説明

オリゴヌクレオチド、及び5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼを使用する、増幅の抑制

関連配列の増幅を抑制することによる、標的ポリヌクレオチド配列の増幅のための方法及び組成物が提供される。当該方法は、5’−3’エキソヌクレアーゼ活性を欠如するポリメラーゼ、並びに、非標的配列及びプライマーの下流に優先的にハイブリダイズする、伸長できないブロッカーオリゴヌクレオチドを使用し、それにより、当該ポリメラーゼによる鋳型依存的プライマー伸長を防止することができる。

【発明の詳細な説明】
【背景技術】
【0001】
発明の背景
速やかかつ信頼性のある核酸の分類/同定のための必要性に関する多くの例が、特に医薬分野において存在する。例えば、癌を含む多くの疾患は、まれな変異の結果である。これらの変異を検出することは、診断及び予後の決定の助けとなり得る。
【0002】
さらに、ジェノタイピングの速やかかつ信頼性のある手段は、個人内および個人間における対立遺伝子の構成(allele composition)を決定するために有益であり得る。例えば、特定の対立遺伝子の信頼できる分類は、ヒトにおける遺伝カウンセリングにおいて有用であり得、そして特定の対立遺伝子が検出される場合には、予防的処置を計画するときにおいても有用であり得る。特定の対立遺伝子の同定はまた、マーカー支援選択、例えば穀物若しくは動物の繁殖計画、病原体及び他の生物を同定し、又はジェノタイピングするときに非常に有用である。
【発明の概要】
【課題を解決するための手段】
【0003】
発明の概要
本発明は、生体試料中のポリヌクレオチドにおける標的配列を検出するための方法であって、当該試料が、さらに又は代わりに、第二の配列を含む第二のポリヌクレオチドを含み、ここで当該第二の配列が、少なくとも一つのヌクレオチドによって標的配列とは異なる、当該方法を提供する。幾つかの実施形態において、当該方法は:
i.存在するのであれば、当該第二の配列又は当該標的配列へのブロッカーオリゴヌクレオチドのハイブリダイゼーションを可能とする条件下で、当該試料と当該ブロッカーオリゴヌクレオチドを接触させ、
ii.当該ハイブリダイズされたブロッカーオリゴヌクレオチドの存在下、当該試料を、少なくとも一つのプライマー、及び5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼと、当該プライマーの鋳型依存的伸長が起こる条件下で接触させ、ここで当該プライマーは、存在するのであれば当該ポリヌクレオチドと、当該ブロッカーオリゴヌクレオチドがハイブリダイズする配列の上流でハイブリダイズする;
ことを含み、ここで当該ブロッカーオリゴヌクレオチドは、当該ポリメラーゼによる当該第二の配列の増幅を阻害するために、当該第二の配列と十分にハイブリダイズし、ここで、当該ブロッカーオリゴヌクレオチドは、インターカレーティング(intercalating)ヌクレオチドを含まず、そしてさらに、当該標的配列への当該オリゴヌクレオチドのハイブリダイゼーションが、5’−3’ヌクレアーゼ活性を著しく欠如するポリメラーゼによる標的配列の増幅を著しく阻害しない。
【0004】
本発明はまた、反応混合物を提供する。幾つかの実施形態において、当該反応混合物は:5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼ;標的配列を含むポリヌクレオチド;少なくとも一つのヌクレオチドによって、当該標的配列とは異なる第二の配列を含むポリヌクレオチド;ならびに当該第二の配列及び当該標的配列とハイブリダイズするブロッカーオリゴヌクレオチドを含み、ここで、当該ブロッカーオリゴヌクレオチドは、当該ブロッカーオリゴヌクレオチドの不在下の増幅に好適な条件下で、当該ポリメラーゼによる当該第二の配列の増幅を阻害する程度に十分に当該第二の配列とハイブリダイズするが、当該標的配列への当該オリゴヌクレオチドのハイブリダイゼーションが、5’−3’ヌクレアーゼ活性を著しく欠如するポリメラーゼによる当該標的配列の増幅を著しく阻害しない。
【0005】
本発明はまた、キットを提供する。幾つかの実施形態において、当該キットは、5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼ;標的配列を含むポリヌクレオチド;少なくとも一つのヌクレオチドによって、当該標的配列とは異なる第二の配列を含むポリヌクレオチド;ならびに当該第二の配列及び当該標的配列とハイブリダイズするブロッカーオリゴヌクレオチドを含み、ここで、当該ブロッカーオリゴヌクレオチドは、当該ブロッカーオリゴヌクレオチドの不在下の増幅に好適な条件下で、当該ポリメラーゼによる当該第二の配列の増幅を阻害する程度に十分に当該第二の配列とハイブリダイズするが、当該標的配列への当該オリゴヌクレオチドのハイブリダイゼーションが、5’−3’ヌクレアーゼ活性を著しく欠如するポリメラーゼによる標的配列の増幅を著しく阻害しない。
【0006】
本発明の方法、キット又は混合物に従って、当該ブロッカーオリゴヌクレオチドが、インターカレーティングヌクレオチドを含まないことが好ましい。
【0007】
本明細書に記載された方法、キット又は混合物において、当該ブロッカーオリゴヌクレオチドは、5’−3’ヌクレアーゼ活性を著しく欠如するポリメラーゼによる当該第二の配列の増幅を阻害する程度に十分に当該第二の配列とハイブリダイズするが、5’−3’ヌクレアーゼ活性を有するポリメラーゼの増幅を阻害するほど、十分にハイブリダイズしないことがさらに好ましい。
【0008】
本発明の好ましい実施形態において、当該標的配列は、5〜100個のヌクレオチドの長さである。
【0009】
本明細書に記載された方法、キット又は混合物のさらに好ましい実施形態において、当該試料は、当該標的配列、及び当該第二の配列を含む。好ましくは、当該第二の配列は、当該試料中に、標的配列の濃度よりも少なくとも10倍高い濃度で存在する。本明細書に記載された方法、キット若しくは混合物の、当該標的化合物又は当該第二の配列の濃度は、好ましくは約1:1の比率である。
【0010】
本発明のポリヌクレオチドは特に、ゲノムDNAである。好ましくは、当該ポリヌクレオチドはRNAである。
【0011】
本明細書に記載された方法、キット又は混合物において使用されたブロッカーオリゴヌクレオチドは、通常、検出可能に標識される。好ましくは、当該検出可能に標識されたブロッカーオリゴヌクレオチドは、本発明に従って、リアルタイムで検出され、それにより当該標的配列の増幅を検出する。
【0012】
本明細書に記載された方法、キット又は混合物の好ましい実施形態において、当該第二の配列と標的配列との間で単一のヌクレオチドの違いが存在し、そして当該ブロッカーオリゴヌクレオチドは、当該単一のヌクレオチドの位置を除いて、当該標的配列と完全に相補的である。本発明に従って、好ましくは、当該第二の配列と標的配列との間で2〜6個のヌクレオチドの違いが存在し、そして当該ブロッカーオリゴヌクレオチドは、当該2〜6個のヌクレオチドの位置を除いて、当該標的配列と完全に相補的である。
【0013】
本明細書に記載された方法、キット又は混合物の好ましい実施形態において、(1)当該ブロッカーオリゴヌクレオチドと当該第二の配列との融解温度;並びに(2)2.5%グリセロール、pH8.3の50mMトリシン、45mM酢酸カリウム中で測定すると、当該ブロッカーオリゴヌクレオチドと当該標的配列との融解温度の間における差が少なくとも5℃である。本明細書に記載された方法、キット又は混合物の好ましい実施形態において、2.5%グリセロール、pH8.3の50mMトリシン、45mM酢酸カリウム中で測定すると、当該第二の配列に対する当該ブロッカーオリゴヌクレオチドのTmは、当該標的配列に対する当該ブロッカーオリゴヌクレオチドのTmよりも20℃以下で高い。
【0014】
本明細書に記載された方法、キット又は混合物の好ましい実施形態において、当該ブロッカーオリゴヌクレオチドは、少なくとも一つの、非天然の、非インターカレーティングヌクレオチドを含み、ここで当該非天然ヌクレオチドは、当該非天然ヌクレオチドの代わりに天然のヌクレオチドを有することを除いて、他は当該ブロッカーオリゴヌクレオチドと同一である対照オリゴヌクレオチドと比較して、当該ブロッカーオリゴヌクレオチドの融解温度を増加させる。
【0015】
本発明の当該ブロッカーオリゴヌクレオチドは、少なくとも一つの非ヌクレオチド部分であって、当該非ヌクレオチド部分を欠いていることを除いて、他は他の当該ブロッカーオリゴヌクレオチドと同一である対照オリゴヌクレオチドと比較して、当該ブロッカーオリゴオヌクレオチドの融解温度を増加させる、当該非ヌクレオチド部分を含んでもよい。本明細書に記載された方法、キット又は混合物にとって、当該非ヌクレオチド部分がDNAのマイナーグルーブと結合することが好ましい。
【0016】
好ましい実施形態において、当該ブロッカーオリゴヌクレオチドは、2.5%グリセロール、pH8.3の50mMトリシン、45mM酢酸カリウム中で測定されるのだが、当該第二の配列と少なくとも70℃の融解温度でハイブリダイズする。
【0017】
定義
本明細書及び添付の特許請求の範囲において使用されるように、単数形「a」、「an」、及び「the」は、当該内容が明確に他に示されない限り、複数の指示対象を含む。したがって、例えば、「あるオリゴヌクレオチド(an oligonucleotide)」への言及は、複数のオリゴヌクレオチドを含み;「あるプローブ(a probe)」への言及は、かかるプローブなどの混合物を含む。
【0018】
本明細書において使用される「生体試料」は、(例えば細菌、ウィルス、組織生検など由来の)核酸を含む、又はあらかじめ含む任意の物質のことである。当該試料は、当業者に既知の任意の手段によって得られる。かかる試料は、一の個体又は複数の個体から単離された、組織量、又は液体量、またそれらの精製された画分の量であり得、限定されないが、例えば、皮膚、血漿、血清、全血、髄液、唾液、腹水、リンパ液、房水又は硝子体液、滑液、尿、涙、血球、血液生成物、精液、精漿、膣液、肺の滲出液(pulmonary effusion)、漿膜液(serosal fluid)、器官、気管支肺胞洗浄液、腫瘍、組織に包埋されたパラフィンなどを含む。試料はまた、限定されないが、細胞培養培地、組み換え細胞、細胞構成成分等の中における細胞の増殖から生じる条件培地を含む、インビトロ細胞培養の構成要素及び成分を含む。核酸は、当技術分野で周知の手順によって、生体試料から得られる。
【0019】
本明細書において使用される「ブロッカーオリゴヌクレオチド」は:
(1)5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼが、当該ブロッカーオリゴヌクレオチドと置き換わり、そして当該標的配列を複製することができる程度に、十分に低い融解温度で標的配列と二重鎖を形成し;そして
