説明

カーボンナノ粒子の製造方法

【課題】低コストかつ効率よくカーボンナノ粒子を連続的に製造する方法を提供する。
【解決手段】 流体20中で陰極14と、黒鉛陽極12との間に電圧を印加して、隙間34にアーク放電を発生させる。ボンベ28から所定流量の不活性気体を隙間34に導入する。アーク放電によって隙間34で生成した炭素蒸気からカーボンナノ粒子が生成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アーク放電によってカーボンナノ粒子を製造する技術に関する。
【背景技術】
【0002】
近年、単層もしくは多層のカーボンナノチューブや、カーボンナノホーン、フラーレン、ナノカプセルといった、ナノメートルスケールの微細構造を有する炭素物質が注目されている。これらの炭素物質は、ナノ構造黒鉛(グラファイト)物質として、新しい電子材料や触媒、光材料等への応用が期待されているものである。特にカーボンナノホーンは、燃料電池の電極材料やガス吸蔵材への実用化に最も近い物質として注目されている。
【0003】
従来、こうしたカーボンナノ粒子の製造法には、アーク放電法、化学蒸着(CVD)法、レーザーアブレーション法などが用いられてきた。特に、アーク放電法で製造したナノチューブは、原子配列の欠陥が少ないため、種々のアーク放電によるカーボンナノ粒子の製造方法が開発されている(例えば特許文献1〜5)。これらの方法は、真空中や大気中、もしくは液体窒素中にて炭素を気化させることにより、炭素からカーボンナノ粒子を形成するものである。また、水中アーク放電によって炭素蒸気を発生し、この炭素蒸気を急速に冷却させることにより、カーボンナノホーンを生成する方法が提案されている(例えば非特許文献1)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2001−064004号公報
【特許文献2】特開2008−37661号公報
【特許文献3】特開2005−170739号公報
【特許文献4】特開2002−348108号公報
【特許文献5】特許第3044280号公報
【非特許文献】
【0005】
【非特許文献1】Sano Noriaki et al., Journal of material chemistry 2008, vol.18, P.1555-1560
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、上記の方法はいずれも炭素原料の消費量に対するカーボンナノ粒子の収量が非常に少ないという問題がある。また、真空中もしくは液体窒素中においてカーボンナノ粒子を生産するには、真空や低温を保持するための設備投資や維持管理にコストがかかる。さらには、生産されたカーボンナノ粒子の精製と回収に煩雑な操作を必要とする。そのため、連続的にカーボンナノ粒子を効率的に大量生産することができず、コストの面からも産業利用上、実用化には至っていない問題がある。
【0007】
さらに、水中においてカーボンナノ粒子を生産する場合には、少量の多層フラーレン状カーボンナノ粒子や多層カーボンナノチューブが生成されるが、単層カーボンナノ粒子、特に単層カーボンナノホーンを安定的に生成することが困難である。
【0008】
本発明は以上の課題に鑑みなされたものであり、低コストかつ効率よく単層もしくは多層のカーボンナノ粒子を連続的に製造する方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記の課題に鑑みて、アーク放電法におけるカーボンナノ粒子の収量が低い原因を種々検討した。その結果、アーク放電によって生じた炭素蒸気が急冷されて単層および多層カーボンナノ粒子が生成されると同時に、アーク放電によって単層カーボンナノホーンを含む一部のカーボンナノ粒子が再び蒸発してしまうことが示唆された。そこで本発明者らは、水中アーク放電に不活性気体を導入することによって、アーク放電発生領域のエネルギープロファイルを制御することにより、カーボンナノ粒子が再び蒸発することを防ぐ方法を見出した。こうした知見に基づき以下の手段が提供される。
【0010】
本明細書に開示されるカーボンナノ粒子の製造方法によれば、陰極と陽極との間に電圧を印加してこれら電極間に存在する流体にアーク放電発生領域を形成する工程と、前記アーク放電発生領域に準備された炭素材料から炭素蒸気を発生させるとともに前記アーク放電発生領域に不活性気体を導入する工程と、を含むことができる。
【0011】
本明細書に開示されるカーボンナノ粒子の製造方法によれば、流体中に配置された陰極と陽極との間に電圧を印加してこれら電極間にアーク放電発生領域を形成する工程と、前記流体の加圧下に前記アーク放電発生領域に準備された炭素材料から炭素蒸気を発生させるとともに前記アーク放電発生領域に不活性気体を導入する工程と、を含むことができる。
【0012】
前記陰極は前記陽極に対向して配置されていてもよい。また、前記陽極は黒鉛陽極を用いることができる。
【0013】
前記流体は、水を含む前記アーク放電の発生温度以下で撹拌流動性のある媒質液体を用いることができる。
【0014】
前記流体に浮遊するカーボンナノ粒子が、単層カーボンナノホーンであってもよい。
【0015】
前記アーク放電は、電極に直流電圧または直流パルス電圧を印加することにより発生させることができる。
【0016】
前記アーク放電は、前記陰極の電極断面積が前記黒鉛陽極の電極断面積より大きい状態で電圧を印加することにより発生させることができる。
【0017】
前記黒鉛陽極が、添加物を含有もしくは内蔵、または、添加物が表面の一部分もしくは全部に散布、塗布、メッキまたはコートされていてもよい。
【0018】
前記黒鉛陰極が、水平方向に回転振動を加える工程をさらに備えることができる。
【0019】
上記の製造方法は、前記流体中に送り出されるカーボンナノ粒子を分散させる工程と、前記炭素蒸気を送り出す部位の局部的な流体温度の上昇を防ぐための流体槽の流体を撹拌する工程と、前期流体の温度を一定温度に維持するため前記流体温度を調整する工程と、をさらに備えることができる。
【0020】
前記黒鉛陽極と前記陰極は、重力に対して垂直に対向して配置されていてもよい。
【0021】
上記の製造方法は、前記炭素蒸気から生成した前記カーボンナノ粒子を前記流体から回収する工程をさらに備えることができる。
【0022】
