説明

オゾン水生成装置

【課題】高濃度の温オゾン水を容易かつ効率良く生成することのできるオゾン水生成装置を提供する。
【解決手段】オゾン水生成装置100は、原料水を満たした水槽1と、水槽1内に配置される触媒電極2とを備え、触媒電極2は、筒状の陰極電極23の外周面に陽イオン交換膜21、陽極電極22が順に重ねて巻き付けられて筒状に形成されてなり、陽極電極22と陰極電極23との間に直流電圧を印加することによってオゾン水を生成する装置である。また、水槽1内で原料水に接触する熱伝導性の高い熱伝導体3が、陰極電極23に接触して設けられており、陰極電極23で発生したジュール熱を熱伝導体3を通じて水中に導くことにより放熱させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、医療や介護に好適な温オゾン水を生成することのできるオゾン水生成装置に関する。
【背景技術】
【0002】
近年、オゾン水は食品殺菌の普及に加え、医療用として、特に寝たきり老人の褥瘡の治療や火傷、さらにアトピーやケロイドの発生防止などにも効果がある等の研究報告が多く出され、医療用に多くの治療例が提案されている。
このように現在、医療用及び産業用に普及しているオゾン水の製法は、大別して放電により生成したオゾンガスに溶解させるガス溶解法、電解により生成したオゾンガスを水に溶解させる電解ガス溶解法、電解面に原料水を直接接触させてオゾン水を生成させる直接電解法(例えば、特許文献1参照)の3方式が実用されている。
【特許文献1】特開平8−134678号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
ところで、上述のような治療においては、敏感な皮膚にできるだけ刺激を与えないために、25℃〜30℃の温オゾン水を使用することが望ましいと言われている。
一方、オゾンが水に溶解してオゾン水になる過程において、その溶解率は所謂ヘンリーの法則に従い、特に温度が低いほど溶解率が高いとされている。そのため、現在オゾン水を多く使用している半導体加工分野では5〜10℃の低温下で高濃度のオゾン水を使用している例が多い。そのため、医療用として好適な温オゾン水を生成する場合には高温下で生成しており、高温下で生成する場合は低温下で生成する場合よりも溶解率が低く、オゾン水の生成効率が悪いものであった。
そこで、本発明は、上記事情に鑑みてなされたもので、高濃度の温オゾン水を容易かつ効率良く生成することのできるオゾン水生成装置を提供することを目的としている。
【課題を解決するための手段】
【0004】
本発明者等は、陽イオン交換膜の両側に陽極電極と陰極電極とをそれぞれ圧接し、陽極電極に水を接触させてオゾン水を生成する直接電解法においては、陽極電極で酸素とオゾンが発生し、陰極電極で水素が発生するが、陽極電極は水に接触しているので通電時に生じるジュール熱は冷却されるが、陰極電極は通常は水に接触していないので、陰極電極で発生したジュール熱は放熱されずに、それが触媒電極の昇温に繋がり、オゾン水の生成効率を低下させていることを知った。
本発明はこれらの現象を利用し、陰極電極で発生するジュール熱を原料水の昇温に利用し、同時に陰極電極の冷却にもつなげ、より簡単で省エネルギーに温オゾン水を得ることができるものとした。
上記課題を解決するために、請求項1の発明は、例えば、図1,図2に示すように、原料水を満たした水槽1と、前記水槽内に配置される触媒電極2とを備え、
前記触媒電極は、筒状の陰極電極23の外周面に陽イオン交換膜21が重ねて巻き付けられ、さらに、前記陽イオン交換膜の外周面に陽極電極22が重ねて巻き付けられてなる筒状に形成され、
前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成するオゾン水生成装置100において、
前記水槽内で原料水に接触する熱伝導性の高い熱伝導体3が、前記陰極電極に接触して設けられ、前記陰極電極で発生したジュール熱を前記熱伝導体を通じて水中に導くことを特徴とする。
【0005】