(2)5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼが当該標的配列を複製することを妨害する程度に十分に高い融解温度で、当該標的配列の変異体である第二の配列と二重鎖を形成する
オリゴヌクレオチドのことである。
【0020】
ポリメラーゼによる当該ブロッカーオリゴヌクレオチドの3’伸長を防ぐために、当該ブロッカーオリゴヌクレオチドは、3’末端に修飾を含み得るが、含む必要はない。
【0021】
「標的配列」は、生体試料において検出されるポリヌクレオチド配列のことであり、そしてブロッカーオリゴヌクレオチドのハイブリダイジング領域と完全に、又は部分的に相補的である核酸の領域(物質若しくは配列)である。当該「標的配列」は、少なくとも5個のヌクレオチドの、任意の長さのものであり得る。当該標的配列は、より大きな遺伝子配列の一部分、又は検出されるべき他の配列であり得る。
【0022】
用語「増幅を阻害する」は、配列増幅を排除、妨害、又は測定可能に減少させることである。本明細書において記載されたように、当該標的よりも標的変異体において、より高い融解温度を有するブロッカーオリゴヌクレオチドを選択することによって、当該標的変異体の増幅を阻害することが可能であり、それにより、当該標的配列の改善された増幅及び検出が可能となる。
【0023】
用語「核酸」及び「ポリヌクレオチド」は、相互に入れ替え可能に使用され、そして、リボ核酸(RNA)若しくはデオキシリボ核酸(DNA)ポリマー、又はそれらの類縁体のことである。これは、ヌクレオチドのポリマー、例えばRNA及びDNA、並びにそれらの修飾形態、ペプチド核酸(PNAs)、ロックド(locked)核酸(LNA)などを含む。特定の適用において、当該核酸は、複数の単量体型、例えばRNA及びDNAサブユニットの両方を含むポリマーであり得る。核酸は、例えば、染色体若しくは染色体断片、ベクター(例えば発現ベクター)、発現カセット、ネイキッド(naked)DNA若しくはRNAポリマー、アンプリコン、オリゴヌクレオチド、プライマー、プローブ等であり得、又は含み得る。核酸は、例えば、一本鎖若しくは二本鎖、又はDNA:RNAハイブリッド、すなわちDNA及びRNAのキメラ構造であり得る。用語「核酸」、「ポリヌクレオチド」、及び「オリゴヌクレオチド」の間における長さの意図された差異は存在せず、そして当該用語は、当該内容が他に明確に示されない限り、本明細書において相互に入れ替えて使用され得る。かかる用語は、当該分子の一次構造のことのみをいう。
【0024】
「プライマーの伸長」は、プライマーの3’末端にヌクレオチドを鋳型特異的に追加する、ヌクレオチド取り込み生体触媒、例えばポリメラーゼの能力のことである。伸長は、プライマーの3’末端に追加される第一のヌクレオチドのことのみならず、当該伸長されたプライマーによって形成されたポリヌクレオチドの、任意のさらなる伸長を含む。
【0025】
核酸は通常、一本鎖又は二本鎖であり、そして本明細書において記載されているように、幾つかの場合において、限定されないが、例えばホスホロアミダイト(Beaucage et al.(1993)Tetrahedron 49(10):1925、及びその参考文献;Letsinger(1970)J Org.Chem.35:3800;Sprinzl et al.(1977)Eur.J.Biochem.81:579;Letsinger et al.(1986)Nucl.Acids Res.14:3487;Sawai et al.(1984)Chem. Lett.805;Letsinger et al.(1988)J Am.Chem.Soc.110:4470;及びPauwels et al.(1986)Chemica Scripta 26:1419)、ホスホロチオエート(Mag et al.(1991)Nucleic Acids Res.19:1437、及び米国特許第5,644,048号明細書)、ホスホロジチオエート(Briu et al.(1989)J.Am.Chem.Soc.111:2321)、O−メチルホスホロアミダイトリンケージ(Eckstein,Oligonucleotides and Analogues:A Practical Approach,Oxford University Press(1992))並びにペプチド核酸バックボーン及びリンケージ(Egholm(1992)J.Am.Chem.Soc.114:1895;Meier et al.(1992)Chem.Int.Ed Engl,31:1008;Nielsen(1993)Nature 365:566;及びCarlsson et al.(1996)Nature 380:207)を含む、代替のバックボーンを有し得る核酸類縁体が含まれるが、一般的にホスホジエステル結合を含むだろう。他の類縁体核酸は、プラスに帯電したバックボーンを有するもの(Denpcy et al.(1995)Proc.Natl.Acad.Sci USA 92:6097);非イオン性バックボーンを有するもの(米国特許第5,386,023号、5,637,684号、5,602,240号、5,216,141号、及び4,469,863号明細書;Angew(1991)Chem.Intl.Ed.English 30:423;Letsinger et al.(1988)J Am.Chem.Soc.110:4470;Letsinger et al.(1994)Nucleoside&Nucleotide 13:1597;ASC Symposium Series 580,チャプター2及び3,”Carbohydrate Modifications in Antisense Research”,Ed.Y.S.Sanghvi及びP.Dan Cook;Mesmaeker et al.(1994)Bioorganic&Medicinal Chem.Lett.4:395;Jeffs et al.(1994)J.Biomolecular NMR 34:17;Tetrahedron Lett.37.743(1996))、並びに、米国特許第5,235,033号及び5,034,506号明細書、及びASC Symposium Series 580,チャプター6及び7,Carbohydrate Modifications in Antisense Research,Ed.Y.S.Sanghvi及びP.Dan Cookに記載されたものを含む、非リボースバックボーンを有するものを含む。一つ以上の炭素環の糖を含む核酸はまた、核酸の定義内に含まれる(Jenkins et al.(1995)Chem.Soc.Rev.pp169−176)。幾つかの核酸類縁体はまた、例えばRawls,C&E News Jun.2,1997 35ページに記載されている。これらのリボース−リン酸エステルバックボーンの修飾は、追加の部位、例えば標識部位の付加を容易にするために、又は生理環境中における、かかる分子の安定性及び半減期を変化させるためになされ得る。
【0026】
通常、核酸中で見られる、天然に存在するヘテロ環の塩基(例えばアデニン、グアニン、チミン、シトシン及びウラシル)に加えて、核酸類縁体はまた、非天然のヘテロ環又は他の修飾塩基を含み、それらの多くは本明細書において記載されているか、又は参照がなされている。特に、多くの非天然の塩基は、例えばSeela et al.(1991)Helv.Chim.Acta 74:1790,Grein et al.(1994)Bioorg.Med.Chem.Lett.4:971−976,及びSeela et al.(1999)Helv.Chim.Acta 82:1640においてさらに記載されている。さらに説明するために、融解温度(Tm)変更因子として作用する、ヌクレオチド中で使用される特定の塩基が場合により含まれる。例えば、これらの幾つかは、7−デアザプリン(例えば、7−デアザグアニン、7−デアザアデニンなど)、ピラゾロ[3,4−d]ピリミジン、プロピニル−dN(例えば、プロピニル−dU、プロピニル−dCなど)などを含む。例えば、Seelaによる、「7−デアザ−2’−デオキシグアノシンヌクレオチドの合成」と題された、1999年11月23日に公表された米国特許第5,990,303号明細書を参照。他の代表的なヘテロ環塩基は、例えば、ヒポキサンチン、イノシン、キサンチン;2−アミノプリン、2,6−ジアミノプリン、2−アミノ−6−クロロプリン、ヒポキサンチン、イノシン、及びキサンチンの8−アザ誘導体:アデニン、グアニン、2−アミノプリン、2,6−ジアミノプリン、2−アミノ−6−クロロプリン、ヒポキサンチン、イノシン、及びキサンチンの7−デアザ−8−アザ誘導体;6−アザシトシン;5−フルオロシトシン;5−クロロシトシン;5−ヨードシトシン;5−ブロモシトシン;5−メチルシトシン;5−プロピニルシトシン;5−ブロモビニルウラシル;5−フルオロウラシル;5−クロロウラシル;5−ヨードウラシル;5−ブロモウラシル;5−トリフルオロメチルウラシル;5−メトキシメチルウラシル;5−エチニルウラシル;5−プロピニルウラシル、4−アセチルシトシン、5−(カルボキシヒドロキシメチル)ウラシル、5−カルボキシメチルアミノメチル−2−チオウリジン、5−カルボキシメチルアミノメチルウラシル、ジヒドロウラシル、ベータ−D−ガラクトシルキューオシン(galactosylqueosine)、イノシン、N6−イソペンテニルアデニン、1−メチルグアニン、1−メチルイノシン、2,2−ジメチルグアニン、7−デアザアデニン、2−メチルアデニン、2−メチルグアニン、3−メチルシトシン、5−メチルシトシン、N6−メチルアデニン、7−メチルグアニン、7−デアザグアニン、5−メチルアミノメチルウラシル、5−メトキシアミノメチル−2−チオウラシル、ベータ−Dマンノシルキューオシン(mannosylqueosine)、5’−メトキシカルボキシメチルウラシル、5−メトキシウラシル、2−メチルチオ−N−6−イソペンテニルアデニン、ウラシル−5−オキシ酢酸(v)、ワイブトキソシン(wybutoxosine)、シュードウラシル、キューオシン、2−チオシトシン、5−メチル−2−チオウラシル、2−チオウラシル、4−チオウラシル、5−メチルウラシル、ウラシル−5−オキシ酢酸メチル、3−(3−アミノ−3−N−2−カルボキシプロピル)ウラシル、(acp3)w、2,6−ジアミノプリン、並びに5−プロピニルピリミジンなどを含む。
【0027】
修飾塩基及びヌクレオチドのさらなる例はまた、例えば、Froehler他による、「5−プロピニルピリミジンを含有するオリゴヌクレオチド」と題された、1996年1月16日に公表された米国特許第5,484,908号明細書、Froehler他による、「修飾ピリミジンを含むオリゴマーとの、増強された三重らせん及び二重らせん形成」と題された、1997年7月8日に公表された米国特許第5,645,985号明細書、Froehler他による、「修飾ピリミジンを含むオリゴマーを使用する方法」と題された、1998年11月3日に公表された米国特許第5,830,653号明細書、Kochkine他による、「[2.2.1]ビシクロヌクレオシドの合成」と題された、2003年10月28日に公表された米国特許第6,639,059号明細書、Skouvによる、「複雑な生体試料中における、核酸の一段階での試料の製造及び検出」と題された、2001年10月16日に公表された米国特許第6,303,315号明細書、及びKochkine他による、「[2.2.1]ビシクロヌクレオシドの合成」と題された、2003年5月15日に公開された米国特許出願第2003/0092905号明細書に記載されている。
