説明

ガスクロマトグラフ質量分析装置及びそれを用いたバックグラウンドの低減方法

【課題】 He由来バックグラウンドの主原因であるHe*を根本的に除去することができるガスクロマトグラフ質量分析装置を提供する。
【解決手段】 MS部30の真空チャンバ31内に配設されたイオン化室32とQMF36の間にHe*電離用電子源38を設け、イオン化室32から出てきたHe*に適当なエネルギーを持つ電子を照射することにより電離させてHe+に変える。あるいは、イオン化室32とQMF36の間に衝突室を設け、ガス供給部によって該衝突室内をN2ガスで満たしておき、イオン化室32から出てきたHe*を衝突室内でN2と相互作用させて基底状態のHeに変える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスクロマトグラフ質量分析装置に関する。
【背景技術】
【0002】
ガスクロマトグラフ質量分析装置(以下、適宜GCMSと略す)は、図5に示すように、試料に混在する各成分を時間的に分離するためのガスクロマトグラフ部(以下、適宜GC部と略す)10と、GC部10で分離された成分を質量数(質量/電荷)に基づいて分離・検出するための質量分析部(以下、適宜MS部と略す)30をインターフェイス部20で連結した構成を有している。MS部30は試料を電離するためのイオン化用電子源33が配設されたイオン化室32と、イオン化した試料を質量に基づいて分離するQMF(Quadrupole-mass-filter、四重極マスフィルタ )などの質量分離器36と、該質量分離器36によって分離されたイオンを検出する検出器37を備えている。イオン化室32で発生したイオンはイオン化室32と引き出し電極34との間の電位差によってイオン化室32から引き出され、イオン輸送光学系35を介して質量分離器36に進入する。
【0003】
試料は、キャリアガスである希ガス(通常Heを用いる)と混合されてGC部10に導入され、該GC部10のカラム12で分離されてMS部30のイオン化室32に導入される。通常、イオン化室32では70 eVの電子ビームによって試料が電離されるが、この時、試料と共にイオン化室32に流入したHeガスも電離・励起される。Heが電離されるとHe+(電離エネルギー:24.6 eV)が生成されるが、Heが基底状態よりも高いエネルギー準位で寿命の長い準安定状態に励起されると、He*(メタステーブルヘリウム、21S He*の励起エネルギー:20.61 eV、23S He*の励起エネルギー:19.82 eV)が生成される。
【0004】
キャリアガスHeから生成されるHe+やHe*は、高感度分析を行う場合に無視できないバックグラウンド成分となり、S/N比低下の要因となる。但し、He由来バックグラウンドのうち、He+に起因するものは、適当な電磁界を設けることにより、He+がイオン検出器37に到達する前に除去することが可能である。
【0005】
これに対し、He*は電気的に中性であるため電磁界によって除去することができない。真空チャンバ31内に残存するHe*はエネルギーを運ぶキャリアとして振る舞い、周囲の原子・分子と相互作用してイオン化現象を引き起こす。例えば、金属表面原子とHe*が相互作用すると、He*は金属表面原子に電子を与えてHe+となる。このような現象は共鳴イオン化と呼ばれる。また、装置内の残留ガス(X)のような絶縁物とHe*が相互作用すると、相手原子(分子)を電離してX+を生成する。このような現象はペニングイオン化と呼ばれる。すなわち、He*に起因するバックグラウンドには、He*自身が検出器37に到達することによって生じるものだけでなく、He*から二次的に生成されるHe+やX+が検出器37で検出されることによって生じるものもある。
【0006】
なお、He以外の希ガスにも準安定状態が存在し、これらをGCMSのキャリアガスとして使用する場合にも同様の問題が生じる。しかし、準安定希ガスの中でも、He*の内部エネルギーが最も大きく、他の原子・分子との相互作用によるイオン化が起こりやすい。
【0007】