請求項1の発明によれば、触媒電極が、内側から順に陰極電極、陽イオン交換膜、陽極電極の順に重ねて設けられており、陰極電極に水中に接触する熱伝導性の高い熱伝導体が接合されているので、陰極電極で発生したジュール熱が陽イオン交換膜を介して陽極電極から水中に放熱されるのではなく、熱伝導体を介してすぐに水中に導かれて放熱される。このように水中に放熱されることによりオゾン水の温度を上昇させることができ、別の手段でオゾン水を昇温させることなく、放熱を利用して温オゾン水を容易に生成することができる。また、陰極電極を放熱させることができるため、オゾン発生効率を上げることができ、高濃度のオゾン水とすることができる。
さらに、陰極電極は陽極電極よりも内側に配されているので、原料水との接触が少なく、通電により陰極電極で発生した水素が水槽内のオゾン水と混ざり合うことを防止でき、また、水素が水中で強力な還元作用を持つ水素イオン化することもなく、この還元作用により陰極電極の触媒作用が減殺されることを低減することができる。その結果、良好な陰極電極の触媒機能を維持でき、安定したオゾン水の発生を継続させることができる。
【0006】
請求項2の発明は、例えば、図1,図2に示すように、請求項1に記載のオゾン水生成装置において、
前記熱伝導体は、前記陰極電極の筒状下端部から下方へ延在する棒状のベース部31と、前記ベース部に対して交差するように上下に所定間隔で配置された複数のフィン32,32,…と備えたヒートシンク3であることを特徴とする。
【0007】
請求項2の発明によれば、熱伝導体は、陰極電極の筒状下端部から下方に延在する棒状のベース部と、ベース部に対して交差するように配置された複数のフィンとを備えたヒートシンクであるので、構造も単純で、容易に放熱構造とすることができる。
【0008】
請求項3の発明は、例えば、図3に示すように、原料水を満たした水槽1Aと、前記水槽内に配置される触媒電極2Aとを備え、
前記触媒電極は、陽イオン交換膜21Aの一方の面に陽極電極22Aを圧接し、他方の面に陰極電極23Aを圧接してなる平板状に形成され、
前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成するオゾン水生成装置100Aにおいて、
前記陰極電極の前記陽イオン交換膜との接触面と反対側の面に、水槽内で原料水に接触する熱伝導性の高い熱伝導体3Aを接触させて設け、前記陰極電極で発生したジュール熱を前記熱伝導体を通じて水中に導くことを特徴とする。
【0009】
請求項3の発明によれば、触媒電極が、陽イオン交換膜の一方の面に陽極電極を圧接し、他方の面に陰極電極を圧接してなる平板状に形成されており、陰極電極の陽イオン交換膜との接触面と反対側の面に、水中に接触する熱伝導性の高い熱伝導体が接触しているので、陰極電極で発生したジュール熱が熱伝導体を介して水中に導かれて放熱される。このように水中に放熱されることによりオゾン水の温度を上昇させることができ、別の手段でオゾン水を昇温させることなく、放熱を利用して温オゾン水を容易に生成することができる。また、陰極電極を放熱させることができるため、オゾン発生効率を上げることができ、高濃度のオゾン水とすることができる。
さらに、陰極電極の陽イオン交換膜との接触面と反対側の面に、熱伝導体が接触して設けられているため、陰極電極は原料水との接触面積が少なくなる。すなわち、水中に陰極電極が浸されていると、発生した水素が水中で強力な還元作用をもつ水素イオン化し、陰極電極を還元して触媒作用を減殺するが、原料水との接触面積が少ないことから、良好な陰極電極の触媒機能を維持でき、安定したオゾン水の発生を継続させることができる。
【0010】
請求項4の発明は、例えば、図3に示すように、請求項3に記載のオゾン水生成装置において、
前記熱伝導体は、前記陰極電極の前記陽イオン交換膜との接触面と反対側の面に接触する板状のベース部31Aと、前記ベース部に対して交差するように上下に所定間隔で配置された複数のフィン32A,32A,…とを備えたヒートシンク3Aであることを特徴とする。
【0011】
請求項4の発明によれば、熱伝導体は、陰極電極の陽イオン交換膜との接触面と反対側の面に接触する板状のベース部と、ベース部に対して交差するように配置された複数のフィンとを備えたヒートシンクであるので、構造も単純で、容易に放熱構造とすることができる。