前記カーボンナノ粒子を回収する工程は、前記カーボンナノ粒子を含む流体を吸引する工程と、ろ過膜によって前記流体から前記カーボンナノ粒子を分離する工程と、分離された前記カーボンナノ粒子を乾燥する工程と、を含んでもよい。
【0023】
前記不活性気体が、窒素、アルゴン、ヘリウムを含む希ガス及びヒドラジンからなる群から選択される1種又は2種以上を含むガスであってもよい。
【0024】
本明細書に開示されるカーボンナノ粒子の製造装置は、一部が流体に浸漬される陰極と、前記陰極の前記流体に浸漬される部位に前記流体中において間隔を隔てて配置されている陽極と、前記陰極と前記陽極の間に電圧を印加しアーク放電発生領域を形成する機構と、前記アーク放電発生領域に不活性気体を導入させる機構と、を備えることができる。
【0025】
前記陽極が黒鉛陽極であり、前期陰極と対向して配置されていてもよい。
【0026】
前記黒鉛陽極と前記陰極との隙間が1mm以上2mm以下であってもよい。
【0027】
前記陰極が水平方向に回転振動することができる。
【0028】
前記カーボンナノ粒子を回収する機構は、前記カーボンナノ粒子を含む前記流体を吸引する機構と、前記流体から前記カーボンナノ粒子を分離する機構と、分離した前記カーボンナノ粒子を乾燥する機構と、を含んでもよい。
【0029】
前記陰極は、前記不活性気体の導入路を有することができる。
【図面の簡単な説明】
【0030】
【図1】本発明の装置の一例の概要を模式的に示す図である。
【図2】本発明における陰極の一例を示す図である。
【図3】本発明の装置の第2実施例の概要を模式的に示す図である。
【図4】本発明の装置の第3実施例の概要を模式的に示す図である。
【図5】本発明の装置の第4実施例の概要を模式的に示す図である。
【図6】実施例のカーボンナノ粒子の粒度分布を示す対数グラフである。
【発明を実施するための形態】
【0031】
本発明は、アーク放電によってカーボンナノ粒子を効率的に製造するための方法に関する。本発明のカーボンナノ粒子の製造方法によれば、流体中でアーク放電を発生させ、このアーク放電発生領域に不活性気体を導入することによって、効率よく黒鉛から炭素蒸気を生成することができる。また、炭素蒸気から単層カーボンナノホーンを含むカーボンナノ粒子を生成することができる。さらに、不活性気体の導入によってアーク放電発生領域の、例えば放電される電子量や、アーク放電による発熱領域、発熱温度や圧力といったエネルギープロファイルを制御することができるため、生成されるカーボンナノ粒子が再び蒸発することを防ぐことができる。さらに、流体を撹拌することで、生成されるカーボンナノ粒子をアーク放電発生領域から遠ざけ、カーボンナノ粒子が再び蒸発することを防ぐだけでなく、カーボンナノ粒子同士が凝集することを防ぐことができる。また、対向する陰極の電極断面積を黒鉛陽極の電極断面積よりも大きくすることによって、アーク放電発生領域のエネルギープロファイルを制御することができるため、効率的に大量のカーボンナノ粒子を生成することができる。
【0032】
さらに、本明細書の開示によれば、大掛かりな装置を必要としないため、設備や維持のためのコストが低く、安価にカーボンナノ粒子を製造することができる。また、アーク放電の発生からカーボンナノ粒子の生成までの工程を流体槽中で実行することができるため、煩雑な工程を必要とせずに、カーボンナノ粒子を製造することができる。
【0033】
この方法は、種々のカーボンナノ粒子を製造することができるだけでなく、単層カーボンナノ粒子と多層カーボンナノ粒子とを容易に分離することができる。また、アーク放電を停止することなく、生成されたカーボンナノ粒子を回収することができる。これによって、連続的にカーボンナノ粒子を製造および回収することができる。
【0034】
なお、本明細書において「カーボンナノ粒子」とは、カーボンナノチューブ、カーボンナノホーン、フラーレン、ナノグラフェン、グラフェンナノリボン、ナノグラファイト、ナノダイアモンドを含む全てのカーボン材料を含む。また、単層であっても多層であってもよい。また、ここでいう「ナノ」とは、一般的にはナノメートルスケールのサイズをいうが、実際にはマイクロメートルスケールのサイズにまで膨らんだカーボン材料もカーボンナノ粒子と呼ぶことができる。本明細書に開示されるカーボンナノ粒子の製造方法および装置は、特に多層および単層カーボンナノホーンの製造に好適である。
【0035】
以下、本発明の実施形態について適宜図面を参照しながら説明する。図1は、本発明のカーボンナノホーンの製造方法に好適な装置の一例を模式的に表す図である。図2は陰極に不活性気体を導入するための導入路を形成した一例を示す図である。
【0036】
[カーボンナノ粒子を製造する方法]
本明細書に開示されるカーボンナノ粒子の製造方法は、アーク放電を発生させる工程と、不活性気体をアーク放電の発生領域に導入する工程と、を含んでいる。より詳細には、水中アーク放電によって黒鉛陽極から炭素蒸気を生成し、炭素蒸気からカーボンナノホーンを含むカーボンナノ粒子を製造する。それぞれの工程を以下に詳述する。
【0037】
(アーク放電を発生させる工程)
本明細書に開示されるアーク放電発生領域を形成する工程は、陰極と陽極との間に電圧を印加してこれら電極間に存在する流体にアーク放電発生領域を形成する工程とすることができる。この工程によれば、アーク放電発生領域に準備された炭素をアーク放電によって蒸発させることによって、カーボンナノ粒子の素となる炭素蒸気を生成させることができる。
【0038】
本工程では、陰極と陽極との間に電圧を印加すると、電極間に放電電流を流してアーク放電を生じさせることができる。アーク放電の発生のための電圧の印加時間は特に限定されないが、短時間であれば、生成されるカーボンナノ粒子が再び蒸発することを防ぐことができるため好ましい。短時間のアーク放電を繰り返し実行することで、大量のカーボンナノ粒子を製造することができる。また、印加する電圧は、直流電圧であっても交流電圧であってもよいが、直流電圧または直流パルス電圧を印加してアーク放電を発生させることが好ましい。印加する電圧は、電圧20Vで電流100A以上であることが好ましい。100A未満ではカーボンナノ粒子の生成量が低下するためである。より好ましくは140A以上の直流電圧が好適である。
【0039】
