説明

イオンビーム検出器

【課題】生成されるイオンビームのエネルギーが即座に判り、かつ、レーザー照射を行いながら、リアルタイムでイオンビームの計測が可能なイオンビーム検出器を実現する。
【解決手段】本発明のイオンビーム検出器1は、イオン3に混在するX線を透過させ、かつイオン3を光に変換する光変換部7と、光変換部7にて変換されたイオン3由来の光を電気信号として検出する光検出部9と、イオン3が光変換部7に到達するまでの飛行時間を計測する飛行時間計測部10とを有し、光変換部7がイオン3を受光する側に、イオン3に混在する電子を除去する電子除去部5と、イオン3に混在する光を遮光する遮光部6とを備えるとともに、光変換部7と光検出部9との間に、光変換部7に入射するイオン3の光軸に対し湾曲した湾曲部8が形成されていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、イオンビーム検出器に関するものである。
【背景技術】
【0002】
従来、高強度のレーザーを物質に照射する際に発生するイオンビームを計測するために、主にCR39等の固体飛跡検出器が用いられてきた。高強度のレーザーを物質に照射するという実験環境下では、光、X線、及び電子がイオンビームと混在してしまう。このため、原子核実験等で使用されるSSD、MCP等のオンライン検出器によりイオンビームを計測すると、検出されるイオン信号のS/N比を充分に取ることができなくなる。
【0003】
一方、上述の固体飛跡検出器CR39は、イオンビーム以外の光、X線、及び電子に感度がないので、高強度のレーザーを物質に照射する際に発生するイオンビームを計測するのに最適とされている。
【0004】
固体飛跡検出器CR39によるイオンビーム検出原理は、以下の通りである。
【0005】
すなわち、CR39中にイオンビームを入射すると、その飛跡に沿って局所的に損傷が残るようになる。この損傷が残ったCR39を、真空槽から取り出し、NaOH等の塩基で化学的に処理(エッチング)する。これにより、損傷を受けていない場所におけるエッチング速度に対し、飛跡に沿ったエッチング速度が大きくなる。このため、CR39には、瘢痕(エッチピット)が形成される。そして、光学顕微鏡により視野を走査し、CR39に形成された瘢痕を数えることで、イオンビームのエネルギーを測定する。
【0006】
また、例えば特許文献1には、飛行時間型質量分析装置に具備されたレーザ測定装置が開示されている。
【特許文献1】特開2003−139743号公報(2003年 5月14日)
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、上記従来の固体飛跡検出器CR39によるイオンビーム検出では、イオンビーム検出に長時間を要するという問題を生じる。
【0008】
具体的には、固体飛跡検出器CR39によりイオンビームを検出する場合、イオンビーム照射後、CR39を真空槽から取り出し、前処理としてエッチング処理を行うことになる。さらに、その上、イオンビームの計測は、光学顕微鏡を用いた人力であるため、イオンビームの照射からイオンビームの計測までに、長時間を要するという問題が生じる。
【0009】
特に、高強度のレーザーを物質に照射することによりイオンビームを生成するイオンビーム生成装置では、そのイオンビームをオンライン(リアルタイム)でエネルギー調整し、パラメータを最適化する必要がある。このようなイオンビーム生成装置に、従来の固体飛跡検出器CR39を適用した場合、イオンビームの計測に長時間を要しており、パラメータ最適化の大きな障害となる。
【0010】
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、生成されるイオンビームのエネルギーが即座に判り、かつ、レーザー照射を行いながら、リアルタイムでイオンビームの計測が可能なイオンビーム検出器を提供することにある。
【課題を解決するための手段】
【0011】
本発明に係るイオンビーム検出器は、上記課題を解決するために、イオン源から発生するイオンビームを検出するイオンビーム検出器であって、上記イオンビームに混在するX線を透過し、かつ上記イオンビームを光に変換する光変換部と、上記光変換部にて変換されたイオンビーム由来の光を電気信号として検出する光検出部と、上記イオンビームが上記光変換部に到達するまでの飛行時間を計測する飛行時間計測部とを有し、上記光変換部がイオンビームを受ける側に、上記イオンビームに混在する電子を除去する電子除去部と、上記イオンビームに混在する光を遮光する遮光部とを備えるとともに、上記光変換部と上記光検出部との間に、光変換部に入射するイオンビームの光軸に対し湾曲した湾曲部が形成されていることを特徴としている。
【0012】
本発明のイオンビーム検出器は、上記イオンビームに混在するX線を透過し、かつ上記イオンビームを光に変換する光変換部と、上記光変換部にて変換されたイオンビーム由来の光を電気信号として検出する光検出部と、上記イオンビームが上記光変換部に到達するまでの飛行時間を計測する飛行時間計測部とを有するものである。
【0013】