【0028】
本発明が、核酸、ポリヌクレオチド、又はオリゴヌクレオチドの原料によって限定されるように意図されていない。かかる核酸は、ヒト由来であるか、若しくは非ヒト哺乳類であるか、又は任意の他の生物(例えば植物、両生類、細菌、ウィルス、マイコプラズマなど)、組織、若しくは細胞株由来であり得、あるいは、インビトロにおいて又は化学合成によって合成された、任意の組み換え源由来であり得る。さらに、核酸は、DNA、RNA、cDNA、DNA−RNA、ロックド核酸(LNA)、ペプチド核酸(PNA)、ハイブリッド、又は上記の任意の混合物であり得る。核酸は、一本鎖、二本鎖、又は部分的に二本鎖の形態で存在し得る。本発明の核酸は、精製又は未精製形態で、核酸及びその断片の両方を含み、遺伝子、染色体、プラスミド、微生物のような生物材料、例えば細菌、酵母、ウィルス、ウィロイド、カビ、真菌、植物、動物、ヒト、マイコプラズマなどのゲノムを含む。
【0029】
「ポリメラーゼ連鎖反応伸長条件」は、鋳型核酸にハイブリダイズするプライマーが、ポリメラーゼ連鎖反応(PCR)アニーリング段階の間、ポリメラーゼにより伸長される条件のことである。当業者は、かかる条件は変化し得、そして一般的にイオン強度及び温度によって影響されることを認識するだろう。様々なPCRアニーリング条件が、例えば、PCR Strategies(M.A.Innis,D.H.Gelfand,and J.J.Sninsky eds.,1995,Academic Press,San Diego,CA)at Chapter14;PCR Protocols:A Guide to Methods and Applications(M.A.Innis,D.H.Gelfand,J.J.Sninsky,and T.J.White eds.,Academic Press,NY,1990)に記載されている。
【0030】
核酸は、少なくとも一つの核酸断片(すなわち、少なくとも2つの隣接塩基)が、少なくとも一つの他の核酸のサブ配列(subsequence)と、アンチパラレル対合で結合するか、又はハイブリダイズして、二重鎖を形成し得るとき、別の核酸との関係で「相補的」である。当該アンチパラレル対合は、分子内で、例えば核酸内におけるヘアピンループの形態で、又は分子間で、例えば2つ以上の一本鎖核酸が互いにハイブリダイズするときに存在し得る。本発明との関連で、特定の配列に「完全に相補的である」オリゴヌクレオチドのために、当該オリゴヌクレオチドの個々の塩基は、アンチパラレル形態で、特定の配列における対応する塩基と相補的である。天然の核酸において一般的に見られない特定の塩基は、本発明の核酸に含まれ得、そして例えば、イノシン、7−デアザグアニン、及び上で議論したものを含み得る。幾つかの実施形態において、相補性は完全ではない(すなわち、核酸は、「完全に相補的」であるというよりも、むしろ「部分的に相補的」であり得る)。例えば、安定な二重鎖は、ミスマッチ塩基対(mismatched base pairs)又はアンマッチ塩基対(unmatched bases)を含み得る。
【0031】
「プライマー核酸」又は「プライマー」は、標的核酸又は鋳型核酸とハイブリダイズし得、そして、例えばポリメラーゼのようなヌクレオチド取り込み生体触媒を、好適な反応条件下で使用して鎖伸長又は鎖延長することができる核酸である。かかる条件は通常、好適なバッファー(「バッファー」は、補助因子である置換成分、又はpH、イオン強度等に影響を与える置換成分を含む)中、好適な温度における一つ以上のデオキシリボヌクレオシド三リン酸及びヌクレオチド取り込み生体触媒の存在を含む。プライマー核酸は通常、天然又は合成のオリゴヌクレオチド(例えば、一本鎖オリゴデオキシリボヌクレオチド等)である。他のプライマー核酸の長さが場合により利用されるが、それらは通常、約6個〜約100個のヌクレオチドの長さの範囲であるハイブリダイズ領域(hybridizing regions)を含む。短いプライマー核酸は、鋳型核酸と十分に安定なハイブリッド複合体を形成するために、より低い温度を一般的に必要とする。鋳型核酸のサブ配列と少なくとも部分的に相補的であるプライマー核酸は通常、伸長が起こる鋳型のサブ配列と十分にハイブリダイズするために十分である。例えば、特定の標的配列の増幅のための好適なプライマーのデザインは、当技術分野において周知であり、そして本明細書において引用された文献に記載されている。プライマー核酸は、所望であれば、例えば分光学的、光化学的、生化学的、免疫化学的、化学的又は他の技術によって検出可能である標識を組み込むことによって標識され得る。説明のために、有用な標識はラジオアイソトープ、蛍光色素、高電子密度試薬、(ELISAで一般的に使用されるような)酵素、ビオチン、又はハプテン、及び、抗血清若しくはモノクローナル抗体が利用可能であるタンパク質を含む。これらの多く、及び他の標識は、本明細書においてさらに記載され、及び/又は当技術分野において既知である。当業者は、特定の実施形態において、プライマー核酸がまた、プローブ核酸として使用され得ることを認識するだろう。
【0032】
本明細書において使用される用語「プローブ」は、当該プローブ中における少なくとも一つの配列と、標的核酸配列中における配列との、好適な条件下における部分的又は完全な相補性のために、当該標的核酸領域(又はかかる標的核酸由来のアンプリコン)と二重鎖構造を形成し得るオリゴヌクレオチド(又は他の核酸配列)のことである。本明細書において議論されたように、当該プローブは、標識され得、又は標識され得ない。プローブの3’末端は、プライマー伸長産物への当該プローブの結合を阻害するように、場合により設計され得る。これは、非相補的塩基を使用することによって、又は、ビオチン若しくはリン酸基のような化学的部位であって、選択される部位によっては、標識を取り付けた核酸の後の検出又は捕獲のための、標識としても働くことにより、二重の目的を果たし得る当該化学的部位を、最後のヌクレオチドの3’−ヒドロキシル基へ付加することによって達成され得る。伸長の阻害はまた、3’−OHを除去することによって、又は3’−OHを欠いているヌクレオチド、例えばジデオキシヌクレオチドを使用することによって、又は立体障害によって伸長を阻害する嵩高い置換基を付加することによって達成され得る。本明細書においてさらに議論されたように、本発明のブロッカーオリゴヌクレオチドは、必ずしもそうではないが、プローブとして機能し得る。
【0033】
用語「ハイブリダイズ領域」は、ポリヌクレオチドと完全に又はほぼ相補的であり、したがってポリヌクレオチドとハイブリダイズし、そして少なくとも5個の連続したヌクレオチドの長さである。当該ハイブリダイズ領域は一般的に、ブロッカーオリゴヌクレオチド全体とハイブリダイズする核酸領域のことであるが、当該ブロッカーヌクレオチドはまた、幾つかの実施形態において、ハイブリダイズしないが、代わりに例えばリンカー、タグ、フラップ等として機能する、さらなる核酸配列を含む。幾つかの実施形態において、当該ブロッカーオリゴヌクレオチドのハイブリダイズ領域は、当該標的配列と完全に相補的である。しかし、本明細書において記載されるように、完全な相補性は必要ではない(例えば一般的に、ブロッカーオリゴヌクレオチドと当該標的配列との間に、部分的な相補性のみを生じる、少なくとも一つのミスマッチが存在する)。
【0034】
本明細書において定義された「5’−3’ヌクレアーゼ活性」は、5’−3’エキソヌクレアーゼ活性(ヌクレオチドが、オリゴヌクレオチドの5’末端から逐次的に除去される、幾つかのDNAポリメラーゼと慣例的に関連し、例えば、E.coli DNAポリメラーゼIはこの活性を有するが、クレノー断片(Klenow fragment)は有さない(さらなるポリメラーゼは以下の段落で議論される))を含む、鋳型特異的核酸ポリメラーゼの活性のことである。
【0035】
「5’−3’エキソヌクレアーゼ活性を著しく欠如する」ポリメラーゼは、TaqDNAポリメラーゼの50%以下(例えば、25%未満、20%未満、15%未満、10%未満)のエキソヌクレアーゼ活性を有するポリメラーゼのことである。5’−3’エキソヌクレアーゼ活性を測定するための方法、及び測定条件は、当技術分野において周知である。例えば、米国特許第5,466,591号明細書を参照。5’−3’エキソヌクレアーゼ活性をほぼ欠如するDNAポリメラーゼの例は、例えば、当該ポリメラーゼに関して典型的なプライマー伸長条件下において、検出できない5’−3’ヌクレアーゼ活性を有する任意のDNAポリメラーゼを含む。例えば、変異した5’−3’エキソヌクレアーゼドメインを欠如している又は有しているポリメラーゼ;E.coli DNAポリメラーゼIのクレノー断片;(例えば、米国特許第5,616,494号明細書に記載されたような、又は「ストッフェル断片(Stoffel fragment)」と当技術分野において一般的に呼ばれるような)N末端の235個のアミノ酸を欠如するThermus aquaticusDNAポリメラーゼ(Taq)である。他の例は、5’−3’ヌクレアーゼ活性を担うドメインを除去又は不活性化するために、十分な欠失(例えば、N末端の欠失)、変異、又は修飾を有する耐熱性DNAポリメラーゼを含む。例えば、米国特許第5,795,762号明細書を参照。代表的なDNAポリメラーゼは、Thermus thermophilics、Thermus caldophilus、Thermus sp.ZO5、Thermus aquaticus、Thermus flavus、Thermus filiformis、Thermus sp.spsl7、Deinococcus radiodurans、Hot Spring family B/clone7、Bacillus stearothermophilus、Bacillus caldotenax、Escherchia coli、Thermotoga maritima、Thermotoga neapolitana、Thermosipho africanus由来のものを含む。多くの耐熱性DNAポリメラーゼの完全な核酸及びアミノ酸配列が利用可能である。各々のThermus aquaticus(Taq)、Thermus thermophilus(Tth)、Thermus属ZO5、Thermus属spsl7、Thermotoga maritima(Tma)、及びThermosipho africanus(Taf)ポリメラーゼは、PCT国際公開第92/06200号において公開されている。Thermus flavus由来のDNAポリメラーゼの配列は、Akhmetzjanov及びVakhitov(Nucleic Acids Research 20:5839,1992)によって公表された。