【0012】
請求項5の発明は、例えば、図3に示すように、請求項4に記載のオゾン水生成装置において、
前記ベース部は、前記陰極電極の上端部又は下端部の少なくとも一方より延出し、前記延出したベース部に前記フィンが配されていることを特徴とする。
【0013】
請求項5の発明によれば、ベース部が陰極電極の上端部又は下端部の少なくとも一方より延出し、延出したベース部にフィンが配されているので、延出したベース部及びそのベース部に配されたフィンによって、放熱面積を大きくすることができ、放熱効果を一層向上させることができる。
また、ベース部を陰極電極の上端部又は下端部の少なくとも一方より延出させた場合には、陰極電極から発生した水素をベース部に沿って上方又は下方へと導いて放出させることができる。上方へ水素を放出させた場合には、水槽内のオゾン水と水素が混ざり合うことを防止でき、オゾン水生成効率を向上させることができる。
【0014】
請求項6の発明は、例えば、図1,図2に示すように、請求項1〜5のいずれか一項に記載のオゾン水生成装置100において、
前記陰極電極が銀又は塩化銀が被覆されてなる金属であることを特徴とする。
【0015】
請求項6の発明によれば、陰極電極がオゾン発生に必要なイオン移動性に富み、かつ、熱伝導性に高い銀又は塩化銀が被覆されてなる金属であるので、放熱に効果的でオゾン発生効率を向上させることができる。
【発明の効果】
【0016】
本発明によれば、陰極電極で発生するジュール熱を熱伝導体を介して水中に放熱することができ、この放熱をオゾン水の昇温に利用することができる。その結果、医療用等に適した刺激の少ない温オゾン水を容易に得ることができる。
【発明を実施するための最良の形態】
【0017】
以下、本発明の第一及び第二の実施の形態について図面を参照しながら説明する。
図1は、本発明の第一の実施の形態におけるオゾン水生成装置100の斜視図、図2は、図1における切断線II−IIに沿って切断した際の矢視断面図である。
図1及び図2に示すように、オゾン水生成装置100は、原料水(例えば、水)が満たされた水槽1内に触媒電極2を配置して構成したもので、触媒電極2に直流電圧を印加することによってオゾン気泡を発生させて、そのオゾン気泡を原料水に溶解させることによりオゾン水を生成する装置である。
水槽1は、上端が開口した円筒状をなしており、水槽1内にはその上端部近傍まで原料水で満たされている。そして、水槽1内には触媒電極2が配置されている。
【0018】
触媒電極2は、内側から順に円筒状に重ねて巻き付けられた陰極電極23と、陽イオン交換膜21と、陽極電極22とを備えている。すなわち、円筒状に陰極電極23が巻かれて、この陰極電極23上に円筒状に陽イオン交換膜21が巻き付けられ、さらに陽イオン交換膜21上に円筒状に陽極電極22が巻き付けられている。
このような円筒状に形成された触媒電極2は、筒状の長手方向が上下となるように水槽1内に配されている。水槽1内に配された触媒電極2は、原料水の大部分が触媒電極2の最外周に位置する陽極電極22面に接触するようになっており、触媒電極2の内周に位置する陰極電極23は陽極電極22ほど原料水に接触しないようになっている。
【0019】
触媒電極2の水槽1内への固定方法としては、図示しないが例えば、水槽1の内壁面から陽極電極22に向けて所定箇所に棒状の取付部材を設けて、これによって支持するようにしても良く、その他、水槽1の上方から吊り下げる構造としても良い。なお、使用する取付部材は、耐オゾン性の材料からなるものが好ましい。
【0020】
また、陽極電極22及び陰極電極23の上端面には、電源装置24のプラス端子241及びマイナス端子242に導線を介してそれぞれ電気的に接続されており、電源装置24の駆動によって陽極電極22と陰極電極23との間に所定の電圧が印加されるようになっている。印加する直流電圧は、例えば、9〜15ボルト(V)が好ましい。
【0021】
陽イオン交換膜21としては、従来公知のものを使用することができ、発生するオゾンに耐久性の強いフッ素系陽イオン交換膜を使用することができ、例えば厚さ100〜250ミクロンが好ましい。