このイオンビーム検出器において、イオンビームのエネルギーの計測は、飛行時間計測部にて計測されたイオンビームの飛行時間に基づいて行われる。この飛行時間は瞬時に判るものである。このため、生成されるイオンビームのエネルギーが即座に判り、かつ、レーザー照射を行いながら、リアルタイムでイオンビームの計測が可能になる。
【0014】
ところで、高強度のレーザーを物質に照射し、高エネルギー(100keVオーダー以上)のイオンビームを生成する環境下では、光、X線、及び電子がイオンビームと混在してしまう。
【0015】
上記の構成によれば、上記光変換部がイオンビームを受ける側に、上記イオンビームに混在する電子を除去する電子除去部と、上記イオンビームに混在する光を遮光する遮光部とを備えるので、イオン源にて発生するイオンビームが光変換部に到達するまでに、イオンビームに混在する電子を除去するとともに、イオンビームに混在する光を抑制することができる。その結果、光、電子に起因する信号の発生を抑え、バックグラウンドを低減することができる。その結果、光検出部にて検出される光、電子の信号とイオンビーム由来の光の信号との分解能が向上する。
【0016】
さらに、上記光変換部は、上記イオンビームに混在するX線を透過させるとともに、上記光変換部と上記光検出部との間に、光変換部に入射するイオンビームの光軸に対し湾曲した湾曲部が形成されているので、X線が光検出部に到達することが防止され、X線に起因する信号の発生を抑え、バックグラウンドを低減することができる。その結果、光検出部にて検出されるX線の信号とイオンビームの信号との分解能が向上する。なお、「X線を透過させる」光変換部とは、イオンビームに混在するX線に対し相互作用を示さず、X線が透過するような光変換部のことをいう。それゆえ、本発明における「光変換部」は、「イオンビームに混在するX線に対し反応(感応)しない光変換部」ともいえる。
【0017】
さらに、本発明に係るイオンビーム検出器では、上記イオンビームが上記光変換部に到達するまでの飛行時間を計測する飛行時間計測部を備えた構成である。
【0018】
以上のように、上記の構成によれば、生成されるイオンビームのエネルギーが即座に判り、かつ、レーザー照射を行いながら、リアルタイムでイオンビームの計測が可能なイオンビーム検出器を実現することができる。
【0019】
本発明に係るイオンビーム検出器では、上記電子除去部は、2極電磁石を備え、2極電磁石は、発生する磁界の方向が上記イオンビームの光軸と垂直になるように配置されていることが好ましい。
【0020】
上記の構成によれば、2極電磁石により発生する磁界の方向は、イオンビームの光軸と垂直になっているので、イオンビームに混在する電子の軌道は、イオンビームの軌道からはずれる。その結果、上記の構成によれば、イオンビームに混在する電子は、光変換部に到達しなくなる。それゆえ、イオン源にて発生するイオンビームが光変換部に到達するまでに、イオンビームに混在する電子が除去され、電子に起因する信号の発生を抑え、バックグラウンドを低減することができる。
【0021】
本発明に係るイオンビーム検出器では、上記遮光部は、上記イオンビームに混在する光をイオン源側へ反射させるとともに、イオンビームを透過させる金属膜であることが好ましい。
【0022】
金属膜がイオンビームに混在する光をイオン源側へ反射させているので、確実にイオンビームに混在する光を遮光することができる。
【0023】
本発明に係るイオンビーム検出器では、上記光変換部がプラスチックシンチレーターであることが好ましい。
【0024】
プラスチックシンチレーターは、応答速度が速いので飛行時間測定の精度を向上させる利点があるとともに、プラスチックから構成されているので、加工しやすく、スペースの問題や環境の要求から所望の形状にすることができるという利点がある。
【0025】
本発明に係るイオンビーム検出器では、上記湾曲部には、上記光変換部にて変換されたイオンビーム由来の光を減光させる減光フィルターが設けられていることが好ましい。
【0026】
本発明に係るイオンビーム検出器では、上記湾曲部には、上記光変換部にて変換されたイオンビーム由来の光を選択的に透過させる選択フィルターが設けられていることが好ましい。
【0027】
これにより、例えば光検出部のイオンビーム検出感度が高い場合に、上記光変換部にて変換されたイオンビーム由来の光を減光させる、あるいは選択的に透過させることで、イオンビームの検出感度を最適なものにすることが可能になる。
【発明の効果】
【0028】
本発明に係るイオンビーム検出器は、以上のように、上記イオンビームに混在するX線を透過させ、かつ上記イオンビームを光に変換する光変換部と、上記光変換部にて変換されたイオンビーム由来の光を電気信号として検出する光検出部とを有し、上記光変換部がイオンビームを受ける側に、上記イオンビームに混在する電子を除去する電子除去部と、上記イオンビームに混在する光を遮光する遮光部とを備えるとともに、上記光変換部と上記光検出部との間に、光変換部に入射するイオンビームの光軸に対し湾曲した湾曲部が形成されている構成である。
【0029】