Thermus caldophilus由来の耐熱性DNAポリメラーゼの配列は、EMBL/GenBank受入番号U62584において見られる。Thermus filiformis由来の耐熱性DNAポリメラーゼ配列は、例えば米国特許第4,889,818号明細書において提供された方法、及び本明細書において提供された配列情報を使用して、ATCC寄託番号42380から回収され得る。Thermotoga neapolitana DNAポリメラーゼの配列は、GeneSeq Patent Data Base受入番号R98144、及びPCT国際公開第97/09451号から得られる。Bacillus caldotenax由来の耐熱性DNAポリメラーゼの配列は、例えば、Uemori他(J Biochem(Tokyo)113(3):401−410,1993;同様にSwiss−Protデータベース受入番号Q04957、並びにGenBank受入番号D12982、及びBAA02361を参照)において記載されている。Bacillus stearothermophilus由来のDNAポリメラーゼの配列は、米国特許第6,066,483号明細書において公表されている。5’−3’エキソヌクレアーゼドメインを除去する又は変異させるために修飾され得る、DNAポリメラーゼの非修飾形態の例は、例えば、米国特許第6,228,628号;第6,346,379;第7,030,220号;第6,881,559号;第6,794,177号;第6,468,775号明細書;及び、米国特許出願第20040005599号;第20020012970号;第20060078928号;及び第20040115639号明細書を含む。米国特許第5,795,762号明細書において説明されるように、TaqDNAポリメラーゼのアミノ酸配列の46番目残基における、Glyコドンの第二の位置における、GのAへの部位特異的変異(すなわち、当該DNA配列における、G(137)のAへの変異)が見られ、その結果、ポリメラーゼ活性、処理能力、又は伸長率において明らかな変化無しに、5’−3’エキソヌクレアーゼ活性が約1000倍減少する。このTaqDNAポリメラーゼヌクレオチド配列の部位特異的変異によって、Gly(46)のアミノ酸はAspとなる。TaqDNAポリメラーゼのグリシン46は、Thermus属spsl7 DNAポリメラーゼにおいて保存されているが、43番目の残基に位置しており、そして同一のGlyからAspへの変異は、Tspsl7DNAポリメラーゼの5’−3’エキソヌクレアーゼ活性において同様の効果を有する。Tth(Gly46)、TZO5(Gly46)、Tma(Gly37)、及びTaf(Gly37)DNAポリメラーゼの保存されたGlyの、Aspへのかかる変異はまた、それらのポリメラーゼの5’−3’エキソヌクレアーゼ活性における同様の軽減効果を有する。
【0036】
本明細書において使用される用語「Tm」は、「融解温度」のことである。当該融解温度は、ホモ二重鎖又はヘテロ二重鎖(すなわち、完全に若しくは部分的に相補的である二重鎖)中における、二本鎖のポリヌクレオチド又はヌクレオベースオリゴマー群(例えばハイブリダイゼーション複合体)の半分が、(定められたイオン強度、pH、及び核酸濃度下において)一本鎖へと解離する温度である。二重鎖ポリヌクレオチドのTmの予測は、塩基配列、並びに、構造及び配列特性及びオリゴマーの連結の性質を含む他の要素を考慮する。Tmを予測及び実験的に決定するための方法は、当技術分野において既知である。
【0037】
例えばTmは、慣習的に、融解曲線によって決定され、ここで二重鎖核酸分子が、制御された温度プログラムで加熱され、そして当該二重鎖中における、二本の一本鎖の会合/解離状態が、当該二本鎖が完全に解離する温度に到達するまでモニターされ、そしてプロットされる。Tmは、この融解曲線から決定される。代わりにTmは、アニーリング曲線によって決定され得、ここで二重鎖核酸分子は、二本鎖が完全に解離する温度へと加熱される。当該温度はその後、制御された温度プログラムで低下され、そして当該二重鎖における二本の一本鎖の会合/解離状態は、当該二本鎖が完全にアニールされる温度に到達するまでモニターされ、そしてプロットされる。Tmはその後、このアニーリング曲線から決定される。
【図面の簡単な説明】
【0038】
【図1】図1は、関連配列(related sequence)の増幅抑制の例を示し、一方で、標的配列の増幅を行う例を示す。示される試料は、標的配列の一つのコピーを含み(下側)、そして関連配列の二つのコピーを含む(上側の2つの水平な線)。図の左側の部分は、当該ブロッカーオリゴヌクレオチドの、当該配列へのハイブリダイゼーションを示す。この例において、当該ブロッカーオリゴヌクレオチド及び当該標的配列領域においてミスマッチが存在し、一方で上側の関連配列に関してミスマッチが存在せず、したがって、当該標的配列に関するTmと比較して、当該関連配列に関してはより高いTmを有する結果となる。当該図の右側部分は、どのようにして、関連配列に関するより高いTmによって、ポリメラーゼによる関連配列の増幅が阻害され(この場合においてはブロックされ)、一方で標的配列においては阻害されないかを示す。当該図は、当該標的変異体の2つのコピー、及び当該標的の1つのコピーを示すが、当該発明はまた、標的と変異体が、例えば1:10、1:100、1:1000、1:10000等を含む異なる比率で存在する場合において有用であると理解されるだろう。
【図2】図2は、実施例において詳細に記載されるように、野生型配列と完全に相補的であって、そして変異配列とは一つのミスマッチを有する、不安定化(unstabilized)検出プローブの存在中における、ファクター5野生型及び変異体DNAの、ZO5DNAポリメラーゼ増幅からの融解データを示す。
【図3】図3は、実施例において詳細に記載されるように、野生型配列と完全に相補的であって、そして変異配列とは一つのミスマッチを有する、安定化(stabilized)検出プローブ(ブロッカー)の存在中における、ファクター5野生型及び変異体DNAの、ZO5DNAポリメラーゼ増幅からの融解データを示す。
【図4】図4は、実施例において詳細に記載されるように、野生型配列と完全に相補的であって、そして変異配列とは一つのミスマッチを有する、不安定化検出プローブの存在中における、ファクター5野生型及び変異体DNAの、ΔZO5 DNAポリメラーゼ(5’−3’エキソヌクレアーゼ活性を欠如するポリメラーゼ、例えば、米国特許第5,466,591号明細書を参照)増幅からの融解データを示す。
【図5】図5は、実施例において詳細に記載されるように、野生型配列と完全に相補的であって、そして変異配列とは一つのミスマッチを有する、安定化検出プローブ(ブロッカー)の存在中における、ファクター5野生型及び変異体DNAの、(5’−3’エキソヌクレアーゼ活性を欠いている)ΔZO5 DNAポリメラーゼ増幅からの融解データを示す。
【図6】図6は、実施例において詳細に記載されるように、野生型配列と完全に相補的であって、そして変異配列とは一つのミスマッチを有する安定化検出プローブ(ブロッカー)の存在中又は不在中における、(5’−3’エキソヌクレアーゼ活性を欠いている)ΔZO5 DNAポリメラーゼ増幅からの融解データを示す。この図において、当該ブロッカーは、初めからPCRチューブ中に存在したか、又はPCR後に添加されたかのいずれかであった。当該プローブがPCRの間において存在しなかった場合、野生型(青)及び変異体(赤)標的の両方の正常な増幅が生じた−点線。当該プローブがPCRの間において存在した場合、当該変異体標的はなお増幅され、そしてきれいに融解されたが、野生型はそのようにならなかった。
【発明を実施するための形態】
【0039】
詳細な説明
I.導入
本発明は、ポリヌクレオチドと十分に高い融解温度で二重鎖を形成するオリゴヌクレオチドが、著しく5’−3’エキソヌクレアーゼ活性を欠如するポリメラーゼによる複製及び鋳型増幅を阻害し得るという驚くべき発見に一部において基づく。この現象は、(「ブロッカーオリゴヌクレオチド」と命名された)オリゴヌクレオチドを設計することによって、標的変異配列(又は時折本明細書において「第二の配列」と呼ばれるもの)の存在下において、当該ブロッカーオリゴヌクレオチドが当該変異体と十分に高い融解温度で二重鎖を形成して、当該変異体の増幅を阻害し、一方で当該ブロッカーオリゴヌクレオチド及び当該標的によって形成される二重鎖の融解温度は低く、したがって当該ブロッカーオリゴヌクレオチドは当該標的の増幅を著しく阻害しないことにより、標的配列の検出に適用され得ることが分かった。したがって、幾つかの実施形態において、本発明の方法は、非常に関連した配列の混合物中における特定の標的配列の検出のために有用である。
【0040】
本発明の範囲を限定することを意図していない単純な例において、オリゴヌクレオチドは、当該オリゴヌクレオチドが標的変異配列と完全に相補的であって、したがって、5’−3’エキソヌクレアーゼ活性を欠如するポリメラーゼが、標的変異体を著しく増幅することを阻害するTmを有する二重鎖を形成するように設計されている。この例において、当該標的は、当該変異体と単一のヌクレオチドの違いを有し、したがって、当該オリゴヌクレオチドはまた、当該標的と二重鎖を形成するが、少なくとも一つのミスマッチ塩基対を有する二重鎖を形成する。当該ミスマッチ塩基対は、当該ブロッカーオリゴヌクレオチドと当該標的とによって形成される二重鎖の、当該変異体とによって形成される二重鎖と比較したTmの減少をもたらし、そして当該Tmの減少は、当該ポリメラーゼが当該標的配列を増幅し、そして当該ブロッカーオリゴヌクレオチドがハイブリダイズする鋳型を、当該ポリメラーゼが複製することを著しく阻害するために十分である。
【0041】
本発明はしたがって、他の異なる、しかし非常に関連した配列の存在下でさえ、そして当該関連配列が標的配列よりも非常に多い量で存在する場合であっても、当該標的配列を検出する方法を提供する。したがって本発明の方法は、例えば、癌又は他の疾患を示唆する変異の検出を含む多くの適用において有用である。
【0042】
II.本発明の方法の概説
本発明は、標的配列及び標的変異体配列に対する、ブロッカーオリゴヌクレオチドのハイブリダイゼーション親和性における違いを利用し、ここで当該ブロッカーオリゴヌクレオチドは、当該標的配列とのTmと比較して、一つ以上の標的変異配列と、より高いTm(すなわち、より高い親和性)を有する二重鎖を形成する。幾つかの実施形態において、例えば、当該オリゴヌクレオチドと当該標的配列とのより低いTmは、当該ハイブリダイジング領域における少なくとも一つのミスマッチの結果である。例えば、当該ブロッカーオリゴヌクレオチドは、当該標的変異体配列と完全に相補的となるように、しかし当該標的配列とは部分的にのみ相補的となるように設計され得る。ミスマッチは、例えば、挿入、欠失、又はヌクレオチドの置換の結果であり得、それらによって当該標的配列と標的変異配列との間の違いをもたらす。
【0043】