【0022】
陽極電極22は、陽イオン交換膜21を全面的に覆い隠すように密着されるものではなく、多数の通孔を設けて、陽極電極22は陽イオン交換膜21に接触部と非接触部とを有して重ねられている。すなわち、陽極電極22はグレーチング状又はパンチングメタル状とすることが好ましい。なお、図2では陽極電極22がグレーチング状の場合を示している。具体的に、グレーチング状とは線材を溶接した格子状で、パンチングメタル状とは金属板に多数の通孔を形成した多孔板状である。
【0023】
陽極電極22としては、オゾン発生触媒機能を有した金属を使用し、この金属としては二酸化鉛が最も広く知られている。しかし、この二酸化鉛は加工が難しく、微小な通孔が不規則に存在するポーラス体を使用しているが、二酸化鉛のポーラス体は脆弱で耐久性に劣り、さらにはオゾン水中に鉛が溶出する可能性もあることから、純粋なオゾン水を得るため、白金又は白金被覆金属の電極を使用することが好ましく、特に、本発明ではチタンに白金を被覆した金属を使用することが好ましい。
そして、陽極電極22は平面状の金属をグレーチング状に加工することが望ましい。また、被覆処理としては、例えばメッキや熱着等により行うことができる。
【0024】
このようにグレーチング状の陽極電極22とすることによって、陽極電極22を構成する部材の交点部位が尖って外面に突出し、水流と接触して渦流を生じ、陽極電極22で発生したオゾンの微泡を巻き込んで溶解を早めることができる。
【0025】
一方、陰極電極23は、銀又は薄い銀製金網の表面に塩化銀被覆を施したものを使用することが好ましく、特に、陰極電極23は陽極電極22よりも目の粗さが粗くなるように形成されていることが好ましい。
【0026】
上述のような触媒電極2において、陰極電極23の下端部にはヒートシンク3が取り付けられている。
ヒートシンク3は、陰極電極23の下端部から下方に延出する棒状のベース部31と、ベース部31に対して略垂直となるようにベース部31の上下に沿って所定間隔に配置された複数の空冷フィン32,32,…とを備えている。
ベース部31は、その上端部が陰極電極23の下端部における筒状内部231に挿入固定されており、複数の空冷フィン32,32,…が互いに平行に配置されるよう支持している。そして、これらベース部31及び空冷フィン32,32,…は、陰極電極23で放熱した熱をベース部31及び空冷フィン32,32,…による熱伝導を使って、発生した熱を水中へ拡散する放熱板として機能する。なお、ベース部31や空冷フィン32,32,…は、熱伝導率の高い例えばアルミニウムやアルミニウム合金、銅から形成されていることが好ましい。
【0027】
また、水槽1の内側底面には、マグネットスターラ等の回転子81が設けられ、水槽1の外側底面には回転子81を磁力で攪拌する攪拌装置82が設けられている。この回転子81を磁力で攪拌させることにより、水槽1内に旋回水流を発生させて触媒電極2の陽極電極22に原料水を連続接触させることができる。
【0028】
また、水槽1内には、水槽1内で生成されたオゾン水のオゾン濃度を検出する水槽内濃度検出センサ(図示しない)が設けられている。水槽内濃度検出センサは、検出電極と電位測定の基準となる比較電極、これら検出電極及び比較電極の一方の端部に結線して電位を測定する電位差計等から構成されている。したがって、検出電極及び比較電極の先端部(他方の端部)を水槽1内のオゾン水に接触させ、検出電極のオゾン濃度変化による検出電極と比較電極との電位差を検出して濃度を測定する。
検出電極としては、例えば白金や金等からなる電極を使用し、比較電極としては銀/塩化銀を使用することが好ましい。
このようにして検出されたオゾン濃度に基づいて、電源装置24が予め設定されたオゾン濃度と一致するように陽極電極22及び陰極電極23間に印加する電圧を制御している。
【0029】
次に、上述の構成からなるオゾン水生成装置100を使用したオゾン水生成方法について説明する。
