説明

国際特許分類[C25B9/04]の内容

国際特許分類[C25B9/04]に分類される特許

1 - 10 / 45



Notice: Undefined index: from_cache in /mnt/www/gzt_ipc_list.php on line 285

【課題】電気化学セルを安定した状態で導電性接続部材に接合した接合構造を有する電気化学リアクターを提供すること。
【解決手段】本発明によって提供される電気化学リアクター(20)は、固体電解質を備える電気化学セル(10)と導電性接続部材(24)との接合が、該セルと該接続部材との直接的な接触を回避して該セルと該接続部材との間に配置された導電性接合材(30)を介して行われており、その接合材は、ガラスマトリックスと導電性粒子とを有し、ここで該ガラスマトリックスは酸化物換算の質量比で以下の組成:
SiO 60〜75質量%;
Al 5〜15質量%;
NaO及び/又はKO 15〜25質量%;
CaO及び/又はMgO 1〜5質量%;
から実質的に構成されている。 (もっと読む)


【課題】簡単な構成及び工程で、表面を緻密化させることができ、電解質膜の損傷を可及的に阻止することを可能にする。
【解決手段】高圧水素製造装置10を構成する単位セル12は、電解質膜・電極構造体14をアノード側セパレータ16及びカソード側セパレータ18により挟持する。電解質膜・電極構造体14を構成するアノード側給電体22は、焼結体により形成されるベース部と、前記ベース部の固体高分子電解質膜20側及び前記固体高分子電解質膜20側とは反対側に設けられる表層部とを有するとともに、前記アノード側給電体22は、前記ベース部にプレス加工を施すことにより、該ベース部の表層部の空隙率が前記ベース部の空隙率よりも低く設定されている。 (もっと読む)


【課題】発生させた気体を簡素化された配管により回収できる気体製造装置を提供する。
【解決手段】本発明の気体製造装置は、受光面およびその裏面を有する光電変換部と、前記裏面の上に並べて設けられ、かつ、電解液に接触可能な面をそれぞれ有する第1および第2電解用電極とを備え、第1および第2電解用電極が電解液と接触するとき、第1および第2電解用電極は、前記光電変換部が受光することより生じる起電力を利用して電解液を電気分解しそれぞれ第1気体および第2気体が発生するように設けられ、前記光電変換部の受光面を水平にしたとき、第1電解用電極と第2電解用電極とは、電解液に接触可能な面と水平な基準面との間の傾斜角が異なることを特徴とする。 (もっと読む)


【課題】電極板に着脱でき、電極板の転用を可能にするとともに、電極棒と電極板の間の抵抗を小さくして効率的に電流を通電することを可能にする電極棒を提供することを目的とする。
【解決手段】ケーシングの外側から内側に貫通形成された電極棒挿入孔に挿入した状態で、ケーシング内に設けられた電極板に接続して設置される電極棒18、19であって、先端18a、19aから軸線O2方向に沿って後端18b、19b側に延び、電極板の端部側を挿入して電極板に着脱可能に接続するための電極板保持スリット35と、この電極板保持スリット35に交差して先端18a、19aから軸線O2方向に沿って後端18b、19b側に延び、電極棒18、19の先端18a、19a側の変位を許容するための歪み吸収スリット36とを備えて、先端18a、19a側を少なくとも4つ以上に分割形成する。 (もっと読む)


本発明は平管型固体酸化物セルスタックに関する。具体的には、内部に第1ガスが流れる第1ガス流チャネル112が長手方向に沿って形成され、外部に第2ガスが流れる第2ガス流チャネル113が形成され、多孔性の伝導性平管型第1電極支持体111を含む多数の単位セル110、120、330が積層されてスタックを成す平管型固体酸化物セルスタックにおいて、前記第1ガスが単位セルの長手方向に沿ってジグザグに流れるように前記第1ガス流チャネルの端部には隣接して積層された単位セルの第1ガス流チャネル112に連通する連結孔114、124、334が形成される。このような構成によれば、セルスタッキング(cell stacking)の応力を最小化し、密封部位を最小化して密封し、化学反応経路を伸ばし、燃料電池として使うときに電気エネルギー発電効率を高め、高温水電解装置として使うときに発生ガス(水素)の純度を高める効果がある。
(もっと読む)



Notice: Undefined index: from_cache in /mnt/www/gzt_ipc_list.php on line 285

【課題】給電性能とシール性能との両立を図るとともに、製造コストの低減を図ることができる水電解用給電体、水電解装置および水電解装置の製造方法を提供する。
【解決手段】、膜電極接合体の少なくとも一方の面に隣接して配置される水電解用給電体3,4であって、膜電極接合体の面と直交する方向に延びて設けられた壁部31によってハニカム構造が形成され、壁部31は、座屈点を超えて圧縮変位に関わらず面圧が一定となる圧縮変位が与えられ、座屈していることを特徴とする。 (もっと読む)


【課題】電流を充分に拡散させ、電流密度が高くなることによる発熱を防止することで、これに起因する電解質膜破損を防止することを目的とする。
【解決手段】電解セル用給電体1が、網状に形成され相互に積層された複数の金属製板材2a〜2gを備え、隣接する金属製板材2a〜2gが個別にスポット溶接され、スポット溶接によるナゲット間の最小離間距離が下記の数1式により定義される。
【数1】


ここで、rはナゲット間の最小離間距離、R12は前記金属製板材間の接触抵抗値、Rは前記金属製板の面内抵抗値である。 (もっと読む)


電解セル(10)は、交番するプラス電極(18)およびマイナス電極(20)にそれぞれ対するプラス端子(14)およびマイナス端子(16)を有する直流電圧源(12)を備える。電源(12)は、最低電圧Vminと最高電圧Vmaxの間で循環する電圧を生成し、ここで、Vmin≧0ボルト、Vmax=Vmin+Δであり、Δ>0ボルトである。したがって、直流電圧源(12)によって供給される電圧は、周期Tおよび周波数fを有する周期的波動の形をしている。電圧源(12)の電圧がVminからVmaxまで循環するとき、VminとVmaxの間に中間のピークVP1が存在する。電圧は、VP1に到達すると、期間TP1にわたって低下してから、再び電圧Vmaxまで上昇する。次いで、電圧は、Vminまで比較的急速に低下して、周期Tの1つのサイクルを完成する。
(もっと読む)


1 - 10 / 45