本明細書において記載された方法、キット又は混合物の好ましい実施形態において、当該標的配列を有する核酸、及び/又は標的変異体を有する核酸を有し得る試料は、ブロッカーオリゴヌクレオチドが、(存在するならば)当該標的配列と、及び(存在するならば)当該標的変異配列とハイブリダイゼーションすることができる条件下において、当該ブロッカーオリゴヌクレオチドと接触される。プライマー伸長反応は、当該ブロッカーオリゴヌクレオチドがハイブリダイズする核酸領域の上流領域において、プライマーが当該核酸とハイブリダイズされる場所においてその後行われる。本明細書において使用される「プライマー伸長反応」は、一つ以上のプライマーの伸長をもたらす任意の反応のことであり、したがって当該用語は、例えば、ポリメラーゼ連鎖反応を含む。当該プライマーがハイブリダイズする核酸の位置は、当該ブロッカーオリゴヌクレオチドが当該核酸と十分な親和性でハイブリダイズする(すなわち、当該ブロッカーオリゴヌクレオチドが十分に高いTmを有する)場合において、当該プライマーの伸長が当該ブロッカーオリゴヌクレオチドによってブロックされるように決定される。当該プライマー伸長反応は、5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼを用いて行われる。本明細書において議論されたように、本発明者は、当該ブロッカーオリゴヌクレオチドが、十分に高い親和性でハイブリダイズする場合において、5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼが、当該ブロッカーオリゴヌクレオチドを置き換えることができないことを発見した。したがって、5’−3’ヌクレアーゼ活性を著しく欠如するポリメラーゼが使用されるとき、当該プライマー伸長反応は、当該核酸が当該標的配列を含む場所において一般的に達成されるのみである(すなわち、プライマーの完全な伸長が達成される)。
【0044】
図1は、上記の方法を示す。図1の左側は、標的変異体を含む2コピーの核酸と、標的配列を含む1コピーの核酸が存在するチューブ中における試料を示す。当該ブロッカーオリゴヌクレオチドは、当該核酸と接触され、そして当該標的配列又は標的変異体配列とハイブリダイズする。当該標的配列が、当該標的変異体と、少なくとも一つのヌクレオチドの違いを含むため、当該ブロッカーオリゴヌクレオチドは、当該標的配列と完全に相補的ではない(図1において、「X」で示される)。したがって、当該ブロッカーオリゴヌクレオチドは当該標的配列とハイブリダイズするが、当該ブロッカーオリゴヌクレオチドと当該変異体とのTmよりも低いTmでハイブリダイズする。
【0045】
図1の右側は、生じるプライマー伸長反応を示す。当該プライマーは、各々の核酸の左側においてハイブリダイズする短い矢印によって示される。当該プライマーが、標的変異体を含む核酸上において、5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼによって伸長されるとき、当該ブロッカーオリゴヌクレオチドのハイブリダイゼーションは、標的配列における伸長を阻害し(すなわち、少なくとも幾つかの、及び通常は大部分の、又はほぼすべての伸長を妨害し)、したがって、不完全な伸長をもたらす。対照的に、当該オリゴヌクレオチドは、当該標的配列とより低い親和性(すなわちより低いTm)でハイブリダイズするために、当該ポリメラーゼは、(おそらく当該ブロッカーオリゴヌクレオチドを置き換えることによって、)当該標的配列において当該プライマーを伸長することができる。
【0046】
当該標的配列及び当該標的変異体配列は、ハイブリダイゼーション領域、すなわち、当該ブロッカーオリゴヌクレオチドが当該配列とハイブリダイズする領域における少なくとも一つのヌクレオチドによって異なるだろう。一般的に、当該標的及び標的変異体は、当該ブロッカーオリゴヌクレオチドが当該標的及び標的変異体と、同一の条件、例えば、限定されないが、PCRのような増幅反応、又は他の増幅反応を含むプライマー伸長反応の条件下において、ハイブリダイズすることができる程度に十分に類似しているだろう。したがって幾つかの実施形態において、当該標的及び標的変異体は、当該ハイブリダイジング領域において、1個、2個、3個、4個、5個、6個、7個、8個、9個、又はそれ以上のヌクレオチドが、例えば1〜5個の、1〜4個の、1〜3個の、1〜2個の、2〜3個の、2〜4個の、2〜5個の、1〜20個の、2〜20個のヌクレオチドが異なる。幾つかの実施形態において、当該標的配列は、当該標的変異配列と100%未満の同一性を有するが、例えば、80%、85%、90%、95%、97%、98%、又は99%超の同一性を有する。多くの実施形態において、当該標的配列と当該標的変異体配列との間の違い(単数若しくは複数)は、5’末端又は3’末端のヌクレオチドよりも、むしろ配列の内部で生じる。
【0047】
当該標的配列は、任意の長さのものであり得る。幾つかの実施形態において、当該標的ヌクレオチドは、少なくとも5個のヌクレオチドの長さであり、例えば少なくとも10個、15個、20個又はそれ以上のヌクレオチドであり、例えば5〜200個、5〜100個、10〜200個、10〜100個、10〜50個、15〜50個、20〜80個等のヌクレオチドである。
【0048】
一つの標的及び一つの標的変異体が存在するかのように、本開示は本発明について一般的に議論しているが、幾つかの実施形態において、試料中において、多数の異なる標的配列、及び/又は標的変異配列が存在することが認められるだろう。幾つかの実施形態において、一個超の異なる標的変異体配列が、当該標的配列を有する試料中に存在するか、又は場合により存在する。したがって例えば、試料は、標的配列、当該標的配列と一つのヌクレオチドの違いがある一つの標的変異体、及び当該標的配列と、異なるヌクレオチドの違いがある第二の標的変異体を含み得る。
【0049】
本明細書において記載された方法、キット、又は混合物の好ましい実施形態において、「多重」反応は、少なくとも2つの異なる標的配列が検出される場所において行われ得る。これらの実施形態は一般的に、常にではないが、2つ以上(例えば、2つ、3つ、4つ、5つなどであり、検出されるべき標的の数に依存する)の異なるブロッカーオリゴヌクレオチドに関し、ここで各々のブロッカーオリゴヌクレオチドは、異なる標的配列の変異体の伸長を阻害する。
【0050】
当該プライマーがハイブリダイズする核酸領域と当該ブロッカーオリゴヌクレオチドがハイブリダイズする核酸領域との距離は、当該伸長反応が、当該ブロッカーオリゴヌクレオチドがハイブリダイズする領域に到達する以前に完結される程度に当該距離が遠くない限り変化し得る。幾つかの実施形態において、最も3’側の部分のプライマーがハイブリダイズするヌクレオチドと、ブロッカーヌクレオチドの最も5’側の部分との間の距離は、約5〜1000個のヌクレオチド、例えば10〜100個のヌクレオチドであるが、0個と同じくらい小さくなり得る(隣接し得る)。
【0051】
プライマー伸長のために使用されるプライマーは、標的変異体を有する核酸とハイブリダイズするものと、当該標的配列を有する核酸とハイブリダイズするものとの間で同一であり得るが、当該プラマーはまた、異なるものであり得る。例えば、生命体中の珍しい体細胞変異を検出することが望ましい場合において、変異部位における変化を除いて、当該生命体中のゲノムは一般的に同一であろう。したがって、当該標的配列は、変異部位を含み、そして当該変異部位が変異していようがなかろうが、当該変異部位の上流領域は同一の配列を有するだろうため、同一のプライマーが使用され得る。それにも拘らず、恐らくより珍しいことだが、当該標的核酸及び標的変異体核酸の伸長反応のために使用されるプライマーが異なる状況が想定され得、したがって、かかる実施形態は当該発明から排除されない。
【0052】
当該伸長産物は検出され得、そして中断された標的変異体伸長産物は、当該標的伸長産物とは多くの方法によって区別され得る。幾つかの実施形態において、ポリメラーゼ連鎖反応(PCR)又は他の種類の核酸増幅が使用される。PCR反応に関して、2つのプライマーが通常使用される。本発明の方法において使用されるように、一つのPCRプライマーが、上の「プライマー伸長」反応に関して議論されたプライマーであり、そして第二のプライマー(例えばリバースプライマー)が、当該ブロッカーオリゴヌクレオチドの下流に存在する核酸の配列の総補部位とハイブリダイズするように設計されている。本発明の方法において使用されるように、PCRは、当該プライマーが当該ブロッカーオリゴヌクレオチドを置き換えることができる反応に関してのみ(すなわち、標的配列に関するもののみ)、指数関数的増幅が起こるという点において有用である。5’−3’エキソヌクレアーゼ活性を著しく欠如する多くの耐熱性ポリメラーゼが既知であり、そして本明細書において記載されている。本発明の方法は、非対称PCR反応、すなわち、一つのプライマーが反応中において他のプライマーと比較して制限された濃度で存在するPCR反応における特定の使用を見出す。一般的に、当該ブロッカーオリゴヌクレオチドがハイブレダイズする鎖を産生するプライマー(上の例におけるリバースプライマー)は、制限された濃度におけるプライマーである。
【0053】
実施されるプライマー伸長反応の種類に関係なく、多くの異なる種類の方法が、当該伸長産物を検出するために使用され得る。幾つかの実施形態において、プローブ(例えば検出可能に標識されたプローブ)は、当該核酸上の標的配列若しくは当該核酸上の標的配列からさらに下流の配列、又はかかる配列の相補部位に対応する伸長産物の領域とハイブリダイズするように設計される。標的変異体を含む核酸由来の伸長産物は阻害され、したがって、当該標的配列、当該標的変異体配列、又は下流の配列を一般的に含まないため、かかるプローブは、当該標的配列を含む核酸に関連する伸長産物を検出するのみであるか、又は主に検出するだろう。
【0054】
例えば、幾つかの実施形態において、検出可能に標識された「リアルタイム」プローブが使用され、そしてブロッカーオリゴヌクレオチドとして機能する。かかるプローブは、限定されないが、Taqman(登録商標)プローブ及びモレキュラービーコンを含み得る。幾つかの実施形態において、検出可能に標識された(ブロッカーオリゴヌクレオチドとしても機能する)「リアルタイム」プローブが、リアルタイム増幅反応、例えばリアルタイムPCR反応において使用される。閾値サイクル(Ct)数は、リアルタイム増幅における標的の量を観測するために頻繁に使用される。幾つかの実施形態において、等量の標的配列及び標的変異体配列の存在下におけるリアルタイム増幅反応において決定されるように、標的と標的変異体との間で、少なくとも5、10、15又はそれ以上のCtの違いが存在する。
【0055】
幾つかの実施形態において、質量ベースの(mass−based)検出方法が、当該伸長産物を検出するために使用され得る。当該標的配列を含む核酸由来の伸長産物は標的変異体配列を含む核酸から生じたものよりも一般的に著しく長いだろうため、核酸の長さ又は質量における違いを検出する任意の方法が使用され得る。例えば、様々な質量分析法が伸長産物の検出、識別、及び定量のために使用され得る。
