説明

国際特許分類[H01F1/16]の内容

国際特許分類[H01F1/16]の下位に属する分類

国際特許分類[H01F1/16]に分類される特許

81 - 90 / 543


【課題】製造性、特に圧延性を害することなく、高強度でかつ高周波鉄損特性にも優れる高強度無方向性電磁鋼板を提供するとともに、その有利に製造方法を提案する。
【解決手段】C:0.01mass%以下、Si:1〜4.5mass%、Al:0.001〜3.000mass%、Mn:0.02〜3.0mass%を含有する鋼スラブを加熱後、熱間圧延し、必要に応じて熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、その後、コイル状態で仕上焼鈍して無方向性電磁鋼板を製造する方法において、上記仕上焼鈍で、鋼板表面に存在するSn,Sb,Ti,Mn,Ni,VおよびCrのうちから選ばれる1種または2種以上の金属元素を鋼板内部に拡散させる。 (もっと読む)


【課題】鋼板に大きな外部応力がかかる条件下、もしくは正弦波に加えて3次以上の高調波成分を3%以上含む交流磁束密度波形による励磁された条件下で使用するのに好適な、線状溝が付与された変圧器鉄心用の方向性電磁鋼板を提供する。
【解決手段】線状溝の幅を50〜300μm、深さを10μm以上、圧延方向の間隔を2mm以上10mm以下とし、かつ該線状溝の溝側壁が溝底面と交わる部分の曲率半径を1.0μm以上とする。 (もっと読む)


【課題】数mの大きさの大型変圧器用電磁鋼板において、特に、板厚:0.220mm以下の電磁鋼板であっても、剪断加工を行った際の磁気特性劣化を低減できる鋼板を提供する。
【解決手段】電磁鋼板の成分として、質量%で、C:0.005%以下、Si:1.0〜8.0%およびMn:0.005〜1.0%を含み、かつNb、Ta、VおよびZrのうちから選んだ1種または2種以上を合計で10〜50質量ppm含有して、残部がFeおよび不可避的不純物からなり、上記Nb、Ta、VおよびZrは含有量の少なくとも10%が析出物として存在し、該析出物の直径(円相当径)を平均で0.02〜3μmとし、かつ直径:10μm以上の介在物を1mm2当たり1個未満とし、さらに該鋼板の二次再結晶粒の平均粒径が5mm以上とする。 (もっと読む)


【課題】Goss方位集積度の高い方向性電磁鋼板を用いて変圧器を作製する場合でも、ビルディングファクター(BF)が小さい低鉄損の三相積変圧器を提供する。
【解決手段】Bが1.88T以上の方向性電磁鋼板を積層した鉄心を用いた三相積変圧器において、脚部の鋼板に付与された被膜張力が15MPa以上でかつ継鉄部の鋼板に付与された被膜張力より大きい、好ましくは、脚部の鋼板に付与された被膜張力が20MPa以上で、脚部の鋼板に付与された被膜張力が、継鉄部の鋼板に付与された被膜張力より5MPa以上大きい三相積変圧器。 (もっと読む)


【課題】IPMモータのロータ鉄心として用いるときにIPMモータのリラクタンストルクの低下を招くことなく、高強度化と高磁束密度の両立が可能なロータ鉄心用鋼板を提供する。
【解決手段】C:0.06〜0.90質量%、Si:0.05質量%以下、Mn:0.2〜2.0質量%、P:0.05質量%以下、S:0.02質量%以下、酸可溶Al:0.005〜4.95質量%を、Si+Al:5.0質量%以下なる条件で含み、残部がFe及び不可避的不純物からなる成分組成を有する熱延鋼板を冷延し、連続焼鈍ライン又は連続焼入れラインにて750℃以上に加熱後、450℃以下まで10℃/s以上の冷却速度で冷却し、その後200〜500℃の温度域に120s以上保持することにより、780N/mm以上の降伏強度、及び4000A/mにおける磁束密度B4000が1.6T以上なる磁界の強さを呈する鋼板を得る。 (もっと読む)


【課題】IPMモータのロータ鉄心として用いるときにIPMモータのリラクタンストルクの低下を招くことなく、高強度化と高磁束密度の両立が可能なロータ鉄心用鋼板を提供する。
【解決手段】C:0.06〜0.90質量%、Si:1.5質量%以下、Mn:0.2質量%以下、P:0.05質量%以下、S:0.02質量%以下、酸可溶Al:0.005〜3.5質量%を、Si+Al:5.0質量%以下なる条件で含み、残部がFe及び不可避的不純物からなる成分組成を有する熱延鋼板を冷延し、連続焼鈍ライン又は連続焼入れラインにて750℃以上に加熱後、450℃以下まで10℃/s以上の冷却速度で冷却し、その後200〜500℃の温度域に120s以上保持することにより、780N/mm以上の降伏強度、及び4000A/mにおける磁束密度B4000が1.6T以上なる磁界の強さを呈する鋼板を得る。 (もっと読む)