このイオンビーム検出器において、イオンビームのエネルギーの計測は、飛行時間計測部にて計測されたイオンビームの飛行時間に基づいて行われる。この飛行時間は瞬時に判るものである。このため、生成されるイオンビームのエネルギーが即座に判り、かつ、レーザー照射を行いながら、リアルタイムでイオンビームの計測が可能になる。
【0030】
高強度のレーザーを物質に照射し、高エネルギー(100keVオーダー以上)のイオンビームを生成する環境下では、光、X線、及び電子がイオンビームと混在してしまう。
【0031】
上記光変換部がイオンビームを受光する側に、上記イオンビームに混在する電子を除去する電子除去部と、上記イオンビームに混在する光を遮光する遮光部とを備えるので、イオン源にて発生するイオンビームが光変換部に到達するまでに、イオンビームに混在する電子を除去するとともに、イオンビームに混在する光を抑制することができる。その結果、光、電子に起因する信号の発生を抑え、バックグラウンドを低減することができる。その結果、光検出部にて検出される光、電子の信号とイオンビームの信号との分解能が向上する。
【0032】
さらに、上記光変換部は、イオンビームに混在するX線を透過させるとともに、上記光変換部と上記光検出部との間に、光変換部に入射するイオンビームの光軸に対し湾曲した湾曲部が形成されているので、X線が光検出部に到達することが防止され、X線に起因する信号の発生を抑え、バックグラウンドを低減することができる。その結果、光検出部にて検出されるX線の信号とイオンビームの信号との分解能が向上する。
【0033】
以上のように、上記の構成によれば、生成されるイオンビームのエネルギーが即座に判り、かつ、レーザー照射を行いながら、リアルタイムでイオンビームの計測が可能なイオンビーム検出器を実現することができる。
【発明を実施するための最良の形態】
【0034】
本発明の一実施形態について図1ないし図3に基づいて説明すると以下の通りである。図1は、本実施形態のイオン検出器の概略構成を示す模式図である。
【0035】
図1に示すように、本実施形態のイオンビーム検出器1は、イオン源2から発生するイオン3のエネルギーを、飛行時間法により計測するというものである。
【0036】
イオンビーム検出器1は、イオン3を飛行させるためのダクト4と、イオン源2から生じたイオン3に混在する電子を除去する電子除去部5と、イオン3に混在する光を遮光する遮光部6と、イオン3を光に変換するとともにイオン3に混在するX線を透過させる光変換部7と、光変換部7にて変換されたイオン3由来の光を受光し電気信号として検出する光検出部9と、飛行時間計測部10とを備えている。また、光変換部7と光検出部9との間に、光変換部7に入射するイオン3の光軸(ダクト4の軸AA’)に対し湾曲するように湾曲部8が形成されている。
【0037】
イオン源2は、標的物質11にパルスレーザ光12を照射することによりイオン3を発生させている。イオンビーム検出器1に適用可能なイオン源2は、図1に示された構成に限定されるものではなく、イオンビームを発生させることが可能なものであればよい。例えば、イオンビーム検出器1に適用可能なイオン源2としては、例えば、レーザーをジェットターゲットに集束させるイオン源、またはレーザーをクラスターターゲットに集束させるイオン源等が挙げられる。
【0038】
ダクト4は、長さLを有している。イオンビーム検出器1は、イオン3が長さLだけ飛行した飛行時間tに基づいて、イオン3のエネルギーを検出する。
【0039】
飛行時間計測部10は、ダクト4内を飛行したイオン3が長さLだけ飛行する飛行時間tを計測するものである。なお、飛行時間計測部6による飛行時間の計測は、後述する光検出部9にて検出されたイオンの電気信号に基づいて行われる。
【0040】
イオンビーム検出器1では、イオン3のエネルギーが大きくなるに従い、飛行時間tが短かくなるようになっている。飛行時間計測部10は、飛行時間tを計測することにより、イオン3のエネルギーを算出する。
【0041】
より具体的には、飛行時間tは、イオン3の飛行距離をL(ダクト4の長さに相当する)として、下記関係式のように表すことができる。
【0042】
【数1】

【0043】
ただし、上記関係式において、mcは、イオン3の静止質量(イオン3が陽子である場合には、mc=938.2722MeVとなる)を表し、Tは、イオン3が持つ運動エネルギー(MeV)を表し、cは光速2.998×10(m/sec)を表す。
【0044】
飛行時間計測部10にて計測された飛行時間tを、上記関係式に代入することにより、イオン3が持つ運動エネルギーTを算出することが可能になる。
【0045】
このように、イオンビーム検出器1によるイオン3のエネルギーの計測は、イオン3が長さLを飛行する飛行時間tに基づいて行われる。この飛行時間tは、イオン3が光検出部9に到達すると瞬時に判るものである。このため、生成されるイオンビームのエネルギーが即座に判り、かつ、レーザー照射を行いながら、リアルタイムでイオンビームの計測が可能になる。さらには、各種パラメータを変更しながらイオン源2からイオン3を発生させた場合に、パラメータ変更がイオン3のエネルギーにどのように反映するかをオンラインで知ることが可能になる。
【0046】