まず、攪拌装置82で回転子81を攪拌させることにより水槽1内に旋回水流を発生させておく。ここで、水流の大部分は陽極電極22面に連続接触し、一部は触媒電極2の上端部から水が進入して陰極電極23面に接触する。そして、同時に電源装置24を駆動させて陽極電極22と陰極電極23との間に所定の直流電圧を印加する。この通電によって、水槽1内の原料水が電気分解されて、陽極電極22側にはオゾン気泡が発生し、陰極電極23側には水素気泡が発生する。
【0030】
ここで、陽極電極22側ではわずかな陽極電極22の凹凸によって流れの方向が複雑に変わり渦流となる。そのため、陽極電極22側では、発生したオゾン気泡をいち早く水中に取り込んで溶解させることによってオゾン水を生成し、陽極電極22と陽イオン交換膜21との間(正確には陽極電極22と陰極電極23との間)に電流が多く流れる状態を確保することになる。
【0031】
一方、陰極電極23側においては、水素気泡が激しく発生し、陰極電極23の筒状内部231が水素気泡で充満され、水面へと上昇して系外に放出される。これによって水素が、生成されたオゾン水と反応して分解されるのを防止することができる。また、発生した水素はすぐに捕集して、例えば、燃料電池の燃料として有効利用することが望ましい。
【0032】
また、通電によって陽極電極22及び陰極電極23でジュール熱が発生するが、陽極電極22で発生したジュール熱は、陽極電極22が触媒電極2の最外周に位置していることから水槽1内の原料水に接触することですぐに放熱される。一方、陰極電極23で発生したジュール熱は、ヒートシンク3のベース部31を介して空冷フィン32,32,…に伝導し、水槽1内の原料水に接触することで放熱される。
【0033】
また、通電中に、同時に水槽内濃度検出センサによって水槽1内の溶液の濃度が測定され、電源装置24が、水槽1内のオゾン濃度が予め設定されたオゾン濃度となるように出力を行うことによって、陽極電極22及び陰極電極23間の電圧が制御される。
以上のようにして設定濃度のオゾン水が生成される。
【0034】
以上、本発明の第一の実施の形態によれば、触媒電極2が、内側から順に陰極電極23、陽イオン交換膜21、陽極電極2の順に重ねて円筒状に設けられており、陰極電極23に水中に接触する熱伝導性の高いヒートシンク3が接合されているので、陰極電極23で発生したジュール熱が陽イオン交換膜21を介して陽極電極22から水中に放熱されるのではなく、ヒートシンク3を介してすぐに水中に導かれて放熱される。このように水中に放熱されることによりオゾン水の温度を上昇させることができ、放熱を利用して温オゾン水を容易に生成することができる。また、陰極電極23を放熱させることができるため、オゾン発生効率を上げることができ、高濃度のオゾン水とすることができる。
さらに、陰極電極23は陽極電極22よりも内側に配されているので、原料水との接触が少なく、通電により陰極電極23で発生した水素が水槽1内のオゾン水と混ざり合うことを防止でき、また、水素が水中で強力な還元作用を持つ水素イオン化することもなく、この還元作用により陰極電極23の触媒作用が減殺されることを低減することができる。その結果、良好な陰極電極23の触媒機能を維持でき、安定したオゾン水の発生を継続させることができる。
また、ヒートシンク3は、陰極電極23の下端部から下方に延在する棒状のベース部31と、ベース部31に対して交差するように配置された複数のフィン32,32,…とを備えているので、構造も単純で、容易に放熱構造とすることができる。
さらに、陰極電極23がオゾン発生に必要なイオン移動性に富み、かつ、熱伝導性に高い銀又は塩化銀が被覆されてなる金属であるので、放熱に効果的でオゾン発生効率を向上させることができる。
【0035】
[第二の実施の形態]
図3は、本発明の第二の実施の形態におけるオゾン水生成装置100Aの縦断面図である。
なお、第二の実施の形態では、第一の実施の形態の触媒電極2と形状の異なる触媒電極2Aを使用し、かつ、陰極電極23Aの陽イオン交換膜21Aとの接触面と反対側の面にヒートシンク3Aが設けられている。
オゾン水生成装置100Aは、第一の実施の形態と同様の水槽1Aと、水槽1A内に配置された触媒電極2Aとを備えている。触媒電極2Aは、陽イオン交換膜21Aの一方の面に陽極電極22Aを密着させ、他方の面に陰極電極23Aを密着させてなるもので、それぞれ平板状に形成され、これらを密着させた後、絶縁性の接合部材(図示しない)により接合されることによって触媒電極2Aとされている。