さらに、陽極に黒鉛を含む黒鉛陽極を用いることで、電極と炭素材料を一体化することができるため、装置構成を簡易に設計することができる。またこの場合、アーク放電は、陰極の電極断面積が黒鉛陽極の断面積より大きい状態で電圧を印加することにより発生させることが好ましい。これにより、アーク放電発生領域のエネルギープロファイルを制御し、生成されるカーボンナノ粒子が再び蒸発することを防ぐことができる。陰極の電極断面積が黒鉛陽極の電極断面積の1.5倍以上であるとより好適である。また、黒鉛陽極と陰極の隙間は、1mm以上2mm以下であることが好ましい。隙間がこの範囲であることによって、効率的にアーク放電を発生させることができる。隙間が1mm未満もしくは2mmを超えるとアーク放電が不安定となるためである。黒鉛陽極と陰極の隙間が1mm以上2mm以下を維持するために、陰極を支持する支持部もしくは黒鉛陽極を支持する支持部が駆動可能に設置されていることが好ましい。さらに好適には、自動制御によって黒鉛陽極と陰極の隙間が調整可能であると好ましい。これは、時間とともにアーク放電によって黒鉛陽極が消耗して陰極との隙間が開き、アーク放電が不安定になるためである。
【0040】
なお、ここでいう「放電」とは、電極間にかかる電位差によって電極間に存在する気体に絶縁破壊が生じ、電子が放出され電流が流れることである。このとき放出される電流を放電電流と呼ぶことができる。放電には、例えば、火花放電、コロナ放電、グロー放電、アーク放電を含んでいる。この中で、アーク放電とは、陰極と陽極間の気体分子が電離してイオン化が起こり、プラズマを生み出しその上を電流が走る現象である。そのため、プラズマアーク放電と呼ぶこともできる。この途中の空間では気体が励起状態になり高温と閃光を伴う。アーク放電は、高電流の状態であれば常温でも発生することができるうえ、真空状態を必ずしも必要としないため、好適である。
【0041】
本明細書において「陽極」及び「陰極」とは、電気伝導性を有する可能性のある電極をいう。例えば、電極には金属、セラミックス、炭素を含む材料を用いることができる。また電極は、金属、セラミックス、炭素から選択された1種類もしくは複数の材料から形成されていてもよい。電極表面の一部分もしくは全部に添加物が散布されていてもよいし、塗布されていてもよいし、メッキまたはコートされていてもよい。こうした各種の電極材料は当業者であれば適宜従来技術を参照して取得することができる。好適には、アーク放電による陰極の消耗を防ぐため、電極のうち、少なくとも陰極は金属やセラミックス材料によって形成されることが好ましい。
【0042】
本明細書において「黒鉛」とは、炭素を含む材料をいう。本明細書では炭素を含む陽極を黒鉛陽極と呼ぶ。黒鉛陽極はアーク放電を発生させるための電極であると同時に、生成目的のカーボンナノ粒子の原料とすることができる。その場合には、消耗する黒鉛陽極を繰り返し交換できるように設計することが好ましい。また、陽極に黒鉛を用いない場合には、電極とは別に、カーボンナノ粒子の原料としての黒鉛を準備する。電極に黒鉛を含まない場合には、電極の消耗を防ぐことができ、低コストでカーボンナノ粒子を製造することができる。なお、黒鉛は、どのような形態であってもよく、板状等の適切な形状を適宜選択することができる。また、陽極に黒鉛陽極を用いるか、電極とは別の黒鉛を準備するかは、適宜装置の設計に応じて選択することができる。本実施形態では、陽極に黒鉛陽極を用いるものとして説明する。黒鉛は炭素単体でもよいが、添加物を含有もしくは内蔵されていてもよい。または、黒鉛表面の一部分もしくは全部に添加物が散布されていてもよいし、塗布されていてもよいし、メッキまたはコートされていてもよい。例えば、添加物として鉄やニッケルなどの金属を用いた場合、カーボンナノホーン粒子に金属ナノ粒子を内包、すなわち、閉じた短い単層カーボンナノチューブが球状に凝集しているナノ粒子であるカーボンナノホーン粒子の中心付近に、金属ナノ粒子を入れることが可能である。こうした各種の炭素を含む材料は当業者であれば適宜従来技術を参照して取得することができる。
【0043】
アーク放電は流体中に発生させることが好ましい。あるいは、流体の近傍でアーク放電を発生させることが好ましい。こうすることでアーク放電によって発生する炭素蒸気を速やかに流体で冷却してカーボンナノ粒子を生成させることができる。このためには、対向する電極間の空間が流体内にあるように電極が配置されるほか、こうした空間からアーク放電中に流体あるいはその気化体が完全には排除されないように不活性ガスの導入経路等を構成することが好ましい。また、流体は、生成させたカーボンナノ粒子を搬送することもできる。本明細書において「流体」とは、撹拌流動性を有する物質をいう。特に、アーク放電の発生温度以下で撹拌流動性のある媒質液体であることが好ましい。例えば、アーク放電の発生温度以下で撹拌流動性のある媒質液体であれば、水、又は水を含む混液、シリコーンオイル、油、水溶液、液体ヘリウム、液体窒素等を用いることもできる。その中でも水は安価で、かつ入手も容易であり、取り扱いも容易であるため好適である。さらに、水媒質は、アーク放電下では通常状態の水よりもクラスタ構造が小さくなり、酸化還元電位を高くすることができる。水媒質のクラスタ構造の縮小と酸化還元電位の上昇によって、カーボンナノ粒子の形成を促進することができる。
【0044】
図1は、本発明の一実施形態であるカーボンナノ粒子の製造装置、特にカーボンナノホーンの製造に適した製造装置を示す。図1(a)に示すように、流体槽10は、黒鉛陽極12と陰極14とが隙間34を隔てて対向するように備えている。なお、陰極14と黒鉛陽極12の形状と配置は限定しないが、重力に対して垂直に対向して配置されていれば、後述する陰極14の回動による流体の撹拌が容易であるだけでなく、アーク放電が安定するため好適である。また、流体槽10は流体20を保持可能に形成されており、ガラス,セラミックス、金属、樹脂などからなる容器を用いることができる。流体槽10は、断熱構造を有する容器であってもよい。また、流体槽10は、密閉可能であることが好ましい。流体槽を密閉するために、例えば蓋11を備えていてもよい。流体槽が密閉可能であることによって、不活性気体が導入されると流体槽内の圧力が増大し、高圧条件下によってカーボンナノ粒子の生成が促進されるためである。すなわち、流体槽が密閉容器であることによってアーク放電発生領域のエネルギープロファイルを制御することができる。流体槽が密閉可能である場合には、流体槽内の圧力を調節する機構をさらに備えていてもよい。例えば、流体槽内の圧力を調節するための圧力調整弁や圧力調整装置を備えていることが好ましい。これにより、流体槽内の圧力を制御することが可能になり、アーク放電発生領域のエネルギープロファイルを制御することができる。また、黒鉛陽極12を電源22の+極26に接続し、陰極14を電源22の−極24に接続することによって、黒鉛陽極12と陰極14との間に電圧を印加することができる。このときの電極間にかかる電位差によって隙間34に存在する気体もしくは液体に絶縁破壊が生じ、隙間34に電子を流す(放電)ことができる。