そこで、このようなバックグラウンドを低減するためのものとして、装置を構成する光学要素の光軸を一部、同一直線上からずらしたオフアクシス(off-axis)方式のGCMSが開発されている(特許文献1)。これは、イオン化室と質量分離器の間、又は質量分離器と検出器の間で光軸をずらし、直進してくるHe*をイオン光軸上から逸脱させて質量分離器又は検出器への進入を阻止することにより、He*に起因するバックグラウンドの発生を抑えるものである。
【0008】
【特許文献1】米国特許第3410997号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
上記のようなオフアクシス方式のGCMSにおいて、光軸が同一直線上に配置されていない光学要素間を連結するためには、図6に示すように、両者の間に曲線状光軸を有するイオン輸送光学系60を設ける必要がある。このようなイオン輸送光学系60は、一般的な直線状光軸を有するイオン輸送光学系に比べて、設計・製作上の難易度が高いため、装置の製造コストの増大を招くという問題がある。更に、このような曲線状光軸を有するイオン輸送光学系60では、信号イオンの損失が生じる可能性がある。
【0010】
また、オフアクシス方式によれば、指向性を持ってQMFへ進行してくるHe*を除去することはできるが、浮遊しながら流れていくHe*や、Heや残留ガスと衝突して直線と異なる軌道をとるHe*は、上記曲線状光軸を有するイオン輸送光学系60に沿って飛行してしまい、除去することができない場合がある。また、上記イオン輸送光学系60を逸脱したHe*が真空チャンバー内壁に衝突してHe+となったり、残留ガスXと相互作用してX+を生成したりして、これら二次的なイオンがイオン検出器に到達してしまう場合もある。
【0011】
そこで、本発明が解決しようとする課題は、単純な構造によってHe由来バックグラウンドの主原因であるHe*を根本的に除去することができるガスクロマトグラフ質量分析装置を提供することである。
【課題を解決するための手段】
【0012】
上記課題を解決するために成された本発明に係るガスクロマトグラフ質量分析装置の第1の態様のものは、試料を時間的に分離するカラムを備えたガスクロマトグラフ部と、ガスクロマトグラフ部から導入された試料をイオン化するイオン化室、該イオンを質量に基づいて分離する質量分離器、及び質量分離されたイオンを検出するイオン検出器を備えた質量分析部を備えたガスクロマトグラフ質量分析装置において、
前記イオン化室と質量分離器との間に、前記イオン化室内で発生した準安定希ガスを電離させるための電子照射手段又は光子照射手段を設けたことを特徴とする。
【0013】
なお、イオン化室から出てきた信号イオンをフラグメント化することなく、バックグラウンドの低減のみを目的とする場合には、上記電子照射手段(又は光子照射手段)によって照射される電子(又は光子)エネルギーを、キャリアガス由来の準安定希ガスを電離するために必要な最小限のエネルギーに設定する。また、電子(光子)照射により、イオン化室から出てきた信号イオンを積極的にフラグメント化させたい場合には、上記イオン化室で発生する準安定希ガスの電離及び信号イオンのフラグメント化が可能であって、かつ、準安定希ガスを新たに生成することがない程度のエネルギーに設定する。
【0014】
本発明に係るガスクロマトグラフ質量分析装置の第2の態様のものは、試料を時間的に分離するためのカラムを備えたガスクロマトグラフ部と、ガスクロマトグラフ部から導入された試料をイオン化するイオン化室、該イオンを質量に基づいて分離する質量分離器、及び質量分離されたイオンを検出するイオン検出器を備えた質量分析部を備えたガスクロマトグラフ質量分析装置において、
前記イオン化室と質量分離器の間の空間及び/又は前記質量分離器内部の空間に、中性のガス分子を導入するためのガス供給手段を設けたことを特徴とする。
【0015】
また、上記第2の態様のガスクロマトグラフ質量分析装置においては、イオン化室と質量分離器との間に衝突室を設け、上記ガス供給手段によって該衝突室に中性のガス分子を導入する構成としてもよい。
【0016】
なお、上記中性のガス分子としては、N2又はHeを使用することが望ましい。
【発明の効果】
【0017】