【課題】仕上焼鈍における被膜特性の改善、インヒビターの劣化抑制および焼鈍時間の短縮の全てを満たす方向性電磁鋼板の仕上焼鈍方法を提案するとともに、その仕上焼鈍設備を提供する。
【解決手段】冷間圧延後の鋼板に脱炭を兼ねた一次再結晶焼鈍を施してから、鋼板表面にMgOを主体とする焼鈍分離剤を塗布、乾燥し、コイルに巻き取った後、このコイルを巻き戻しながら炉中で所定温度に加熱し、炉中で再度コイルに巻き取って一定時間均熱保持し、その後、上記均熱保持したコイルを巻き戻しつつ冷却し、再度、炉外でコイルに巻き取る方向性電磁鋼板の仕上焼鈍方法。 (もっと読む)


【課題】仕上焼鈍後の二次再結晶粒内のβ角の変動を抑え、コイル全長にわたってβ角を適正範囲に制御することによって、製品コイル全ての位置で磁気特性に優れる方向性電磁鋼板の有利な製造方法を提案する。
【解決手段】冷間圧延した電磁鋼板素材を一次再結晶焼鈍し、その後、コイル状態で二次再結晶させる仕上焼鈍を施して方向性電磁鋼板を製造する方法において、上記仕上焼鈍を、鋼板の曲率半径を変化させるあるいはさらに鋼板の曲率の符号を逆転させるコイルの巻き直し工程を挟んで2回以上に分けて行い、1回目の仕上焼鈍における二次再結晶率を面積率で5〜90%とする方向性電磁鋼板の製造方法。 (もっと読む)


【課題】 レーザ光を照射することにより方向性電磁鋼板の表面に溝を形成して当該方向性電磁鋼板における磁区を制御するに際し、当該溝の縁の部分に形成される溶融物の高さを低減すると共に、当該方向性電磁鋼板に対する当該レーザ光の焦点位置の変動によって生じる当該溝の深さの変動を低減する。
【解決手段】 仕上焼鈍後の方向性電磁鋼板100、又は、仕上焼鈍後に表面に絶縁皮膜が形成された方向性電磁鋼板100の表面に、噴流水柱C内に閉じ込められた状態でレーザ光Lを照射して、幅Wが5[μm]以上200[μm]以下であり、深さDが方向性電磁鋼板100の板厚の4[%]以上15[%]以下であり、長手方向が方向性電磁鋼板100の圧延方向に対し±15[°]以内の方向にある複数の溝101を、方向性電磁鋼板100の圧延方向において2[mm]以上15[mm]以下の間隔Iで形成するようにした。 (もっと読む)


高磁気誘導の無方向性ケイ素鋼の製造プロセスであって:1)製錬および鋳造手順を備え:鋼の化学組成は重量パーセントで:Si 0.1〜1%、Al 0.005〜1.0%、C≦0.004%、Mn=0.10〜1.50%、P≦0.2%、S≦0.005%、N≦0.002、Nb+V+Ti≦0.006%、かつ残部がFeであり;溶融鋼は製錬されかつ二次精錬され、次にビレットに鋳造され;さらに、2)熱間圧延手順を備え:ビレットは1150〜1200℃に加熱され、次に830〜900℃の仕上げ圧延温度で板に熱間圧延されて、≧570℃の温度で、コイル状に巻き取られ;さらに、3)平坦化手順を備え:板は2〜5%の圧縮率で冷間圧延され;さらに、4)焼きならし手順を備え:板は950℃を下回らない温度で30〜180sの間焼きならしされ;さらに、5)酸洗いおよび冷間圧延手順を備え:焼きならし板は酸洗いされ、次に70〜80%の合計圧縮率で数回続けて冷間圧延されて完成品の厚みを有するシートにされ;さらに、6)仕上げ焼きなまし手順を備え:冷間圧延シートは≧100℃/sの昇温速度で800〜1000℃に迅速に加熱され、5〜60sの間均熱され、その後ゆっくりと600〜750℃に冷却されて、次に自然放冷される。製造プロセスは、鉄損を増大させることなく少なくとも200ガウスだけ無方向性ケイ素鋼の磁気誘導を上昇させることができる。 (もっと読む)


81 - 90 / 543