【0045】
陰極14と黒鉛陽極12とは、対向する端部がいずれも流体20中に露出されていることが好ましい。この端部間に形成される隙間34がアーク放電発生領域となるが、両端部が流体20に露出されている結果、アーク放電発生領域は流体20中に形成されることになる。
【0046】
また、図1(b)に示すように、アーク放電発生領域である隙間34を取り囲むように区画を形成する外壁42を設けてもよい。外壁42は、本実施形態では陰極14の外周を包囲する略円筒状となっている。これによって、黒鉛陽極12近傍への放電の指向性を高め、より効果的にアーク放電を発生することができる。また、外壁42は、外壁42の位置を調整可能にするための駆動手段に連結されていてもよい。外壁42の位置が調整可能であることによってアーク放電発生領域である隙間34のエネルギープロファイルを制御することができる。すなわち、カーボンナノ粒子の生成量を制御することができる。なお、外壁42は、例えば金属、セラミック、タングステン、黒鉛等の公知の材料を用いることができるが、好適には導電性を有する黒鉛や鉄、アルミを用いることが好ましい。特に外壁42には電気陰性度の高い黒鉛が最良である。外壁42に、黒鉛を用いることで、電極間に電圧を印加したときに区画内部への電子の放出量が増大し、隙間34の温度が効率的に上昇するためである。また、外壁42の内面に凹凸が施されていると、表面積が増大することによって区画内に放出される電子量が増大し、アーク放電が安定して発生するため好ましい。
【0047】
(不活性気体を導入する工程)
本実施形態における不活性気体を導入する工程は、流体中のアーク放電発生領域に不活性気体を導入する工程とすることができる。この工程によれば、陰極からの電子の放出を促進するとともに、アーク放電発生領域で一時的に発生するカーボンナノ粒子の中間体の発生を促進することができる。不活性気体をアーク放電発生領域に導入することによって、不活性気体の一部が解離し、荷電粒子が発生する。この荷電粒子がアーク放電発生領域の導電率を高め、放電を生じやすくすることができる。さらに不活性気体はアーク放電により加熱され、分子振動励起や、解離、電離が進行しプラズマ状態が形成する。こうした活性状態のエネルギープロファイル下で高エンタルピーとなった不活性気体は膨張し、ジュール加熱により推進エネルギーが得られ、陰極からの電子放出が加速することによって、多くの黒鉛蒸気を発生することができる。
【0048】
また、流体中の不活性気体をアーク放電発生領域に導入することで、アーク放電によって発生した炭素蒸気を不活性気体に取り込み、アーク放電発生領域外の流体中に拡散することができる。不活性気体がバブル状に水中を拡散すると同時に、不活性気体に含まれた炭素蒸気を流体で急冷して、カーボンナノ粒子を生成させることができる。このとき生成したカーボンナノ粒子は、流体表面付近に浮遊する。アーク放電発生領域に復帰することがないため、再度の炭素蒸気化は免れる。また、アーク放電発生領域で生成したカーボンナノ粒子やその中間体も不活性気体に取り込まれてアーク放電発生領域外の流体へと拡散されてカーボンナノ粒子として流体表面に浮遊されるため、再度の炭素蒸気化が免れている。これらの結果により炭素蒸気から一旦生成したカーボンナノ粒子が再び蒸発して炭素蒸気となることを抑制して、カーボンナノ粒子の収量を高めることができる。
【0049】
さらに、本明細書の開示によれば、流体の加圧下に前記アーク放電発生領域に準備された炭素材料から炭素蒸気を発生させることが好ましい。流体を加圧するには、例えば、流体槽を密閉状態とするなど、流体が加圧可能な状態と密閉されていれば、流体槽内への不活性気体の導入によって流体槽内の圧力が増大し、高圧条件下とすることができる。こうした流体加圧下においては、炭素蒸気の速やかな冷却と自己組織化の促進により、カーボンナノ粒子を効率的に生成することができる。また、流体の加圧下でのアーク放電によれば、アーク放電発生領域にあるいはその近傍に流体を積極的に存在あるいは近接させることができる。このため、アーク放電発生領域、流体が実質的に存在しえない場合であっても、流体が加圧されていれば、炭素蒸気が速やかに流体に接触して冷却されることになる。
【0050】
黒鉛陽極には、炭素蒸気が冷却されることによって生成したカーボンナノ粒子が付着堆積する。一部の付着堆積物は、アーク放電から受ける圧力や送り込まれる不活性気体の流圧によって隔壁から剥離され、流体に沈殿堆積され、結果として流体表面に浮遊するカーボンナノ粒子とは分離される。
【0051】
また、アーク放電発生領域に導入する不活性気体の流量や流路を制御することによって、アーク放電発生領域の規模や、アーク放電発生領域のエネルギープロファイル、例えば放電される電子量や圧力を制御することができる。従って、黒鉛陽極近傍に所定流量の不活性気体を導入することによって、アーク放電による発熱領域及び発熱温度を制御することができる。このため、効果的に炭素蒸気を発生させることができる。上記の不活性気体の所定流量は、1分あたり15リットル以上であれば、効率的にカーボンナノ粒子が生成されるため好ましい。さらに、不活性気体の流量は1分あたり20リットル以上25リットル以下であれば、より好適である。20リットル未満であると電極間反応のみでカーボンナノ粒子の収率が低下し、25リットルを超えると窒素ガスが過多となり、気泡にカーボンナノ粒子が混入したまま水面上に浮遊し、大気中に放出されやすくなるためである。
【0052】
図1(a)に示すように、例えばアーク放電発生領域である隙間34に不活性気体を導入する方法としては、不活性気体をボンベ28から、供給路16を経て隙間34に送り込ませる方法を採ることができる。生成した炭素蒸気等を確実にアーク放電発生領域外の流体中に拡散させる、電極への付着物を抑制するには、アーク放電を発生させるのに先立って予め不活性な気体を送り込ませることが好ましい。