【0056】
好ましくは、融解温度分析は、当該伸長産物を検出するために使用される。例えば、幾つかの実施形態において、当該ブロッカーオリゴヌクレオチドは標識され、そして融解温度曲線分析が実施され、当該標識されたオリゴヌクレオチドがハイブリダイズする鋳型の量が定量される。
【0057】
III.阻害された5’−3’エキソヌクレアーゼ活性を有するポリメラーゼの伸長をブロックするオリゴヌクレオチド
本発明のブロッカーオリゴヌクレオチドは、当該ブロッカーが標的配列自体とハイブリダイズするよりも高い融解温度(Tm)を有する標的配列変異体とハイブリダイズするように設計されている。指定された条件下、ポリメラーゼが当該ブロッカーオリゴヌクレオチドのハイブリダイズする鋳型部分を複製することを阻害する程度に十分に高いTmを有するように、当該ブロッカーオリゴヌクレオチドが当該標的変異体とハイブリダイズする限り、当該ブロッカーオリゴヌクレオチドは、当該標的変異体と完全に相補的である必要はない。当該ブロッカーオリゴヌクレオチドは、幾つかの実施形態において、標的変異体と完全に相補的であるが、当該標的配列とハイブリダイズするとき、少なくとも一つのミスマッチ(例えば、1個、2個、3個、4個、5個、6個、7個、1〜3個、1〜4個、2〜6個のミスマッチなど)を形成し、それにより、当該標的変異体よりも当該標的に対してより低いTmをもたらす。当該ブロッカーオリゴヌクレオチドは、幾つかの実施形態において、当該標的配列又は標的変異体配列のいずれかと完全に相補的ではない。幾つかの実施形態において、当該ブロッカーオリゴヌクレオチドは、当該標的変異体と少なくとも一つ以上のミスマッチを形成するが、それでもなお、当該ブロッカーオリゴヌクレオチドの存在下、ポリメラーゼが当該変異体配列を複製することを阻害する程度に十分に高いTmでハイブリダイズし、一方で当該標的配列の複製を著しく阻害しない。幾つかの実施形態において、当該ブロッカーオリゴヌクレオチドは、当該ブロッカーオリゴヌクレオチドの存在下において当該標的変異体配列の複製が阻害され、一方で当該ブロッカーオリゴヌクレオチドの存在下において当該標的配列の複製が著しく阻害されないように、当該標的変異配列に対してよりも、当該標的配列に対してより多くのミスマッチを有するか、又は当該標的変異体と比較して、当該標的配列と異なるミスマッチを形成するかのいずれかである。幾つかの実施形態において、当該標的配列と変異体配列との間のミスマッチは、当該配列の5’末端及び3’末端のいずれにも生じない。幾つかの実施形態において、当該ブロッカーオリゴヌクレオチドは、一つ以上のミスマッチが、当該ブロッカーオリゴヌクレオチドと当該標的変異体との二重鎖によって形成されるハイブリダイジング領域の(末端ではなく)中間に形成されるように設計される。幾つかの実施形態において、当該ブロッカーオリゴヌクレオチドは、一つ以上のミスマッチが、当該ブロッカーオリゴヌクレオチドと当該標的変異体との二重鎖によって形成されるハイブリダイジング領域の一端又は両端で形成されるように設計される。
【0058】
上で議論されたように、当該標的変異体の複製が阻害され、一方で同一の条件下において当該標的の複製が十分に阻害されず、それにより、当該標的変異体の存在下において、当該標的配列の検出が可能となるように、当該ブロッカーオリゴヌクレオチド及び特定の標的変異体のTmは、当該標的配列に対する当該ブロッカーオリゴヌクレオチドのTmよりも十分に高い。好ましくは、当該標的配列に対するものと比較した、当該標的変異体に対するブロッカーオリゴヌクレオチドのTmにおける差は、少なくとも約5℃、10℃、15℃、20℃、又はそれ以上である。Tmは、異なる方法で測定され得ることが理解されるだろう。Tmは、当該ポリメラーゼを用いた複製が試験される条件である、又はそれを模倣する、他の混合物の任意の増幅バッファーを使用して決定され得る。かかる条件の一例は、例えば、2.5%グリセロール、pH8.3の50mM トリシン、45mM 酢酸カリウム、及びプライマー伸長のための好適なヌクレオチドである。
【0059】
本発明のブロッカーオリゴヌクレオチドは、任意の長さであり得る。好ましくは、当該ブロッカーオリゴヌクレオチドは、5〜200個の間のヌクレオチド、例えば5〜100個、10〜100個、5〜40個、5〜25個、10〜50個、15〜50個のヌクレオチドの長さである。
【0060】
本発明のブロッカーオリゴヌクレオチドは、天然由来ヌクレオチド(すなわち、A、C、T、G、及びU)を含んでもよく、及び時折それらのみ含む。あるいは、幾つかの実施形態において、当該ブロッカーオリゴヌクレオチドは、少なくとも一つ(例えば、1個、2個、3個、4個、5個、6個など)の人工的な(すなわち、天然由来RNA又はDNAにおいて生じるものとは別のものの)ヌクレオチドを含む。Tmの増加に寄与する例示的人工塩基は、当技術分野において公表されているが、限定されないが例えば、Lebedev et al,Geneteic Analysis−Biomolecular Engineering 13:15−21(1996);Xodo,et al,Nucleic Acids Res.19:5625−5631(1991);Froehler, et al,Tetrahedron Lett.33:5307−5310(1992);Kutyavin,et al,Biochemistry 35:11170−11176(1996);Nguyen,et al,Nucleic Acids Res.25:30599−65(1997)を含む。例えば、2−アミノAは、AよりもTmを約3℃増加させ、5−メチル−Cは、CよりもTmを約1.3℃増加させ、C−5プロピニル−Cは、CよりもTmを約2.8℃改善し、そしてC−5プロピニル−Uは、TよりもTmを約1.7℃増加させた。好ましくは、本発明に従って、当該ブロッカーオリゴヌクレオチドは、インターカレーティングヌクレオチドを全く含まない。さらに、本発明のブロッカーオリゴヌクレオチドは、内部インターカレーティングシュードヌクレオチド、例えば国際公開第2006/026828号に記載されたものを含まない。
【0061】
さらなる好ましい実施形態において、本発明のブロッカーオリゴヌクレオチドは、当該ブロッカーオリゴヌクレオチドの融解温度を増加させる、少なくとも一つの非ヌクレオチド部位(場合により、インターカレーティングヌクレオチド以外のもの)を含む。かかる非ヌクレオチド部位の例は、例えばマイナーグルーブバインダーを含む。米国特許第6,486,308号明細書を参照。
【0062】
本発明に従って、当該ブロッカーオリゴヌクレオチドは、検出可能に標識され、したがって、混合物中において標的配列を検出するためにさらに有用である。当該検出可能に標識されたブロッカーオリゴヌクレオチドは、例えば、限定されないが、リアルタイム増幅反応を含む増幅反応中において、当該標的配列を検出及び定量化するために使用される。多くの種類の検出可能標識が既知である。例となる標識は、(消光剤(quenchers)又は吸収剤(absorbers)を含む)蛍光標識、非蛍光標識、比色分析(colorimetric)標識、化学発光標識、生物発光標識、放射性標識、質量改変群(mass−modifying groups)、抗体、抗原、ビオチン、ハプテン、(例えば、ペルオキシダーゼ、ホスファターゼを含む)酵素などを含む。標識は、蛍光、放射活性、比色分析、重量測定、X線回折又は吸収、磁性、酵素活性などによって検出可能なシグナルを提供する。標識は、検出可能な(及び場合により定量可能な)シグナルを提供するために使用され得、そしてそれは核酸又はタンパク質に取り付けられ得る。
【0063】
本発明の特定の好ましい実施形態において、標識は、蛍光色素又はフルオロフォアである。通常、特定のフルオロフォアは、特定の波長の光を放射し得、その後より短い波長の光を吸収する。特定のフルオロフォアによって放出された光の波長は、そのフルオロフォアに特有である。したがって、特定のフルオロフォアは、好適な波長の光を検出することによって検出され、その後、より短い波長の光による当該フルオロフォアの励起が起こる。蛍光標識は、負に帯電された染料、例えばフルオレセイン群の染料、又は電荷的に中性である染料、例えば、カルボキシローダミン群、又は正に帯電された染料、例えばシアニン群若しくはローダミン群を含み得る。本発明において使用され得る染料の他の群は、例えば、ポリハロフルオレセイン群の染料、ヘキサクロロフルオレセイン群の染料、クマリン群の染料、オキサジン群の染料、チアジン群の染料、スクアライン群の染料、キレート化されたランタノイド群の染料、ALEXA FLUOR(登録商標)染料、及びBODIPY(登録商標)群の染料を含む。フルオレセイン群の染料は、例えば、FAM、HEX、TET、JOE、NAN、及びZOEを含む。カルボキシローダミン群の染料は、Texas Red、ROX、R110、R6G、及びTAMRAを含む。FAM、HEX、TET、JOE、NAN、ZOE、ROX、R110、R6G、及びTAMRAは、パーキン−エルマー(Foster City,Calif.)によって市販されており、一方でTexas Redは、Molecular Probes,Inc.(Eugene,Oreg.)によって市販されている。シアニン群の染料は、Cy2、Cy3、Cy3.5、Cy5、Cy5.5、及びCy7を含み、そしてAmersham GE Healthcare(Piscataway,NJ.)によって市販されている。
【0064】
IV.阻害された5’−3’エキソヌクレアーゼ活性を有するポリメラーゼ
5’−3’エキソヌクレアーゼ活性を著しく欠如する多くのポリメラーゼは、当技術分野において既知である。ポリメラーゼのN末端領域は通常、5’−3’エキソヌクレアーゼ活性をもたらす。したがって、ポリメラーゼのN末端の全て又は一部の変異若しくは欠失は、5’−3’エキソヌクレアーゼ活性を著しく欠如する多くのポリメラーゼを作製するために使用され得る。5’−3’エキソヌクレアーゼ活性を著しく欠如する例示的なポリメラーゼは、E.coliのDNAポリメラーゼIのクレノー断片;(例えば、米国特許第5,616,494号明細書に記載された)N末端の235個のアミノ酸を欠いているThermus aquaticus Taq;及び/又は5’−3’ヌクレアーゼ活性を担うドメインを除去若しくは不活性化するために、十分な欠失(例えば、N末端の欠失)、変異、若しくは修飾を有する耐熱性DNAポリメラーゼを含む。例えば、米国特許第5,795,762号明細書を参照。かかるポリメラーゼは通常、単離又は精製されたポリメラーゼであり、そして組み換えタンパク質であり得る。
【0065】