触媒電極2Aは、陽極電極22Aが水槽1Aの円筒中心部側を向き、陰極電極23Aが水槽1Aの内壁面側を向くように配されている。
触媒電極2Aの水槽1A内への固定方法としては、水槽1の上方から吊り下げる構造としても良いし、水槽1の底面に固定しても良い。
【0036】
また、陽極電極22Aと陰極電極23Aとの間には、第一の実施の形態と同様に、電源装置24Aのプラス端子241A及びマイナス端子242Aが導線を介してそれぞれ接続されて、電源装置24Aの駆動により直流電圧が印加されるようになっている。なお、陽イオン交換膜21A、陽極電極22A及び陰極電極23Aの材料等については第一の実施の形態と同様のものを使用することができる。
【0037】
上述のような触媒電極2Aにおいて、陰極電極23Aの水槽1Aの内壁面側を向く面(陽イオン交換膜21Aとの接触面と反対側の面)には、ヒートシンク3Aが取り付けられている。ヒートシンク3Aは、陰極電極23Aの陽イオン交換膜21Aとの接触面と反対側の面に、上下に沿って延在する板状のベース部31Aと、ベース部31Aに対して略垂直となるように上下に所定間隔に配置された複数の空冷フィン32A,32A,…とを備えている。ベース部31Aの上下端部は、陰極電極23Aの上下端部からそれぞれ上方及び下方に延出し、延出したベース部31Aにも空冷フィン32A,32A,…が取り付けられている。このベース部31Aは熱伝導性の高い両面テープ等で陰極電極32Aに固定されており、ベース部31A及び空冷フィン32A,32A,…は第一の実施の形態と同様にアルミニウムやアルミニウム合金、又は銅からなる。
【0038】
また、水槽1Aの内側底面には回転子81Aが設けられ、外側底面には攪拌装置82Aが設けられている。さらに、第一の実施の形態と同様に水槽1A内の濃度を検出する水槽内濃度検出センサ(図示しない)も設けられている。
【0039】
次に、上述の構成からなるオゾン水生成装置100Aを使用したオゾン水生成方法について説明する。
まず、攪拌装置82Aで回転子81Aを攪拌させることにより水槽1A内に旋回水流を発生させておく。ここで、水流の大部分は水槽1Aの中心部に位置する陽極電極21A面に連続接触し、その一部は水槽1Aの内壁面側に位置する陰極電極23A面に接触する。そして、同時に電源装置24Aを駆動させて陽極電極22Aと陰極電極23Aとの間に所定の直流電圧を印加する。この通電によって、水槽1A内の原料水が電気分解されて、陽極電極22A側にはオゾン気泡が発生し、陰極電極23A側には水素気泡が発生する。
【0040】
ここで、陽極電極22A側ではわずかな陽極電極22Aの凹凸によって流れの方向が複雑に変わり渦流となる。そのため、陽極電極22A側では、発生したオゾン気泡をいち早く水中に取り込んで溶解させることによってオゾン水を生成し、陽極電極22Aと陽イオン交換膜21Aとの間(正確には陽極電極22Aと陰極電極23Aとの間)に電流が多く流れる状態を確保することになる。
【0041】
一方、陰極電極23A側においては、水素気泡が激しく発生し、ヒートシンク3Aのベース部31Aに導かれて水面へと上昇して系外に放出される。これによって水素が、生成されたオゾン水と反応して分解されるのを防止することができる。また、発生した水素はすぐに捕集して、例えば、燃料電池の燃料として有効利用することが望ましい。
【0042】
また、通電によって陽極電極22A及び陰極電極23Aでジュール熱が発生するが、陽極電極22Aで発生したジュール熱は、陽極電極22Aは水槽1A内の原料水に接触することですぐに放熱される。一方、陰極電極23Aで発生したジュール熱は、ヒートシンク3Aのベース部31Aを介して空冷フィン32A,32A,…に伝導し、水槽1A内の原料水に接触することで放熱される。
【0043】
また、通電中に、同時に水槽内濃度検出センサによって水槽1A内の溶液の濃度が測定され、電源装置24Aが、水槽1A内のオゾン濃度が予め設定されたオゾン濃度となるように出力を行うことによって、陽極電極22A及び陰極電極23A間の電圧が制御される。