【0053】
なお、本明細書において「不活性気体」とは、化学反応性に乏しい気体をいう。例えば、不活性気体は、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドンからなる第18族元素(希ガス)や、ヒドラジン、窒素ガス、炭酸ガス、水素ガス、もしくはこれらの混合ガスを含んでいる。その中でも窒素ガスが安価で、かつ入手も容易であるため好適である。不活性気体は、アーク放電発生領域に気体として導入することができれば、気体として貯蔵していてもよいし、液体から取得してもよいし、固体から取得してもよい。こうした各種の不活性物質は当業者であれば適宜従来技術を参照して取得することができる。
【0054】
アーク放電によって各電極に付着した不純物を除くために、例えば、陰極の電極断面積が黒鉛陽極の断面積より大きい状態でアーク放電を発生することによって、アーク放電発生領域にローレンツ力としての推進力が得られ、電極の放電発生領域近傍に固着する不純物を噴射によって剥離することができる。さらに、電極に付着した不純物や生成したカーボンナノ粒子を取り除くために、アーク放電発生領域へ導入する不活性気体の流圧を用いてもよいし、黒鉛陽極と陰極のいずれかもしくは両方が回転振動することによって流体を撹拌してもよい。
【0055】
例えば、図1(a)に示すように、陰極14と黒鉛陽極12とがそれぞれ回動可能になるように、それぞれに回転装置36と回転装置38が設置されていてもよい。回転装置36は陰極14を、回転装置38は黒鉛陽極12を連続もしくは周期的に回転することができる。さらに、陰極14及び黒鉛陽極12の角度を調整した状態で回動することもできる。例えば、電極の角度を0.5度あるいは1度傾斜した状態で回転することができるように設置されていてもよい。これにより、電極に振動を伴う回転を与えることができ、効果的にカーボンナノ粒子の堆積防止もしくは堆積したカーボンナノ粒子の除去を行うことができる。なお、電極を傾斜して回転する場合は、アーク放電中よりも、アーク放電後の堆積物除去のために回転運動を実行させるほうが、アーク放電の安定性を阻害しないため好ましい。
【0056】
また、黒鉛陽極や陰極に限らず、撹拌子を用いて流体を撹拌してもよい。好適には、陰極の電極断面積が黒鉛陽極の断面積より大きい状態で、黒鉛陽極と陰極が回転振動するとともに、不活性気体の流圧によって炭素蒸気を流体中に送り出すことが好ましい。さらに、アーク放電を発生させる前から不活性な気体を送り込ませることが好ましい。
【0057】
なお、生成されるカーボンナノ粒子が再び蒸発することを防ぐために、炭素蒸気を不活性気体と共に流体中に送り出す間はアーク放電を停止してもよい。また、アーク放電を停止した場合でも、電極に付着したカーボンナノ粒子を剥離するために、継続して不活性気体を送り出してもよい。同様に、継続して陰極が回転振動してもよい。これによって、流体中に送り出されるカーボンナノ粒子を分散することができるだけでなく、カーボンナノ粒子同士の凝集や流体槽や電極へのカーボンナノ粒子の付着を防ぐことができ、従って大量のカーボンナノ粒子を得ることができる。
【0058】
図1(a)に示すように、炭素蒸気を不活性気体と共にアーク放電発生領域以外の流体中に送り出す方法としては、陰極14の電極断面積が黒鉛陽極12の断面積より大きくなるように設計する方法を採ることができる。また、不活性気体をボンベ28から供給路16を経て、アーク放電発生領域である隙間34に送り込ませる方法を採ることができる。陰極14を支持する支持部18は水平方向に回動することができるように設計してもよい。さらに支持部18は、ボンベ28から送り出される不活性気体をアーク放電発生領域である隙間34に供給するための供給路16を支持することができる。すなわち、不活性気体をアーク放電発生領域に供給しながら、不活性気体をアーク放電発生領域外の流体中に拡散することができる。
【0059】
図2の(a)に示すように、陰極14の近傍に効率的に不活性気体を導入するために、陰極14の内部を貫通する1又は2以上の導入路40を形成してもよい。図2の(b)に示すように、例えば導入路40の形状は、陰極14の外周側に形成された1又は2以上の通気溝であってもよい。また、それぞれの導入路は図示するように垂直でなくてもよい。例えば、導入路は陰極14の外周に沿うあるいは内部を貫通するらせん状に形成されていてもよい。陰極14が重力に対して垂直で、かつ導入路40がらせん状に形成されていることによって、安定的に不活性気体を渦流としてアーク放電発生領域に導入することができ、アーク放電によるピンチ効果によって、プラズマを渦中心に集約することができるため好ましい。さらに、アーク放電発生領域である隙間34や陰極14、黒鉛陽極12の周囲に壁(反応壁)を設けることは、高温の炭素蒸気による電極の変形を弱めることができるため好ましい。なお、図には陰極14にそれぞれ導入路40として3箇所の溝もしくは孔を図示しているが、導入路40は1個であってもよく、2個又は3個以上であってもよい。なお、導入路40を形成する場合において、陰極14の形状、および、導入路40の形状や数は限定しない。設計事項の範囲で適宜変更することができる。
【0060】
アーク放電の発生を繰り返すことによって高温の炭素蒸気が連続的に発生するため、流体が少ない場合には、流体温度が上昇してしまう可能性がある。流体温度の上昇によって、炭素蒸気を急冷できなくなり、カーボンナノ粒子の生成量が低下、もしくはカーボンナノ粒子の構造に欠陥が生じる可能性がある。そのため、流体温度を調節する工程を備えることが好ましい。例えば、流体の温度を一定温度に維持するために、冷却機構を備えてもよいし、放冷時間を設けてもよいし、流体の補充や入れ替えを行ってもよいし、液体窒素を含む低温の流体を用いてもよい。また、炭素蒸気を送り出す部位の局部的な流体温度の上昇を防ぐために、流体槽中の流体を撹拌する工程を備えてもよい。流体槽中の流体を撹拌する場合には、電極によって撹拌することができるように黒鉛陽極及び陰極を回動可能に設計してもよいし、不活性気体の流圧を用いて撹拌してもよいし、撹拌子を用いてもよい。こうした流体の温度制御方法は当業者であれば適宜従来技術を参照して取得することができる。
【0061】