ところで、上述したように、高強度のレーザーを物質に照射し、高エネルギー(100keVオーダー以上)のイオンビームを生成する環境下では、光、X線、及び電子がイオン3と混在してしまう。このため、イオン3のエネルギーを飛行時間法により計測すると、光(光子)、X線、または電子の飛行時間とイオン3の飛行時間とを区別して計測することができなくなるおそれがある。すなわち、光検出部9にて検出される光(光子)、X線、または電子の信号とイオン3由来の光の信号との分解能が悪くなり(光(光子)、X線、または電子の信号のバックグラウンドが大きくなる)、正確なイオン3の飛行時間tの計測ができなくなるおそれがある。
【0047】
本実施形態のイオンビーム検出器1は、光(光子)、X線、または電子の信号とイオン3の信号との分解能を良好にする(光、X線、または電子の信号のバックグラウンドを除去する)ものであり、電子除去部5と、遮光部6と、光変換部7と、湾曲部8と、光検出部9とを備えた構成となっている。
【0048】
以下、本実施形態のイオンビーム検出器1の特徴的構成である、電子除去部5、遮光部6、光変換部7、湾曲部8、及び光検出部9について、図2及び図3に基づいて、さらに詳述する。図2は、電子除去部5の概略構成を示す模式図である。また、図3(a)は、上記イオンビーム検出器における、遮光部、光変換部、湾曲部、及び光検出部の構成を示す側面図であり、図3(b)は、遮光部、光変換部、及び湾曲部を拡大した図である。
【0049】
まず、電子除去部5について説明する。図2に示すように、電子除去部5は、2極電磁石(Dipole Magnets)5a・5bを備えており、2極電磁石5a・5bは、ダクト4の側壁に設けられている。また、2極電磁石5a・5bは、ダクト4の軸AA’に対し垂直な磁界Ha・Hbを発生させる。さらに、2極電磁石5a・5bは、発生する磁界Ha・Hbの方向が互いに逆方向になるように配置されている。
【0050】
磁界Ha・Hbの影響により、イオン3に混在する電子eは、ダクト4の側壁に衝突し、遮光部6に到達しなくなる。一方、イオン3は、磁界Ha・Hbの影響により、その軌道が平行移動する程度であり、遮光部6に到達するようになっている。このようにイオン3に混在する電子eがダクト4内で除去されるので、電子に起因する信号の発生を抑え、バックグラウンドを低減することができる。その結果、光検出部9にて検出されるイオン3に起因する信号に混在する電子に起因する信号の割合を低くすることが可能となる。
【0051】
また、2極電磁石5a・5bにより発生する磁界Ha・Hbの強度は、電子eをダクト4の側壁に衝突させる一方、イオン3がダクト4の側壁に衝突しなくなるような強度であればよい。磁界Ha・Hbの強度は、イオン3の種類、あるいはイオン3に混在する電子eのエネルギーに応じて適宜設定することができる。例えば、磁界Ha・Hbの強度を300Gと設定すると、2MeV以下の電子はダクト4の側壁に衝突する。一方、100keVのイオン(プロトン)は、2mm程度軌道が平行移動するのみである。
【0052】
なお、図2では、電子除去部の構成は、発生する磁界Ha・Hbの方向が互いに逆方向になるように2つの2極電磁石が配置された構成であった。しかしながら、本発明における電子除去部の構成は、イオンに混在する電子を除去することが可能な構成であれば、特に限定されるものではない。例えば、3つ以上の2極電磁石が配置された構成、または、1つの2極電磁石が配置された構成であってもよい。さらには、電子除去部は、磁界を発生させることにより電子を除去する構成に限定されず、電界を発生させることにより電子を除去するような構成であってもよい。
【0053】
次に、遮光部6、光変換部7、湾曲部8、及び光検出部9について説明する。図3に示すように、イオンビーム検出器1では、光変換部7にて変換されたイオン3由来の光が、光検出部9にて受光されるようになっている。
【0054】
光変換部7がイオン3を受ける面には、遮光部6が設けられている。この遮光部6は、イオン3に混在する光を遮光する一方、イオン3を透過させる機能を有するものである。遮光部6がイオン3に混在する光を遮光することにより、光に起因する信号の発生を抑え、バックグラウンドを低減することができる。その結果、光検出部9にて検出される光の信号とイオン3の信号との分解能が向上する。なお、「遮光する」とは、光の透過を抑制することを意味する。
【0055】
遮光部6を構成する部材は、光を遮光する一方、イオン3を透過する機能を有するものであれば、特に限定されるものではない。例えば、光をイオン源2側へ反射させ、イオン3を透過させるような反射膜であってもよい。遮光部6を構成する部材として反射膜を用いる場合には、反射膜として、質量が軽く(元素周期表において原子番号(z)が小さい)、酸化しにくい金属膜を用いることが好ましい。元素周期表において原子番号が小さい金属で形成された金属膜は、イオン3を通過させやすくなるためである。反射膜として特に好適な金属膜としては、例えば、アルミニウム(Al)蒸着膜が挙げられる。遮光部6を構成する部材としてアルミニウム蒸着膜を用いる場合、その膜厚は、イオン源2にて発生するイオン3のエネルギーに応じて設定可能である。例えば、100keVオーダー以上のイオン3を検出する場合には、アルミニウム蒸着膜の膜厚を約2μmとする。アルミニウム蒸着膜の膜厚が約2μmである場合、220keV以下のイオン3が透過せず、アルミニウム蒸着膜内に留まるためである。