熱サイクル増幅反応を含む、増幅反応において機能するポリメラーゼは、本発明において特に有用である。本発明の方法において有用であるポリメラーゼは、当該ブロッカーオリゴヌクレオチドがハイブリダイズする標的変異体鋳型領域を通じて、当該ポリメラーゼが鋳型依存的にプライマーを伸長することができないように、しかし、当該ブロッカーオリゴヌクレオチドがハイブリダイズする標的鋳型領域を通じて当該ポリメラーゼがプライマーを伸長することができるように、5’−3’エキソヌクレアーゼ活性を著しく欠き、ここで、当該標的変異体鋳型に対する当該ブロッカーオリゴヌクレオチドのTmは、当該標的鋳型に対するTmよりも高い。したがって当業者は、もしも存在するのであれば、当該ポリメラーゼ中における5’−3’エキソヌクレアーゼ活性の正確なレベルが、当該標的及び標的変異体に対するブロッカーオリゴヌクレオチドのTmに依存して変化し得ることを認識するだろう。
【0066】
本発明の方法に従って、対応する標的の増幅のために、5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼは、ブロッカーオリゴヌクレオチドによって、標的変異体配列の複製を十分に阻害される。本発明の範囲を限定することを意図しないが、標的配列と、非常に関連した標的変異体との間における競争反応が存在し得ると考えられる。当該標的と比較して、当該標的変異体のかなり多くのコピーが存在する状況において、当該ブロッカーの不在下における増幅は、当該標的配列の減少された検出可能性を有するか、又は検出不能であるような増幅をもたらす。当該標的変異体の存在下において当該標的を検出することが望ましいとき、当該変異体の増幅は、当該ブロッカーオリゴヌクレオチドのハイブリダイゼーションによって阻害され、一方で当該標的の増幅は、阻害されないか、又はより低い程度で阻害され、当該標的変異体の存在下において当該標的の検出をすることができる。当該ブロッカーオリゴヌクレオチドの存在が、変異体アンプリコンの量を、当該ブロッカーオリゴヌクレオチドを欠いた対照反応と比較して少なくとも20%、そしてより典型的には少なくとも50%、75%、90%、95%又はそれ以上減少させるとき、当該標的変異体の増幅は、著しく阻害されていると考えられる。
【0067】
本発明に従って、対照反応はまた、5’−3’エキソヌクレアーゼ活性を欠如するポリメラーゼの代わりに、著しく5’−3’エキソヌクレアーゼ活性を有するポリメラーゼを使用して行われる。かかる対照反応において、当該標的変異体が増幅されるため、かかる対照反応は、標的変異体の存在又は不在を決定するために使用され得る。かかる対照反応はまた、当該増幅試薬が機能的であることを確認するために有用であり得る。
【0068】
V.当該方法の使用
本発明は、標的配列及び標的配列を含む核酸を検出するために有用である。本発明は、特に当該標的変異体が、検出されるべき標的配列と比較して過剰の濃度で存在する場所において、存在する標的配列又は標的変異体を検出するために特に有用である。本発明の範囲を限定することを意図しないが、かかる状況の幾つかの例は、体細胞変異又は癌関連性変異の検出である。例えば、本発明は、大部分の細胞がおそらく「正常」型の遺伝子配列(すなわち、標的変異体)を有するが、しかし少なくとも幾つかの細胞が変異(すなわち、標的配列)を有し得る生検における癌又は他の体細胞変異の検出のために有用である。
【0069】
本発明は、本明細書において定義された生体試料を含む、任意の試料中における核酸を分析及び検出するために使用され得る。本発明の方法において使用される試料は、標的及び標的変異体配列の両方を有し得るか、標的配列若しくは標的変異体配列のみを有し得るか、又はいずれも有し得ない。幾つかの実施形態において、標的又は標的変異体の存在は知られているが、一方で他の実施形態において、標的又は標的変異体が存在するか否かは知られていない。
【0070】
VI.反応混合物
本発明はまた、本発明の方法に関与する反応混合物を提供する。上記の任意の反応混合物が製造され得る。例示的な反応混合物は、例えば、5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼ;標的配列を含むポリヌクレオチド;当該標的配列と、少なくとも一つのヌクレオチドによって異なる、第二の配列を含むポリヌクレオチド;及び、当該第二の配列と十分にハイブリダイズし、ポリメラーゼによる当該第二の配列の増幅を阻害するが、当該オリゴヌクレオチドの当該標的配列へのハイブリダイゼーションは、当該標的配列の増幅を著しく阻害しないブロッカーオリゴヌクレオチド、を含む。当該反応混合物は、ヌクレオチド(例えば、dNTPs、例えば、dATP、dCTP、dGTP、dTTP、及び/若しくはdUTP、又はそれらの任意の組み合わせ)を、プライマー伸長及び/又は増幅反応に関して有用である濃度で、さらに含み得る。さらに、当該反応混合物は、当該標的配列及び/又は第二の配列とハイブリダイズする、一つ以上の異なるプライマー、例えば、当該ブロッカーオリゴヌクレオチドがハイブリダイズする領域の上流でハイブリダイズする少なくとも一つのプライマー、及び/又は5’センスプライマー及び対応する3’アンチセンスプライマーを含むプライマー対を含む。他の、相互排他的ではない変形において、当該反応混合物は、遊離の(従来型の及び/又は従来型ではない)ヌクレオチドを提供する一つ以上のコンテナ(containers)を含む。例えば、当該反応混合物は、アルファ−ホスホロチオエートdNTPs、dUTP、dITP、及び/又は標識されたdNTPs、例えばフルオレセイン染料群若しくはシアニン染料群のdNTPsを含み得る。特定のブロッカーオリゴヌクレオチド、ポリメラーゼ、プライマー、及び本明細書において記載された他の試薬がまた、上の部分で詳細に記載されたような反応混合物中に含まれ得る。本発明の反応混合物はまた、プライマー伸長条件下において、標的及び/又は第二の配列とハイブリダイズ可能である5’センスプライマーを提供するコンテナを伴い得るか、又はそれと共に使用され得る。
【0071】
VII.キット
本発明はまた、本発明の方法における使用のためのキットを提供する。通常、当該キットは、使い易さのために細分化され、そして5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼを提供する少なくとも一つのコンテナを含む。追加の試薬(単数又は複数)を提供する一つ以上の追加のコンテナがまた含まれ得る。かかる追加のコンテナは、任意の試薬又は上記の方法のプライマー伸長手順における使用のために当業者によって認識される他の要素を含み得、例えば核酸増幅手順(例えば、PCR、RT−PCR)、DNAシーケンシング手順、又はDNA標識手順における使用のための試薬を含み得る。キットは、例えば、標的配列を含むポリヌクレオチド;当該標的配列と、少なくとも一つのヌクレオチドによって異なる、第二の配列を含むポリヌクレオチド;及び、本明細書において記載されたブロッカーオリゴヌクレオチドを含み得る。好ましい実施形態において、当該キットは、プライマー伸長条件下において、標的及び/若しくは第二の配列とハイブリダイズ可能である5’センスプライマー、並びに/又は5’センスプライマー及び対応する3’アンチセンスプライマーを含むプライマー対をさらに含む。他の、相互排他的ではない変形において、当該キットは、遊離の(従来型の及び/又は従来型ではない)ヌクレオチドを提供する一つ以上のコンテナを含む。特定の実施形態において、当該キットは、アルファ−ホスホロチオエートdNTPs、dUTP、dITP、及び/又は標識されたdNTPs、例えばフルオレセイン染料群若しくはシアニン染料群のdNTPsを含む。さらに他の、相互排他的ではない変形において、当該キットは、プライマー伸長反応に好適なバッファーを提供する一つ以上のコンテナを含む。
【実施例】
【0072】
以下の例は、説明のために提供され、特許請求の範囲に記載された発明を限定するものではない。
【0073】
実施例1:
本実施例は、変異体対立遺伝子を検出するために、融解温度曲線分析を使用する、ファクター5野生型対立遺伝子の増幅を抑制するブロッカーオリゴヌクレオチドの使用を説明する。
【0074】
本実施例において、非対称PCR試料マスターミックス(master mix)は:2.5%グリセロール;pH8.3の50mMトリシン;45mMの酢酸カリウム;200uM dATP、200uM dGTP、200uM dCTP、400uM dUTP;0.7uM 上流(過剰)プライマー;0.1μM下流(制限)プライマー;0.4 μM検出プローブ;4U ウラシル−N−グリコシラーゼ;40U ΔZO5 DNAポリメラーゼ又はZO5 DNAポリメラーゼ;及び4mM酢酸マグネシウムからなる。
【0075】
当該マスターミックスを、ファクター5野生型標的及び変異体プラスミドDNA標的を増幅するために使用した。結合する検出プローブのための、過剰の一本鎖アンプリコンを確保するために、当該過剰プライマーは、当該制限プライマー濃度の7倍で存在した。増幅及び融解を、Roche Lightcycler LC480で行った。
【0076】
本実施例のために使用された熱サイクルプロファイルは:50℃、5分間(UNGステップ);94℃、15秒間〜59℃、40秒間×2サイクル;91℃、15秒間〜59℃、40秒間×48サイクル,94℃、30秒間、59℃のアニーリングステップの間、データコレクション;及び40℃〜95℃の持続的なデータコレクションでの融解ステップであった。
【0077】
上流プライマーの配列は、TGAACCCACAGAAAATGATGCCCBz(配列番号1)であり;下流プライマーの配列は、GGAAATGCCCCATTATTTAGCCAGGBz(配列番号2)であり;Bzは、t−ブチルベンジルdAであった。安定化検出プローブ(ブロッカー)の配列は、
【0078】
【化1】

【0079】
[式中、Eはcx−FAMであり、QはBHQ2であり、FはプロピニルdUであり、そしてLはプロピニルdCである]
であった。不安定化検出プローブ(ノン−ブロッカー)の配列は、
【0080】
【化2】

【0081】
[式中、Eはcx−FAMであり、QはBHQ2であり、FはプロピニルdUであり、LはプロピニルdCであり、そしてPは3’リン酸である]
であった。これらのオリゴヌクレオチドは、当該野生型標的と完全にマッチし、そして太字と下線で示された、当該変異体標的に対する一つのミスマッチ(CAミスマッチ)を有する。
【0082】
本実施例からの融解データは、ZO5ポリメラーゼを用いて、両方のプローブが、期待された融解曲線を与えることを示し、ここで当該野生型は最も高いTmを与え、当該変異体標的は最も低いTmを与え、そしてヘテロ接合体は野生型及び変異体対立遺伝子の両方に対するTmを与えた(図2&3)。ZO5が当該プローブを切断するため、増幅の抑制は観測されなかった。2つの対立遺伝子に対する安定化プローブのTmは、不安定化プローブのTmよりも約12℃高かったことが観察され得る。メインの融解ピークの右側における肩として、同定されていない、より高いTmピークが同様に観測された。
【0083】
PCRの間に不安定化プローブは分解されなかったため、ΔZO5を用いて、当該不安定化プローブは、プローブとしてより大きなシグナルを有するが、同一の融解曲線を再び与えた(図4)。
【0084】