アーク放電を発生させる工程と、不活性気体をアーク放電の発生領域に導入する工程とによって生成したカーボンナノ粒子を回収する工程を以下に詳述する。
【0062】
(カーボンナノ粒子を回収する工程)
本実施形態におけるカーボンナノ粒子を回収する工程は、炭素蒸気が急冷されることによって生成したカーボンナノ粒子を回収するための工程である。本工程では、カーボンナノ粒子の生成後に、全ての流体からカーボンナノ粒子を回収してもよいが、前記流体中のカーボンナノ粒子を含む流体画分を吸引し、固液分離手段によりカーボンナノ粒子と流体とを分離してもよい。ここで流体画分とは、流体の一部分を示す。例えば流体の一部分を吸引してカーボンナノ粒子を回収し、残った流体を再び流体槽に戻すことを繰り返してもよい。上記の方法によれば、流体中のカーボンナノ粒子を含む画分を選択的に吸引するものであるため、流体槽中の全ての流体を取り出す必要がない。すなわち、アーク放電の発生からカーボンナノ粒子の回収までを、連続的に実行することができる。これによって、煩雑な操作を必要とせずにカーボンナノ粒子を大量生産することができる。
【0063】
また、カーボンナノ粒子を含有する流体画分としては、流体表面付近の流体が挙げられる。この流体画分には、浮遊するカーボンナノ粒子を含有し、これらの画分から単層カーボンナノ粒子を得ることができる。また、流体表面と底部の中間の流体画分が挙げられる。この流体画分も浮遊するカーボンナノ粒子を含有しており、単層ナノカーボン粒子を得ることができる。また、流体槽の底部近傍の流体画分も挙げられる。この流体画分には、沈殿堆積したカーボンナノ粒子を含有しており、当該画分から、多層カーボンナノ粒子を得ることができる。すなわち、吸引する流体画分の選択により、換言すれば、流体槽中の吸引する箇所を選択することによって、効率的に単層カーボンナノ粒子と多層カーボンナノ粒子を分離して得ることができる。特に、浮遊するカーボンナノ粒子から単層カーボンナノホーンを得ることができ、沈殿堆積するカーボンナノ粒子から多層カーボンナノホーンを得ることができる。
【0064】
固液分離手段は、特に限定しないで、ろ過、遠心分離等、公知の手段を用いることができる。本方法では、カーボンナノ粒子は、浮遊したり沈降したりしているため、ろ過により固液分離することが好ましい。ろ過の方法としては、ろ過膜を用いる方法であってもよいし、吸着を利用した方法であってもよい。また、流体を蒸発させることによってカーボンナノ粒子を取り出す、熱時ろ過であってもよい。ろ過膜を用いたろ過としては、重力による自然ろ過の他に、減圧ろ過、加圧ろ過、遠心ろ過を用いることができる。また、ろ過膜としては、ろ紙、セルロース、ガラス繊維フィルター、メンブランフィルター、ろ過板、綿栓、砂などを用いることができる。特に、微粒子や不純物で濃縮された流体を連続的に排出することが可能な、限外ろ過膜法(UF法)を用いることが好ましい。さらに、UF法によってカーボンナノ粒子を精製する場合に、粒径に応じた複数のろ過膜(例えば中空糸膜)を用いてもよい。粒径に応じた複数のろ過膜を用いることによって、容易にカーボンナノ粒子を粒径に応じて分画分離し、精製することができる。
【0065】
さらに、分離されたカーボンナノ粒子を乾燥することによって、カーボンナノ粒子を得ることができる。流体中のカーボンナノ粒子は、固液分離の一工程として乾燥されてもよいし、固液分離後に別に乾燥されてもよい。乾燥方法は特に問わないで、公知の各種方法を採用できる。例えば、高温条件下にて流体を蒸発する方法でもよいし、真空を利用してもよいし、飽和水蒸気量以下の水分を含有する気体中に置いて除水する方法でもよい。また、化学反応によって脱水してもよい。本実施形態では、カーボンナノ粒子を乾燥によって精製するために、熱変性や化学変性を考慮し、スプレードライを用いることが好ましい。
【0066】
図1(a)に示すように、例えば、フィルター30に接続される吸引管32の先端が、流体20に浸るように構成してもよい。吸引管32の先端は流体20の流体中、又は流体面近傍に配することによって、浮遊するカーボンナノ粒子をフィルター30に吸引することができる。また、吸引管32を垂直方向に伸縮可能に設計して、吸引管32の先端を流体槽10の底面近傍に配する事によって、沈殿体積するカーボンナノ粒子を吸引することができるようにしてもよい。吸引されたカーボンナノ粒子は、フィルター30によって流体と分離することができる。次いで、流体から分離したカーボンナノ粒子をスプレードライによって乾燥することによって、精製されたカーボンナノ粒子を得ることができる。
【0067】
カーボンナノ粒子の製造装置は、図1に示す実施形態に限定されるものでなく、種々の実施形態を採ることができる。図3には、別の実施形態のカーボンナノ粒子の製造装置を示す。この実施形態では、図1における陰極14の周辺に、外壁42aを形成したものであり、図1で示されるのと同一部材については説明を省略する。図3に示す装置は、陰極14を支持する支持部18の外側に間隔を隔てて外壁42aを有しており、支持部18と外壁42aの間には不活性気体を導入するための供給路16bが形成されている。外壁42aは、本実施形態では、陰極14の外周を包囲する略円筒状となっており、外壁42aの内側の供給路16bを外壁42aの外部と遮断して、供給路16bにのみ不活性気体を流通させるようになっている。供給路16bには、不活性気体が導入されるようになっている。外壁42aを備えて不活性気体の流通を流体内において規制することで、アーク放電の発生中に供給路16bに導入された不活性気体の黒鉛陽極12近傍への指向性を高め、より効果的に不活性気体を黒鉛陽極12近傍へ到達させることができるようになる。この結果、気泡の意図しないあるいはランダムな分散や拡散を抑えることができ、液面への気泡の上昇によるカーボンナノ粒子の拡散を回避して、カーボンナノ粒子の回収を容易化又は回収率を向上させることができる。また、外壁42aの下部、すなわち、不活性気体の出口近傍の形状を電極等の形状や配置に応じて適宜変更することで、不活性気体の電極近傍への指向性や到達状態を調節することもできる。例えば、出口近傍部分を出口側に広がるように形成することもできるし、鉛直下方を指向するように形成することもできる。出口近傍部分の形状を必要に応じて適宜変更可能に形成することもできる。このように、外壁42aを備えることで、不活性気体の流通状態を調節して、黒鉛陽極12等に対する指向性、到達状態、ひいてはカーボンナノ粒子の生成量や収率を最適化できるようになる。