【0056】
イオンビーム検出器1では、遮光部6により光が遮光されたイオン3は、光変換部7に入射する。光変換部7は、入射してくるイオン3を光に変換する機能を有し、かつその光を透過させるものであれば、特に限定されるものではない。特に、光変換部7を構成する部材としては、シンチレーターが好ましい。
【0057】
シンチレーターは、粒子が入射した際に光を発生する物質である。シンチレーターに荷電粒子が入射すると、この荷電粒子とシンチレーター中の電子との間で、電気的な引力や反発力が働く。そして、この影響で電子が励起され発光する。
【0058】
また、種々のシンチレーターの中でも、光変換部7を構成する部材として、プラスチックシンチレーターが好ましい。プラスチックシンチレーターは、応答速度が速いので飛行時間測定の精度を向上させる利点があるとともに、プラスチックから構成されているので、加工しやすく、スペースの問題や環境の要求から所望の形状にすることができるからである。
【0059】
プラスチックシンチレーターは、イオン3に限らず、イオン3に混在するX線に対しても発光する。それゆえ、光変換部7としては、イオン3に混在するX線を透過させるような構成が好ましい。光変換部7を構成する部材としてプラスチックシンチレーターを用いる場合、その膜厚は、X線に対する感度(発光)、あるいは検出すべきイオン3のエネルギーに応じて適宜設定することができる。具体的には、プラスチックシンチレーターの膜厚を0.2mmとすると、イオン3に混在するX線を透過させ、X線に対する感度を低減させる一方、2MeVまでのイオン3(プロトン)をプラスチックシンチレーター内に留まらせることが可能になる。なお、「X線を透過させる」光変換部7とは、イオンビームに混在するX線に対し相互作用を示さず、X線が透過するような光変換部のことをいう。それゆえ、光変換部7は、「イオンビームに混在するX線に対し反応(感応)しない光変換部」ともいえる。
【0060】
湾曲部8は、光変換部7を通過するX線が光検出部9に到達するのを防止するために設けられている。すなわち、イオンビーム検出器1では、湾曲部8は、光変換部7に入射するイオン3の光軸(ダクト4の軸AA’)に対し湾曲するように形成されており、湾曲部8では、光変換部7を透過するX線がそのまま透過する一方、イオン3が反射され光検出部9へ到達するようになっている。
【0061】
これにより、イオン3に混在するX線が光検出部9に到達することが防止され、X線に起因する信号の発生を抑え、バックグラウンドを低減することができる。その結果、光検出部9にて検出されるX線の信号とイオン3の信号との分解能が向上する。
【0062】
なお、湾曲部8を構成する部材は、光を反射させる一方、X線を透過させるようなものであれば、特に限定されるものではない。湾曲部8を構成する部材としては、例えばアクリル樹脂(acrylic plastic)が挙げられる。
【0063】
さらに、湾曲部8において、光変換部7を通過するX線の進行方向に、X線を吸収する吸収部材が設けられていてもよい。これにより、より確実にイオン3に混在するX線が光検出部9に到達することを防止することができる。X線を吸収する部材としては、例えば鉛ガラスが挙げられる。
【0064】
また、図3(a)に示すように、湾曲部8にはフィルター13が設けられている。フィルター13は、減光(ND)フィルター、及び/またはバンドパスフィルターで構成されている。減光フィルターは、例えば光変換部7にて変換されたイオン3由来の光が過剰である場合に、その光量を低減させるものである。また、バンドパスフィルターは、光変換部7にて変換されたイオン3由来の光の波長領域に相当する光のみを通過させるものである。
【0065】
フィルター13は、後述する光検出部9のイオン検出感度(イオン由来の光を検出する感度)を最適にするために設けられる。それゆえ、フィルター13の構成は、光検出部9のイオン検出感度に応じて適宜設定可能である。例えば、光検出部9のイオン検出感度が極めて低く、イオン3の信号が微弱である場合には、フィルター13が設けられていなくてもよい。また、フィルター13を構成する減光フィルター、及び/またはバンドパスフィルターの数においては、光検出部9のイオン検出感度や光変換部7における光の変換効率に応じて適宜設定可能である。
【0066】
光検出部9は、光変換部7にて光に変換されたイオン3を検出するものである。具体的には、光検出部9は、その受光面にて受光されるイオン3由来の光を電気信号に変換し出力するものである。
【0067】
このような光検出部9として好適に用いられるものとしては、例えば光電子増倍管(photo multiplier tube、以下、PMTと記す)が挙げられる。PMTは、光を受光すると、その光を内部で光電子に変換し増幅した電気信号に変えて出力する光センサーである。PMTは、非常に感度よく、光を電気信号に変えて出力するので、イオンビーム検出器1のイオン検出感度を高くすることができる。
【0068】
また、光検出部9としてPMTを用いる場合には、イオン検出感度が高いことから、必要に応じて、上述のフィルター13が設けられていてもよい。