しかし、ΔZO5が安定化プローブと共に使用されたとき(図5)、ヘテロ接合体試料における野生型対立遺伝子は、当該野生型対立遺伝子に対する融解曲線をもたらさなかった;変異体標的と同一である融解曲線がもたらされ、当該野生型対立遺伝子の増幅が抑制されたことが示された。純粋な野生型標的は、ZO5を有する野生型標的よりもずっと低く、そして広い融解曲線をもたらした(図3)。
【0085】
実施例2:
安定化プローブ及び非切断酵素を使用する増幅効果のさらなる証拠を図6に示す。実施例1において記載された同一の増幅条件をΔZO5と共に使用し、安定化プローブは、はじめからPCRチューブ中に存在したか、又はPCR後加えられたかのいずれかであった。融解をその後行い、そしてデータを図6に示す。当該プローブがPCR中において存在しなかったとき、野生型(青)及び変異体(赤)標的の両方の正常な増幅が生じた−点線。当該プローブがPCR中において存在した場合、当該変異体標的は十分に増幅され、そして十分に溶解されたが、野生型はそのようなことはなかった。
【0086】
実施例3:
リアルタイムPCRにおいて、同様に抑制を観測した。実施例1に記載された同一のPCR条件を使用して、同一の実験からの増殖曲線データは、ZO5を使用して全くスレッシュホールドサイクル(Ct)の遅れがなかったことと比較して、ΔZO5を使用して、野性型と変異体標的との間で、約12サイクルのスレッシュホールドサイクル(Ct)の遅れを示した。さらに、当該ブロッキングオリゴヌクレオチドが、安定塩基(プロピニル dU&プロピニル dC)の存在により、働くかどうかを試験するために、長い不安定プローブ(52量体)を作り、そして試験し、そしてそれは短い安定プローブと同一のTmを有した。このプローブの配列は:
【0087】
【化3】

【0088】
[式中、Eはcx−FAMであり、QはBHQ2であり、そしてPは3’リン酸である]
であった。
【0089】
ZO5を使用して全く遅れがなかったことと比較して、ΔZO5を使用して、11サイクルの遅れが、野性型と変異体標的との間で観測された。この結果は、Tmが、プローブがブロッカーとして作用し得るか否かを決定するときにおける最も重要なファクターであることを示した。
【0090】
実施例4:
まれな変異の検出アッセイを模倣するために実験を行った。実施例1において記載した反応条件を使用して、どのレベルの変異体標的が野生型標的のバックグランド中において検出され得るかを見るために、野生型及び変異体プラスミドDNA断片を、異なる比で共に混合した。100:1(10,000コピーの野生型+100コピーの変異体に相当)、500:1(50,000コピーの野生型+100コピーの変異体)、1000:1(100,000コピーの野生型+100コピーの変異体)、5000:1(500,000コピーの野生型+100コピーの変異体)及び10,000:1(1,000,000コピーの野生型+100コピーの変異体)の比を調製した。1000:1の比まで、当該変異体標的に関する明確に説明可能な曲線を観察した。これを超えて、当該野生型からの融解曲線は、変異体融解曲線を阻害し始め、このことは、野生型標的の増幅の有効な阻害がもはや起こらないことを示した。
【0091】
本明細書に記載された実施例及び実施形態は、説明の目的のためのみのものであり、その観点における種々の改変又は変化が当業者に提案され、そして本出願及び添付された特許請求の範囲の趣旨及び範囲内に含まれ得ることが理解される。

【特許請求の範囲】
【請求項1】
生体試料中のポリヌクレオチドにおける標的配列を検出するための方法であって、前記試料は、さらに又は代わりに、第二の配列を含む第二のポリヌクレオチドを含み、ここで前記第二の配列は、少なくとも一つのヌクレオチドによって前記標的配列とは異なり、以下のステップ:
i.存在するのであれば、前記第二の配列又は前記標的配列へのブロッカーオリゴヌクレオチドのハイブリダイゼーションを可能とする条件下で、前記試料と前記ブロッカーオリゴヌクレオチドを接触させ、
ii.前記ハイブリダイズされたブロッカーオリゴヌクレオチドの存在下、前記試料を、少なくとも一つのプライマー、及び5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼと、前記プライマーの鋳型依存的伸長が起こる条件下で接触させ、ここで前記プライマーは、前記ポリヌクレオチドと、存在するのであれば、前記ブロッカーオリゴヌクレオチドがハイブリダイズする配列の上流でハイブリダイズすること;
を含み、ここで前記ブロッカーオリゴヌクレオチドは、前記ポリメラーゼによる前記第二の配列の増幅を阻害するために、前記第二の配列と十分にハイブリダイズし、ここで、前記ブロッカーオリゴヌクレオチドは、インターカレーティング(intercalating)ヌクレオチドを含まず、そしてさらに、前記標的配列への前記オリゴヌクレオチドのハイブリダイゼーションが、5’−3’ヌクレアーゼ活性を著しく欠如するポリメラーゼによる前記標的配列の増幅を著しく阻害しない、前記方法。
【請求項2】
前記ブロッカーオリゴヌクレオチドが検出可能に標識されている、請求項1に記載の方法。
【請求項3】
前記第二の配列と標的配列との間で単一のヌクレオチドの違いが存在し、そして前記ブロッカーオリゴヌクレオチドが、前記単一のヌクレオチドの位置を除いて、前記標的配列と完全に相補的である、請求項1に記載の方法。
【請求項4】
前記第二の配列と標的配列との間で2〜6個のヌクレオチドの違いが存在し、そして前記ブロッカーオリゴヌクレオチドが、前記2〜6個のヌクレオチドの位置を除いて、前記標的配列と完全に相補的である、請求項1に記載の方法。
【請求項5】
2.5%グリセロール、pH8.3の50mMトリシン、45mM酢酸カリウム中で測定すると、
−前記ブロッカーオリゴヌクレオチドと前記第二の配列との融解温度;及び
−前記ブロッカーオリゴヌクレオチドと前記標的配列との融解温度
との間の差が少なくとも5℃である、請求項1に記載の方法。
【請求項6】
前記ブロッカーオリゴヌクレオチドが、少なくとも一つの、非天然のヌクレオチドを含み、ここで前記非天然の、非インターカレーティングヌクレオチドは、前記非天然ヌクレオチドの代わりに天然のヌクレオチドを有することを除いて、他は前記ブロッカーオリゴヌクレオチドと同一である対照オリゴヌクレオチドと比較して、前記ブロッカーオリゴヌクレオチドの融解温度を増加させる、請求項1に記載の方法。
【請求項7】
前記ブロッカーオリゴヌクレオチドが、少なくとも一つの非ヌクレオチド部位を含み、ここで前記非ヌクレオチド部位は、前記非ヌクレオチド部位を欠如していることを除いて、他は前記ブロッカーオリゴヌクレオチドと同一である対照オリゴヌクレオチドと比較して、前記ブロッカーオリゴヌクレオチドの融解温度を増加させる、請求項1に記載の方法。
【請求項8】
前記非ヌクレオチド部位が、DNAのマイナーグルーブに結合する、請求項7に記載の方法。
【請求項9】
2.5%グリセロール、pH8.3の50mMトリシン、45mM酢酸カリウム中で測定すると、前記ブロッカーオリゴヌクレオチドが、前記第二の配列と少なくとも70℃の融解温度でハイブリダイズする、請求項1に記載の方法。
【請求項10】
−5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼ;
−標的配列を含むポリヌクレオチド;
−少なくとも一つのヌクレオチドによって、前記標的配列とは異なる第二の配列を含むポリヌクレオチド;
−前記第二の配列及び前記標的配列とハイブリダイズし、インターカレーティングヌクレオチドを含まないブロッカーオリゴヌクレオチド
を含む反応混合物であって、前記ブロッカーオリゴヌクレオチドが、前記ブロッカーオリゴヌクレオチドの不在下の増幅に好適な条件下で、前記ポリメラーゼによる前記第二の配列の増幅を阻害する程度に十分に前記第二の配列とハイブリダイズするが、前記標的配列への前記オリゴヌクレオチドのハイブリダイゼーションが、前記ポリメラーゼによる前記標的配列の増幅を著しく阻害しない、前記反応混合物。
【請求項11】
2.5%グリセロール、pH8.3の50mMトリシン、45mM酢酸カリウム中で測定すると、前記第二の配列に対する前記ブロッカーオリゴヌクレオチドのTmが、前記標的配列に対する前記ブロッカーオリゴヌクレオチドのTmよりも20℃以下で高い、請求項10に記載の反応混合物。
【請求項12】
2.5%グリセロール、pH8.3の50mMトリシン、45mM酢酸カリウム中で測定すると、前記ブロッカーオリゴヌクレオチドが、前記第二の配列と少なくとも70℃の融解温度でハイブリダイズする、請求項10に記載の反応混合物。
【請求項13】
2.5%グリセロール、pH8.3の50mMトリシン、45mM酢酸カリウム中で測定すると、
−前記ブロッカーオリゴヌクレオチドと前記第二の配列との融解温度;及び
−前記ブロッカーオリゴヌクレオチドと前記標的配列との融解温度
との間の差が少なくとも5℃である、請求項10に記載の反応混合物。
【請求項14】
前記ブロッカーオリゴヌクレオチドが、少なくとも一つの、非天然のヌクレオチドを含み、ここで前記非天然のヌクレオチドは、(a)前記非天然のヌクレオチドの代わりに天然のヌクレオチドを有することを除いて、又は(b)前記非ヌクレオチド部位を欠如していることを除いて、他は前記ブロッカーオリゴヌクレオチドと同一である対照オリゴヌクレオチドと比較して、前記ブロッカーオリゴヌクレオチドの融解温度を増加させる、請求項10に記載の反応混合物。
【請求項15】
−5’−3’エキソヌクレアーゼ活性を著しく欠如するポリメラーゼ;
−標的配列を含むポリヌクレオチド;
−少なくとも一つのヌクレオチドによって、前記標的配列とは異なる第二の配列を含むポリヌクレオチド;
−前記第二の配列及び前記標的配列とハイブリダイズし、インターカレーティングヌクレオチドを含まないブロッカーオリゴヌクレオチド
を含むキットであって、ここで、前記ブロッカーオリゴヌクレオチドは、前記ブロッカーオリゴヌクレオチドの不在下の増幅に好適な条件下で、前記ポリメラーゼによる前記第二の配列の増幅を阻害する程度に十分に前記第二の配列とハイブリダイズするが、前記標的配列への前記オリゴヌクレオチドのハイブリダイゼーションが、前記ポリメラーゼによる前記標的配列の増幅を著しく阻害しない、前記キット。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2010−535480(P2010−535480A)
【公表日】平成22年11月25日(2010.11.25)
【国際特許分類】
【出願番号】特願2010−519376(P2010−519376)
【出願日】平成20年8月7日(2008.8.7)
【国際出願番号】PCT/EP2008/006476
【国際公開番号】WO2009/019008
【国際公開日】平成21年2月12日(2009.2.12)
【出願人】(591003013)エフ.ホフマン−ラ ロシュ アーゲー (1,754)
【氏名又は名称原語表記】F. HOFFMANN−LA ROCHE AKTIENGESELLSCHAFT
【Fターム(参考)】