【0068】
図4には、さらに他の実施形態のカーボンナノ粒子の製造装置を示す。本実施形態では、図1における陰極14から黒鉛陽極12の先端部までを取り囲むように、外壁42bを形成したものである。図1において示されるのと同一部材については説明を省略する。図4に示す装置は、陰極14を支持する支持部18の外側に間隔を隔てて外壁42bを有しており、支持部18と外壁42bの間には不活性気体を導入するための供給路16cが形成されている。供給路16cには、不活性気体が導入されるようになっている。また、外壁42bの不活性気体の出口側は任意の高さに設置することができるが、その下部(出口側端縁)が黒鉛陽極12の先端を取り囲むように延びていてもよい。例えば、図4に示す実施形態では、外壁42bはアーク放電発生領域たる隙間34を取り囲むように配されている。さらに、外壁42bの形状は下部に向かうほど包囲される内部形状が小さくなるように、中空の切頭円錐形状を有している。また、外壁42bの少なくとも内部がらせん状に溝加工されていてもよい。したがって、例えば、外壁42b自体をジャバラ状に形成することで内部にらせん状の溝部を備えるようになっていてもよい。アーク放電の発生中に、不活性気体がらせん状に供給路16cを流通しかつ噴射されることにより、不活性気体の回転気流効果によって回転磁場を発生することができる。回転磁場は、さらに、既に説明したように電極を回転させることによってより容易に発生させることができる。このとき、不活性気体の供給量や電極回転数によって回転磁場を制御することができ、プラズマの形状を可変制御することができる。これによって、アーク放電発生領域のエネルギープロファイルを制御することができ、より効率的にカーボンナノ粒子を合成することができる。
【0069】
図5には、さらに他の実施形態のカーボンナノ粒子の製造装置を示す。本実施形態の装置は、黒鉛陽極を使用せずにカーボンナノ粒子を製造するものである。例えば、両電極はタングステンやセラミック、モリブデン等の電極材料を用いることができる。図5に示すように、本実施形態の装置は、陽極50と、陽極50を取り囲むとともに、陽極50の先端(下端)のやや先の領域を指向して先細り状に収束するノズル部を有する陰極52とを備えている。なお、陽極50の先端のやや先の領域は、アーク放電発生領域となることが意図されている。陽極50とそれを包囲する陰極52との間には不活性気体の供給路58が形成されている。また、陰極52の周囲を取り囲むように外壁54が形成されていてもよい。さらに、外壁54と陰極52の間には不活性気体の供給路60が形成されていてもよい。
【0070】
こうした電極50、52の下部には、所定距離を隔てて黒鉛板56を配置させる。電極50、52と黒鉛板56の隙間34bはアーク放電発生領域とされている。黒鉛板56と陽極50の距離は、陽極50と陰極52に電圧を印加して炭素蒸気を形成可能な範囲であればよく、特に限定されないが、例えば、5mm程度とすることができる。本実施形態の装置によれば、黒鉛陽極を用いた場合よりも電極の消耗や電極に堆積する不純物によるアーク放電不良が軽減し、より安定した大量のカーボンナノ粒子を合成することができる。また、安価な黒鉛板を用いることで、カーボンナノ粒子の生成に係るコストを低下することができる。なお、本実施形態の陽極50と陰極52は、重力に対し垂直方向に対向されていなくてもよく、種々の方向性で備えられる。
【0071】
以下、本発明を、実施例を挙げて具体的に説明するが、以下の実施例は本発明を限定するものではない。以下の実施例では、本発明の製造方法によるカーボンナノホーンの製造を説明する。
【実施例1】
【0072】
本実施例は、図1の装置に好適な例として説明する。水深約30cmの流体槽に黒鉛陽極と陰極を1mm離した状態で重力に対して垂直に対向するように設置する。黒鉛陽極は直径3mm、長さ100mmの円筒形状で、炭素純度99.999%で1.5グラムのカーボンロッドを用いた。流体槽に20リットルの水溶液を満たしたのち、流体槽に蓋をして密閉した。黒鉛陽極と陰極に20V、60Aの直流電圧を印加し、陰極内の導入路に規定値(20〜25リットル/分)の窒素ガスを導入し、粒子を生成した。この間、黒鉛陽極と陰極の間が1mmを維持するように、陰極を支持する支持部を自動制御することによって調整した。流体槽中の水面付近の水をポンプにて経時的に吸引し、UFろ過膜を通して、水と粒子をろ別した。ろ別した粒子をスプレードライにて乾燥し、精製された粒子を得た。粒子を電子顕微鏡にて観察し、単層カーボンナノホーンが多く含まれることを確認した。カーボンロッドが80%消費する時間はおよそ30秒程度であり、1分あたり1.4グラム程度のカーボンナノホーンが得られた。
【0073】
得られたカーボンナノホーンの粒度分布を測定した。図6には、非イオン界面活性剤であるニューコール740(60%濃度)を用いてカーボンナノ粒子を分散させたときの、粒度分布の測定結果を示す。粒径の分散は正規分布として表される。本実施例で得られたカーボンナノホーンの粒子分布は、10%累積径は0.0712μm、90%累積径は0.4675μmであり、累積中位径(50%)は0.1539μm、平均径0.0834μm、標準偏差0.1357であった。一方、界面活性剤を用いない場合には、正規分布に従わず、10%累積径は0.1227μm、90%累積径は4.9431μmであり、累積中位径(50%)は0.3493μm、平均径0.1093μm、標準偏差0.5373であった。
【0074】
以上のように、従来のアーク放電によるカーボンナノ粒子の製造方法に比べて、1台の装置で大量(20〜100倍以上)のカーボンナノ粒子を得ることができた。さらに、大型の設備が必要とせず、1台の装置当たり0.25m2と省スペース化を図ることができる。すなわち、低コストかつ効率よくカーボンナノ粒子を製造することができる。また、粒度分布が正規分布に従った、粒径の揃ったカーボンナノ粒子を製造することができる。
【実施例2】
【0075】
