説明

国際特許分類[B60K6/54]の内容

国際特許分類[B60K6/54]の下位に属する分類

国際特許分類[B60K6/54]に分類される特許

1 - 10 / 301



Notice: Undefined index: from_cache in /mnt/www/gzt_ipc_list.php on line 285

【課題】リーンインバランス時における触媒の暖機と失火の抑制との両立を図る。
【解決手段】走行モードが電動走行優先モード(CDモード)であり、エンジン始動がシステム起動から初回であると共に冷却水温Twが閾値Twref未満であり、更に、リーンインバランス時であると共に触媒予測床温Tcatが閾値Tcref未満であるときには、触媒暖機が完了するまでエンジンの運転停止を禁止する(S160)。触媒暖機制御ではないエンジンの運転を継続することにより、触媒暖気が完了していないことによる若干のエミッションの悪化は生じるが、リーンインバランス時に触媒暖機制御を実行することによって生じ得る一部の気筒の失火を抑制することができ、エミッションの悪化を抑制することができる。しかも、触媒の暖機を迅速に終了させることができるから、次回以降のエンジン始動時のエミッションの悪化を抑制することができる。 (もっと読む)


【課題】車両停止条件成立時に内燃機関の吸気弁の開閉タイミングを変更することに伴う消費電力をカバーすることが可能な車両の制御システムを提供する。
【解決手段】制御システム1は、吸気弁の開閉タイミングを変更可能な可変バルブタイミング機構を有する内燃機関10と、内燃機関10に連結される第2モータジェネレータ102と、第2のモータジェネレータ102と電気的に接続されるバッテリ103と、内燃機関10及び第2のモータジェネレータ102を制御するECU80と、を備え、ECU80は、内燃機関10の停止条件成立時に、第2モータジェレータの第1の回生制御を実行した後に、内燃機関10における燃料噴射を停止し、続いて、第2モータジェネレータ102をモータとして駆動しつつ可変バルブタイミング機構を制御することによって、吸気弁の開閉タイミングを所定タイミングに変更する。 (もっと読む)


【課題】モータを用いてエンジンのクランク角度を適切に推定することができるハイブリッド電気自動車におけるエンジンのクランク角度推定装置、及び始動性に優れたエンジン自動停止始動制御を行うことのできるエンジン停止制御装置を提供すること。
【解決手段】モータECUは、エンジン自動停止フラグがONになったt1時点を0°としてエンジン回転数に応じた相対クランク角度を算出し始め、これを推定クランランク角度に設定し、モータトルクが判定閾値より大となっているピーク値が検出されたt2時点で、相対クランク角度からピーク値クランク角度にオフセットして、当該ピーク値クランク角度を推定クランク角度とする。そして、当該推定クランク角度が所定の停止クランク角度に達したときに、モータの回転を0としてエンジンの回転を停止させる。 (もっと読む)


【課題】電動機を車両に搭載した状態のままでも車両下方側から内外接続導体にアクセス可能として、組付け性やメンテナンス性を向上させると共に、上方からの外力に対して内外接続導体を保護することができる電動機の内外接続導体配置構造を提供する。
【解決手段】電動機2は、ステータ14、ロータ15、ステータ14及びロータ15を収容するケース11、及びバスバー130と導電ケーブル103とを電気的に接続するコネクタ101を備える。電動機2は、マウント部材13a、13bによって車両3のサブフレーム13に支持され、コネクタ101は、マウント部材13a、13bが固定されるケース11のボス部11aよりも下方に配置される。 (もっと読む)


【課題】
車両の停車中にもバッテリーの充電を円滑にして、効率的なハイブリッドモード運行が可能であり、車両の燃費を向上できるハイブリッド車両のバッテリー充電方法を提供する。
【解決手段】
エンジンとモータを動力源として含み、前記モータを駆動する電気エネルギーを保存するバッテリーを含む。前記方法は、前記自動車の停車中に前記バッテリーの充電の要否を判断する段階、前記バッテリーの充電が必要であれば、変速機を中立段(N段)に切り替える段階、前記エンジンを始動させる段階、前記エンジンと前記モータを連結するエンジンクラッチを締結して、エンジンの動力で前記モータが電気エネルギーを発生する段階、及び前記モータが発生した電気エネルギーを前記バッテリーに保存する段階、を含むことを特徴とする。 (もっと読む)


【課題】ハイブリッド車両の走行状態に関わらず、良好な燃費性能を確保しつつ、大きな操舵トルクを出力可能なハイブリッド車両のパワーステアリング装置を提供する。
【解決手段】ハイブリッド車両1のパワーステアリング装置20は、変速機5にサブクラッチ40を介して連結され、エネルギーを蓄積可能なアキュムレータ41を備え、ステアリング30から入力される操舵力が所定値以上である場合、増幅手段24の駆動源としてアキュムレータを選択し、ステアリングから入力される操舵力が所定値未満である場合、増幅手段の駆動源として電動モータ25を選択することを特徴とする。 (もっと読む)


【課題】車両発進時の負荷が大きい場合にも不要な電力消費を排除し、バッテリのSOCの低下を抑制することのできるハイブリッド電気自動車の制御装置を提供すること。
【解決手段】エンジン2とモータ4との間にクラッチ6が設けられたハイブリッド電気自動車の発進時において、統合ECU22は、要求トルクが最大モータトルクに達した場合には(t1)、モータトルクを0にするとともに、クラッチ6を接続していくことでエンジントルクを増加させ、車両が発進し始めた時点(t2)からモータトルクを復帰させる。 (もっと読む)


【課題】ハイブリッド車両の走行状態に関わらず、良好な燃費性能を確保しつつ、大きな操舵トルクを出力可能なハイブリッド車両のパワーステアリング装置を提供する。
【解決手段】ハイブリッド車両1のパワーステアリング装置20は、モータ回生走行時やモータ発進時にエンジン2が停止状態にあり、且つ、クラッチ3が切断状態にある場合、ハイブリッド車両1の走行速度に応じて、パワーステアリング装置において操舵トルクを増幅する増幅手段24の駆動源である、電動モータ25とエンジン2を選択的に切り替える。 (もっと読む)


【課題】装置全体の小型化及びエネルギ効率の向上の双方を図ることが容易な車両用駆動装置を実現する。
【解決手段】ケース3は、軸方向Lにおける回転電機MGと流体継手との間で径方向Rに延びる支持壁部31を備え、ロータ部材21を支持壁部31に対して回転可能な状態で径方向Rに支持する第一軸受75と、第一軸受75とは別の軸受であって継手入力部材2を支持壁部31に対して回転可能な状態で径方向Rに支持する第二軸受76とが、径方向Rの異なる位置に配置されている。 (もっと読む)


1 - 10 / 301