以上のようにして設定濃度のオゾン水が生成される。
【0044】
以上、本発明の第二の実施の形態によれば、触媒電極2Aが、陽イオン交換膜21Aの一方の面に陽極電極22Aを圧接し、他方の面に陰極電極23Aを圧接してなる平板状に形成されており、陰極電極22Aの陽イオン交換膜21Aとの接触面と反対側の面に、水中に接触する熱伝導性の高いヒートシンク3Aが接触しているので、陰極電極23Aで発生したジュール熱が、ヒートシンク3Aを介してすぐに水中に導かれて放熱される。このように水中に放熱されることによりオゾン水の温度を上昇させることができ、放熱を利用して温オゾン水を容易に生成することができる。また、陰極電極23Aを放熱させることができるため、オゾン発生効率を上げることができ、高濃度のオゾン水とすることができる。
さらに、陰極電極23Aの陽イオン交換膜21Aとの接触面と反対側の面に、ヒートシンク3Aが接触して設けられているため、陰極電極23Aは原料水との接触面積が少なくなる。すなわち、水中に陰極電極23Aが浸されていると、発生した水素が水中で強力な還元作用をもつ水素イオン化し、陰極電極23Aを還元して触媒作用を減殺するが、原料水との接触面積が少ないことから、良好な陰極電極23Aの触媒機能を維持でき、安定したオゾン水の発生を継続させることができる。
ヒートシンク3Aは、陰極電極23Aの陽イオン交換膜21Aとの接触面と反対側の面に接触する板状のベース部31Aと、ベース部31Aに対して交差するように配置された複数のフィン32A,32A,…とを備えているので、構造も単純で、容易に放熱構造とすることができる。
また、ベース部3Aが陰極電極23Aの上端部及び下端部からそれぞれ上方及び下方に延出し、延出したベース部31Aにフィン32Aが配されているので、延出したベース部31A及びそのベース部31Aに配されたフィン32Aによって、放熱面積を大きくすることができ、放熱効果を一層向上させることができる。さらに、陰極電極23Aから発生した水素をベース部31Aに沿って上方又は下方へと導いて放出させることができる。上方へ水素を放出させることにより、水槽1A内のオゾン水と水素が混ざり合うことを防止でき、オゾン水生成効率を向上させることができる。
また、陰極電極23Aがオゾン発生に必要なイオン移動性に富み、かつ、熱伝導性に高い銀又は塩化銀が被覆されてなる金属であるので、放熱に効果的でオゾン発生効率を向上させることができる。
【0045】
なお、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
例えば、上記第二の実施の形態において、ヒートシンク3Aのベース部31Aは、陰極電極23Aの陽イオン交換膜21Aとの接触面と反対側の面に接触するように板状であるとしたが、陰極電極23Aの外面を覆うように側面にも熱伝導体を設けて、ベース部を箱状に形成しても構わない。これによって、陰極電極23Aが原料水と接触する面積がより少なくなり、水素が水素イオン化することによる陰極電極23Aの触媒機能の低下を防止でき、さらには発生した水素がオゾン水と反応することを防止できる。
【0046】
また、第一及び第二の実施の形態において、水槽1,1Aは円筒形状であるとしたが、四角筒形状であっても良い。また、第一の実施の形態の触媒電極2は円筒形状に限らず、四角筒形状でも構わない。
【0047】
次に、本発明に係るオゾン水生成装置による効果について、第一の実施の形態のオゾン水生成装置100を例に挙げて説明する。
[実施例]
触媒電極2の電極面積が約15cmの円筒形セルにおいて、陽極電極22として厚さ2ミクロンメートルの白金を被覆したチタン製のマイクログレーチングを使用し、デュポン社製のナフイオン膜を陽イオン交換膜21として使用し、陰極電極23として厚さ0.5mmの銀製のグレーチングの表面に塩化銀を被覆したものを使用した。そして、陰極電極23の下端部にアルミニウム製の表面積約50cmのヒートシンク3を接続した。このようなオゾン水生成装置100において、12ボルト(V)の直流で約10アンペア(A)の電流が流れ、約2Lの水槽1中で攪拌したところ、約2分で4ppmのオゾン水が得られ、水温は20℃から26℃まで上昇した。