本実施例は、第1実施例とは異なるサイズの黒鉛陽極を用いてカーボンナノ粒子を製造した。同一の部材及び操作については説明を省略する。本実施例では、黒鉛陽極は、直径6.8mm、長さ100mmの円筒形状で、炭素純度99.999%のカーボンロッドを用いた。陰極には、窒素ガスの導入路を形成した、直径12.3mmのカーボンロッドを用いた。流体槽に黒鉛陽極と陰極を1mm離した状態で対向して設置し、純水を満たした後、窒素ガス導入下(20〜25リットル/分)で140Aの直流電圧を印加してカーボンナノ粒子を生成した。生成したカーボンナノ粒子をろ別した結果、第1実施例の3〜4倍程度のカーボンナノホーンが得られた。
【0076】
以上のように、陰極と陽極の両方に黒鉛を含んでいてもカーボンナノ粒子を製造することができる。さらに印加する電流量によって、アーク放電発生領域のエネルギープロファイルを制御することができる。これによって、カーボンナノ粒子を効率的に大量に合成することができる。
【0077】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
【0078】
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【符号の説明】
【0079】
2 装置、10 流体槽、11 蓋、12 黒鉛陽極、14,52 陰極、16,16b,16c,58,60 供給路、18 支持部、20 流体、22 電源、24 −極、26 +極、28 ボンベ、30 フィルター、32 吸引管、34,34b 隙間、36,38 回転装置、40 導入路、42,42a,42b,54 外壁、50 陽極、56黒鉛板

【特許請求の範囲】
【請求項1】
カーボンナノ粒子の製造方法であって、
陰極と陽極との間に電圧を印加してこれら電極間に存在する流体にアーク放電発生領域を形成する工程と、
前記アーク放電発生領域に準備された炭素材料から炭素蒸気を発生させるとともに前記アーク放電発生領域に不活性気体を導入する工程と、
を含む製造方法。
【請求項2】
カーボンナノ粒子の製造方法であって、
流体中に配置された陰極と陽極との間に電圧を印加してこれら電極間にアーク放電発生領域を形成する工程と、
前記流体の加圧下に前記アーク放電発生領域に準備された炭素材料から炭素蒸気を発生させるとともに前記アーク放電発生領域に不活性気体を導入する工程と、
を含む、製造方法。
【請求項3】
前記陰極は前記陽極に対向して配置されており、前記陽極は黒鉛陽極であることを特徴とする請求項1又は2に記載の製造方法。
【請求項4】
前記流体は、水を含む前記アーク放電の発生温度以下で撹拌流動性のある媒質液体である請求項1から3のいずれかに記載の製造方法。
【請求項5】
前記流体に浮遊するカーボンナノ粒子が、単層カーボンナノホーンであることを特徴とする請求項1から4のいずれかに記載の製造方法。
【請求項6】
前記アーク放電は、電極に直流電圧または直流パルス電圧を印加することにより発生されることを特徴とする請求項1から5のいずれかに記載の製造方法。
【請求項7】
前記アーク放電は、前記陰極の電極断面積が前記黒鉛陽極の電極断面積より大きい状態で電圧を印加することにより発生させることを特徴とする請求項1から6のいずれかに記載の製造方法。
【請求項8】
前記黒鉛陽極が、添加物を含有もしくは内蔵、または、添加物が表面の一部分もしくは全部に散布、塗布、メッキまたはコートされていることを特徴とする請求項1から7のいずれかに記載の製造方法。
【請求項9】
前記黒鉛陰極が、水平方向に回転振動を加える工程をさらに備えることを特徴とする請求項1から8のいずれかに記載の製造方法。
【請求項10】
前記流体中に送り出されるカーボンナノ粒子を分散させる工程と、
前記炭素蒸気を送り出す部位の局部的な流体温度の上昇を防ぐための流体槽の流体を撹拌する工程と、
前期流体の温度を一定温度に維持するため前記流体温度を調整する工程と、
をさらに備える請求項1から9のいずれかに記載の製造方法。
【請求項11】
前記黒鉛陽極と前記陰極は、重力に対して垂直に対向して配置されていることを特徴とする請求項1から10のいずれかに記載の製造方法。
【請求項12】
前記炭素蒸気から生成した前記カーボンナノ粒子を前記流体から回収する工程を備える、請求項1から11のいずれかに記載の製造方法。
【請求項13】
前記カーボンナノ粒子を回収する工程は、前記カーボンナノ粒子を含む流体を吸引する工程と、
ろ過膜によって前記流体から前記カーボンナノ粒子を分離する工程と、
分離された前記カーボンナノ粒子を乾燥する工程と、
を含む請求項1から12のいずれかに記載の製造方法。
【請求項14】
前記不活性気体が、窒素、アルゴン、ヘリウムを含む希ガス及びヒドラジンからなる群から選択される1種又は2種以上を含むガスであることを特徴とする請求項1から13のいずれかに記載の製造方法。
【請求項15】
一部が流体に浸漬される陰極と、
前記陰極の前記流体に浸漬される部位に前記流体中において間隔を隔てて配置されている黒鉛陽極と、
前記陰極と前記黒鉛陽極の間に電圧を印加しアーク放電発生領域を形成する機構と、
前記アーク放電発生領域に不活性気体を導入させる機構と、
を備えるカーボンナノ粒子の製造装置。
【請求項16】
前記陽極が黒鉛陽極であり、前期陰極と対向していることを特徴とする請求項15に記載の製造方法。
【請求項17】
前記黒鉛陽極と前記陰極との隙間が1mm以上2mm以下であることを特徴とする請求項15または16に記載の製造装置。
【請求項18】
前記黒鉛陰極が水平方向に回転振動することを特徴とする請求項15から17のいずれかに記載の製造装置。
【請求項19】
前記カーボンナノ粒子を回収する機構は、
前記カーボンナノ粒子を含む前記流体を吸引する機構と、
前記流体から前記カーボンナノ粒子を分離する機構と、
分離した前記カーボンナノ粒子を乾燥する機構と、
を含む請求項15から18のいずれかに記載のカーボンナノ粒子の製造装置。
【請求項20】
前記陰極は、前記不活性気体の導入路を有している、請求項15から19のいずれかに記載の製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−100230(P2013−100230A)
【公開日】平成25年5月23日(2013.5.23)
【国際特許分類】
【出願番号】特願2013−32208(P2013−32208)
【出願日】平成25年2月21日(2013.2.21)
【分割の表示】特願2009−245185(P2009−245185)の分割
【原出願日】平成21年10月26日(2009.10.26)
【出願人】(500046564)
【Fターム(参考)】