【0069】
以上のように、本実施形態のイオンビーム検出器1は、イオン3に混在する電子を除去する電子除去部5と、イオン3に混在する光を遮光する遮光部6と、光変換部7に入射するイオン3の光軸(ダクト4の軸AA’)に対し湾曲するように形成された湾曲部8とを備えている。
【0070】
それゆえ、イオン3のエネルギーを飛行時間法により計測した場合に、光(光子)、X線、または電子の飛行時間とイオン3の飛行時間とを区別して計測することができ、光検出部9にて検出される光(光子)、X線、または電子の信号とイオン3由来の光の信号との分解能が良好になる(光、X線、または電子の信号のバックグラウンドを除去することが可能になる)。
【0071】
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【0072】
以下添付した図面に沿って実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。
【実施例】
【0073】
以下、図1に示されたイオンビーム検出器1を用いた実施例について説明する。なお、イオン3を発生させるイオン源2において、パルスレーザ光12を照射する手段として、日本原子力研究機構関西研究所の10TWレーザー(JLITE−10)を用いた。
【0074】
上記10TWレーザーのパルスレーザ光12の条件は以下の通りである。
レーザーエネルギー:200mJ
パルス幅:250fs
コントラスト:〜1.0×104
スポット径:11μm×15μm
繰返し:10Hz (照射は1Hz)
また、標的物質11として、膜厚5μmのTi薄膜を使用した。そして、面間1090mmの八角形チェンバーにパルスレーザ光12を導入する。そして、焦点距離f=646mmのOAPを用いて真空中にて標的物質11に45℃の入射角でパルスレーザ光12を照射した。パルスレーザ光12の照射時の真空度は3×10−3Pa以下に設定されている。さらに、標的物質11はテープ状であり、常に巻き取られながら照射されるようになっている。それゆえ、パルスレーザ光12は、常に標的物質11の新しい面に照射される。
【0075】
また、本実施例では、ダクト4の長さLを約2mとしている。そして、電子除去部5として2極電磁石を使用している。また、遮光部6を構成する部材として、アルミニウム蒸着膜を使用している。光変換部7を構成する部材としてプラスチックシンチレーターを用いており、その膜厚を0.2mmとしている。湾曲部8を構成する部材としてアクリル樹脂を用いている。光検出部9を構成する部材として、PMT(H7195:浜松ホトニクス製)を用いた。
【0076】
〔実施例1〕
実施例1では、電子除去部5としての2極電磁石の個数によるイオン検出の影響について検討した。具体的には、発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置されたイオンビーム検出器、1つの2極電磁石を備えたイオンビーム検出器、及び2極電磁石を備えていないイオンビーム検出器について、イオンの信号を比較した。その結果を図4及び図5に示す。図4は、減光フィルター2+4を用いた場合における信号と飛行時間との関係を示すグラフであり、図5は、減光フィルター2+4+8を用いた場合における信号と飛行時間との関係を示すグラフである。
【0077】
なお、図4に示されるグラフにおいて、50ns近傍の負の信号のピークに対応する時間が、イオンに混在する光、電子、またはX線の飛行時間となる。また、200ns近傍の負の信号のピークに対応する時間がイオンの飛行時間となる。すなわち、図4においては、イオンに混在する光、電子、またはX線の飛行時間が約50ns、イオンの飛行時間が約200nsとなっている。そして、イオンのエネルギーは、イオンの飛行時間とイオンに混在する光、電子、またはX線の飛行時間との差(図4では、Aとして示している)に基づいて換算される。また、図4に示されるグラフにおいて、イオンの個数の概数は、負の信号のピークの高さ(図4では、Bとして示している)に基づいて、推定される。
【0078】
図4及び図5に示すように、2極電磁石を備えていないイオンビーム検出器では、50ns近傍における信号の落ち込みが大きく、光、電子、またはX線の飛行時間を正確に検出することができなくなっていた。これは、イオンに混在する電子が除去されずに、電子に起因する信号が強くなっているためであると考えられる。すなわち、2極電磁石を備えていないイオンビーム検出器では、光(光子)、X線、または電子の飛行時間とイオン3の飛行時間とを区別して計測することができなくなり、光検出部にて検出される光(光子)、X線、または電子の信号とイオン由来の光の信号との分解能が悪くなっていた。
【0079】
一方、発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置されたイオンビーム検出器、及び1つの2極電磁石を備えたイオンビーム検出器では、光(光子)、X線、または電子の飛行時間とイオン3の飛行時間とを区別して計測することができた。
【0080】
したがって、実施例1から、2極電磁石の個数によって、除去される電子の影響が異なることが分かる。
