の光を前記第一の平面との間で共振させることによりレーザーを発振する出力鏡を有するレーザー装置であって、反射手段は、出力鏡と第一の平面との間で光を共振させてレーザー装置を発振状態にする位置と、レーザー装置を非発振状態にする位置との間で移動可能に構成されているレーザー装置を用いる。 (もっと読む)


【課題】中心波長の制御に影響を与えることなくスペクトル純度幅(スペクトル指標値)の安定化制御が行える狭帯域化レーザ装置を提供する。
【解決手段】増幅用レーザ装置から出力されるレーザ光のスペクトル純度幅E95をスペクトル純度幅計測手段で計測し、計測されたスペクトル純度幅E95が、目標スペクトル純度幅E95の許容幅E95±dE95内に収まるように、発振用レーザ装置で放電を開始してから増幅用レーザ装置で放電を開始するまでの放電タイミングを制御する。 (もっと読む)


【課題】レーザ加工の際、対象物からの反射光の照射による非線形光学結晶の温度上昇に起因したレーザ光特性の変動を低減できるレーザ加工装置を提供する。
【解決手段】レーザ加工装置は、基本波レーザ光を出力するレーザ発振器1と、基本波レーザ光を波長変換して高調波レーザ光を出力する非線形光学結晶2と、非線形光学結晶2と基板12の間に配置され、開口位置および開口率が調整可能なアパーチャ5と、基板12への入射光の光強度分布を測定するための入射光測定器8と、基板12からの反射光の光強度分布を測定するための反射光測定器9と、入射光測定器8で測定された入射光の位置およびサイズ、ならびに反射光測定器9で測定された反射光の位置およびサイズに基づいて、アパーチャ5の開口位置および開口率を制御するための制御装置14などで構成される。 (もっと読む)


【課題】高速で広帯域の波長走査を実現する波長走査型レーザ光源を提供すること。
【解決手段】ゲイン媒質11から出射されるレーザビームの光軸上に、回折格子13を設ける。回折格子13で回折した回折光の波長を選択するために、集光レンズ15及び回転円板17を設け、回転円板17のスリット19を通過する光を反射させるミラー20を設ける。こうすればミラー20と部分反射ミラー22との間で外部共振器が形成され、回転円板17を回転させることによって波長を走査することができる。 (もっと読む)


光放射(381)を提供する装置(380)であって、装置は、シーディング放射(387)を提供するシードレーザー(382)と、シーディング放射(387)を増幅する少なくとも1つの増幅器(383)と、反射器(384)と、を有し、この場合に、シードレーザー(382)は、ファブリペロー半導体レーザーであり、シードレーザー(382)は、反射器(384)を介して増幅器(383)に接続され、反射器(384)は、ファイルシードレーザー(382)によって放射されたシーディング放射(387)の中のある比率(388)をシードレーザー(382)内に反射して戻すべく構成され、且つ、増幅器(383)は、屈折率n1を具備したコア(3)と、屈折率n2を具備したペデスタル(4)と、を有する光ファイバ(1)を有し、且つ、この場合に、光ファイバ(1)は、ペデスタル(4)を取り囲む屈折率n3を具備したガラスから製造された第1クラッディング(5)を含み、この場合に、n1はn2より大きく、且つ、n2はn3より大きい。 (もっと読む)


【課題】 複数の狭帯域化手段を持つことなく、安価にかつコンパクトに複数の波長を同時に、かつ安定に発生させること。
【解決手段】 狭帯域化モジュール内の光路中に、反射ミラー6a,6bがレーザのビームを二分割するように挿入される。ミラー6a,6bにより反射されたビーム8,7は、グレーティング5に角度θ1 ,θ2 で入射し、入射したビーム7,8はグレーティング5の回折効果により、波長λ1,λ2を中心に狭帯域化された光としてチャンバ1へ戻され、出力ミラー3よりレーザ光として取り出される。ミラー6a,6bの設置角度を調整することにより、出力される波長λ1、λ2を変化させることができる。また、ミラー6に代え、グレーティング5、プリズム4、出力ミラー3を分割してもよい。さらに、狭帯域化モジュールの光路中にウェッジ基板を挿入するようにしてもよい。 (もっと読む)


1 - 8 / 8