比較例として、ヒートシンクを取り付けていない上記円筒状の触媒電極で運転を行ったところ、電流は約8Aに減少し、約2分でオゾン水の濃度は2.5ppmで、水温も23℃前後となり、特にオゾン水発生効率の差は、陰極電極が高温であることが判明した。陰極電極の温度を測定したところ、前者(ヒートシンクを設けた本発明例)は水温プラス1〜2℃であったのに対し、後者(比較例)は水温プラス12〜15℃の高温を示した。
なお、皮膚科治療には25〜30℃が皮膚に刺激を与えない温度とされているので、本実施例により簡便に治療に適するとされている濃度と温度の温オゾン水を生成できることが認められる。
【図面の簡単な説明】
【0048】
【図1】本発明の第一の実施の形態におけるオゾン水生成装置100を模式的に示した斜視図である。
【図2】切断線II−IIに沿って切断した際の矢視断面図である。
【図3】本発明の第二の実施の形態におけるオゾン水生成装置100Aを模式的に示した縦断面図である。
【符号の説明】
【0049】
1,1A 水槽
2,2A 触媒電極
3,3A ヒートシンク(熱伝導体)
21,21A 陽イオン交換膜
22,22A 陽極電極
23,23A 陰極電極
31,31A ベース部
32,32A フィン
100,100A オゾン水生成装置

【特許請求の範囲】
【請求項1】
原料水を満たした水槽と、前記水槽内に配置される触媒電極とを備え、
前記触媒電極は、筒状の陰極電極の外周面に陽イオン交換膜が重ねて巻き付けられ、さらに、前記陽イオン交換膜の外周面に陽極電極が重ねて巻き付けられてなる筒状に形成され、
前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成するオゾン水生成装置において、
前記水槽内で原料水に接触する熱伝導性の高い熱伝導体が、前記陰極電極に接触して設けられ、前記陰極電極で発生したジュール熱を前記熱伝導体を通じて水中に導くことを特徴とするオゾン水生成装置。
【請求項2】
前記熱伝導体は、前記陰極電極の筒状下端部から下方へ延在する棒状のベース部と、前記ベース部に対して交差するように上下に所定間隔で配置された複数のフィンと備えたヒートシンクであることを特徴とする請求項1に記載のオゾン水生成装置。
【請求項3】
原料水を満たした水槽と、前記水槽内に配置される触媒電極とを備え、
前記触媒電極は、陽イオン交換膜の一方の面に陽極電極を圧接し、他方の面に陰極電極を圧接してなる平板状に形成され、
前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成するオゾン水生成装置において、
前記陰極電極の前記陽イオン交換膜との接触面と反対側の面に、水槽内で原料水に接触する熱伝導性の高い熱伝導体を接触させて設け、前記陰極電極で発生したジュール熱を前記熱伝導体を通じて水中に導くことを特徴とするオゾン水生成装置。
【請求項4】
前記熱伝導体は、前記陰極電極の前記陽イオン交換膜との接触面と反対側の面に接触する板状のベース部と、前記ベース部に対して交差するように上下に所定間隔で配置された複数のフィンとを備えたヒートシンクであることを特徴とする請求項3に記載のオゾン水生成装置。
【請求項5】
前記ベース部は、前記陰極電極の上端部又は下端部の少なくとも一方より延出し、前記延出したベース部に前記フィンが配されていることを特徴とする請求項4に記載のオゾン水生成装置。
【請求項6】
前記陰極電極が銀又は塩化銀が被覆されてなる金属であることを特徴とする請求項1〜5のいずれか一項に記載のオゾン水生成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2007−203157(P2007−203157A)
【公開日】平成19年8月16日(2007.8.16)
【国際特許分類】
【出願番号】特願2006−22939(P2006−22939)
【出願日】平成18年1月31日(2006.1.31)
【出願人】(000226150)日科ミクロン株式会社 (29)
【出願人】(504438026)
【Fターム(参考)】