【0081】
〔実施例2〕
実施例2では、減光フィルター及びバンドパスフィルター(フィルター13)によるイオン検出の影響について検討した。具体的には、バンドパスフィルターを備えたイオンビーム検出器、及びバンドパスフィルターを備えていないイオンビーム検出器について、イオンの信号を比較した。その結果を図6及び図7に示す。図6は、減光フィルター2+4を用い、かつ発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置された場合における信号と飛行時間との関係を示すグラフであり、図7は、減光フィルター2+4+8を用い、かつ2極電磁石を備えていない場合における信号と飛行時間との関係を示すグラフである。
【0082】
図6及び図7に示すように、減光フィルターは、その減光具合により信号強度が異なっていることがわかる。それゆえ、フィルター13は、バンドパスフィルターの有無で異なるが、主に減光する働きを有することがわかる。
【0083】
〔実施例3〕
実施例3では、遮光部6としてのアルミニウム蒸着膜によるイオン検出の影響について検討した。具体的には、膜厚0.8μmのアルミニウム蒸着膜を備えたイオンビーム検出器、アルミニウム蒸着膜を備えていないイオンビーム検出器について、イオンの信号を比較した。その結果を図8に示す。図8は、減光フィルター2+4+8+2、及びバンドパスフィルターを有し、かつ発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置された場合における信号と飛行時間との関係を示すグラフである。また、図9は、膜厚0.8μmのアルミニウム蒸着膜を備えたイオンビーム検出器、及び膜厚5μmのアルミニウム蒸着膜を備えたイオンビーム検出器について、イオンの信号を比較した結果を示す。
【0084】
図8に示すように、アルミニウム蒸着膜を備えていないイオンビーム検出器では、信号の様子が異なっており、光、電子、またはX線の飛行時間とイオンの飛行時間とを区別することが不可能になっていた。
【0085】
実施例3では、フィルター13としての減光フィルター2+4+8+2、及びバンドパスフィルターを有し、かつ発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置された構成で、イオン検出を行っている。すなわち、イオンに混在する電子、X線を除去することが可能な構成である。それゆえ、アルミニウム蒸着膜を備えていないイオンビーム検出器に見られた、信号の乱れは、イオンに混在する光が遮光されずに、光に起因する信号が強くなっているためであると考えられる。
【0086】
一方、膜厚0.8μmのアルミニウム蒸着膜を備えたイオンビーム検出器では、光(光子)、X線、または電子の飛行時間とイオンの飛行時間とを区別して計測することができた。
【0087】
また、アルミニウム蒸着膜を備えた、実施例1または実施例2のイオン検出器では、アルミニウム蒸着膜を備えていないイオンビーム検出器に見られた、信号の乱れは見られなかった(図4〜図7)。それゆえ、本発明のイオン検出器によるイオン検出において、イオンに混在する光による影響が最も大きいことがわかる。すなわち、イオンに混在する光が遮光されていないと、イオンの飛行時間を正確に測定することができなくなるといえる。したがって、本発明のイオン検出器においては、イオンに混在する光を遮光するアルミニウム蒸着膜(遮光部)が必須の構成となっている。
【0088】
以上、実施例1〜3をまとめると、以下のようになる。
(1)プラスチックシンチレーターを用いたToF計測によって、プロトンの測定を行うことに成功した。
(2)JLITE-10を用いたイオン発生実験を行い、レーザーパラメータの最適化において、飛行時間法によるイオンの計測は、従来のCR39を用いたイオンの最適化と比較して、短時間に非常に多くのパラメータを最適化することができた。
(3)照射条件を同じにしても、ショットごとのばらつきはかなりある。レーザー強度のバラつきから考えても大きい。標的物質の条件、又はプリパルス強度が大きく関係している可能性があると考えられる。
(4)飛行時間法により得られたプロトンの最大エネルギー(平均)は、Thomson Parabolaの結果と一致している。
【産業上の利用可能性】
【0089】
本発明のイオンビーム検出器は、以上のように、光検出部にて検出される光(光子)、X線、または電子の信号とイオン由来の光の信号との分解能が良好になるので、イオンビームを生成する分野などに適用できる。
【図面の簡単な説明】
【0090】
【図1】本発明の一実施形態のイオン検出器の概略構成を示す模式図である。
【図2】上記イオンビーム検出器の電子除去部の概略構成を示す模式図である。
【図3】(a)は、上記イオンビーム検出器における、遮光部、光変換部、湾曲部、及び光検出部の構成を示す側面図であり、(b)は、遮光部、光変換部、及び湾曲部を拡大した図である。
【図4】発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置されたイオンビーム検出器、1つの2極電磁石を備えたイオンビーム検出器、及び2極電磁石を備えていないイオンビーム検出器について、イオンの信号を比較した結果を示し、減光フィルター2+4を用いた場合における信号と飛行時間との関係を示すグラフである。
【図5】発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置されたイオンビーム検出器、1つの2極電磁石を備えたイオンビーム検出器、及び2極電磁石を備えていないイオンビーム検出器について、イオンの信号を比較した結果を示し、減光フィルター2+4+8を用いた場合における信号と飛行時間との関係を示すグラフである。
【図6】バンドパスフィルターを備えたイオンビーム検出器、及びバンドパスフィルターを備えていないイオンビーム検出器について、イオンの信号を比較した結果を示し、減光フィルター2+4を用い、かつ発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置された場合における信号と飛行時間との関係を示すグラフである。
【図7】バンドパスフィルターを備えたイオンビーム検出器、及びバンドパスフィルターを備えていないイオンビーム検出器について、イオンの信号を比較した結果を示し、減光フィルター2+4+8を用い、かつ2極電磁石を備えていない場合における信号と飛行時間との関係を示すグラフである。
【図8】膜厚0.8μmのアルミニウム蒸着膜を備えたイオンビーム検出器、アルミニウム蒸着膜を備えていないイオンビーム検出器について、イオンの信号を比較した結果を示し、減光フィルター2+4+8+2、及びバンドパスフィルターを有し、かつ発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置された場合における信号と飛行時間との関係を示すグラフである。
【図9】膜厚0.8μmのアルミニウム蒸着膜を備えたイオンビーム検出器、及び膜厚5μmのアルミニウム蒸着膜を備えたイオンビーム検出器について、イオンの信号を比較した結果を示し、減光フィルター2+4+8+2、及びバンドパスフィルターを有し、かつ発生する磁界の方向が互いに逆方向になるように2つの2極電磁石が配置された場合における信号と飛行時間との関係を示すグラフである。
【符号の説明】
【0091】
1 イオンビーム検出器
2 イオン源
3 イオン
4 ダクト
5 電子除去部
6 遮光部
7 光変換部
8 湾曲部
9 光検出部
10 飛行時間計測部
11 標的物質
12 パルスレーザ光
13 フィルター

【特許請求の範囲】
【請求項1】
イオン源から発生するイオンビームを検出するイオンビーム検出器であって、
上記イオンビームに混在するX線を透過させ、かつ上記イオンビームを光に変換する光変換部と、
上記光変換部にて変換されたイオンビーム由来の光を電気信号として検出する光検出部と、
上記イオンビームが上記光変換部に到達するまでの飛行時間を計測する飛行時間計測部とを有し、
上記光変換部がイオンビームを受ける側に、上記イオンビームに混在する電子を除去する電子除去部と、上記イオンビームに混在する光を遮光する遮光部とを備えるとともに、
上記光変換部と上記光検出部との間に、光変換部に入射するイオンビームの光軸に対し湾曲した湾曲部が形成されていることを特徴とするイオンビーム検出器。
【請求項2】
上記電子除去部は、2極電磁石を備え、
2極電磁石は、発生する磁界の方向が上記イオンビームの光軸と垂直になるように配置されていることを特徴とする請求項1に記載のイオンビーム検出器。
【請求項3】
上記遮光部は、上記イオンビームに混在する光をイオン源側へ反射させるとともに、イオンビームを透過させる金属膜であることを特徴とする請求項1または2に記載のイオンビーム検出器。
【請求項4】
上記光変換部がプラスチックシンチレーターであることを特徴とする請求項1〜3の何れか1項に記載のイオンビーム検出器。
【請求項5】
上記湾曲部には、上記光変換部にて変換されたイオンビーム由来の光を減光させる減光フィルターが設けられていることを特徴とする請求項1〜4の何れか1項に記載のイオンビーム検出器。
【請求項6】
上記湾曲部には、上記光変換部にて変換されたイオンビーム由来の光を選択的に透過させる選択フィルターが設けられていることを特徴とする請求項1〜5の何れか1項に記載のイオンビーム検出器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2007−218696(P2007−218696A)
【公開日】平成19年8月30日(2007.8.30)
【国際特許分類】
【出願番号】特願2006−38533(P2006−38533)
【出願日】平成18年2月15日(2006.2.15)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成17年度電源開発促進対策特別会計受託事業「先進小型加速器の要素技術の普及事業」、産業活力再生特別措置法第30条の適用を受けるもの)
【出願人】(504132272)国立大学法人京都大学 (1,269)
【出願人】(301032942)独立行政法人放射線医学総合研究所 (149)
【出願人】(505374783)独立行政法人 日本原子力研究開発機構 (727)
【Fターム(参考)】