上記本発明のガスクロマトグラフ質量分析装置の第1の態様のものにおいては、電子又は光子を照射することでHe*に適当なエネルギーを与えて電離させ、He+とすることにより質量分離器による除去を可能とし、He*やそれに由来する二次イオンが検出器で検出されるのを防いでバックグラウンドを低減させることができる。また、このときHe*に照射する電子又は光子のエネルギーを適当に設定することにより、信号イオンのフラグメント化を引き起こすことのないようにしたり、逆に信号イオンを積極的に発生させたりすることができる。
【0018】
本発明のガスクロマトグラフ質量分析装置の第2の態様のものにおいては、予め上記ガス供給手段によって上記イオン化室と質量分離器の間の空間及び/又は上記質量分離器内部の空間に中性のガス分子を導入しておくことにより、He*に起因するバックグラウンドの発生を抑えることができる。これはおそらく、イオン化室から出てきたHe*がN2分子等と相互作用し、相手分子をイオン化させると同時に自身がHeに変わる(ペニングイオン化)ため、あるいはイオン化室から出てきたHe*がガス供給手段によって装置内に導入されたHe分子等と衝突することによって、内部エネルギーを失って基底状態のHeへと緩和されることなどによって、QMF下流に流入するHe*量が減少するためと考えられる。また、このようなガスは、信号イオンと衝突することによって、該信号イオンを光軸上に収束させる効果もあり、これにより、上記バックグラウンドの低減と同時に信号イオンの強度を高めることができ、よりS/N比の高い分析を実現することができる。
【0019】
また、上記いずれの態様のクロマトグラフ質量分析装置においても、オフアクシス法を用いることなく、He*を根本的に除去することができるため、製造コストを抑えることができると共に、曲線光軸光学系を用いた場合に懸念される信号イオンの損失がなく、信号強度を維持したままバックグラウンドを低減することができる。
【発明を実施するための最良の形態】
【0020】
以下、実施例を用いて本発明を実施するための最良の形態について説明する。
【0021】
[実施例1]
本実施例のガスクロマトグラフ質量分析装置は、図1に示すように、GC部10とMS部30をインターフェイス部20で連結した構成から成る。
【0022】
GC部10に於いて、カラムオーブン13により適度の温度に加熱されたカラム(キャピラリカラム)12には、インジェクタ11の一部である試料気化室を介して所定流量のキャリアガス(Heガス)が供給され、マイクロシリンジ等により試料気化室に注入された液体試料は即座に気化してキャリアガス流に乗ってカラム12内に送られる。カラム12を通過する間に試料ガス中の各成分は時間的に分離されてその出口に到達し、インターフェイス部20を介して試料導入管21からMS部30のイオン化室32に導入される。
【0023】
MS部30において、イオン化室32には電子ビームを発生するためのイオン化用電子源33が付設されており、イオン化室32に導入された試料分子は電子ビームによってイオン化される。発生したイオンは引き出し電極34が作る電界によってイオン化室32の外側に引き出され、直線状光軸を有するイオン輸送光学系35により収束されてQMF(又は他の質量分離器)36の長軸方向の空間に導入される。QMF36には直流電圧と高周波電圧とを重畳した電圧が印加され、該印加電圧に応じた質量数(質量m/電荷z)を有するイオンのみがその長軸方向の空間を通過し、検出器37に到達して検出される。イオン化室32、イオン輸送光学系35、QMF36及び検出器37は、図示しない真空ポンプにより真空吸引される真空チャンバ31内に配設されている。
【0024】
上記イオン輸送光学系35領域には、図2に示すように、イオン化室32から出てきたHe*を電離するためのHe*電離用電子源38が設けられている。該電子源38から発生する電子ビームは、イオン輸送光学系35を構成する電極の間を通ってイオン化室32/QMF36間の光路上に照射され、該電子ビームによってイオン化室32から出てきたHe*が励起されてHe+に変えられる。なお、このようにしてイオン輸送光学系35領域で発生したHe+は、後段のQMF36の質量分離機能によって信号イオンと区別して除去することができる。
【0025】
なお、本実施例のガスクロマトグラフ質量分析装置において、信号イオンをフラグメント化させることなく、He*を除去したい場合には、He*電離用電子源38を、He*の電離に必要な最小限のエネルギーを有する電子を照射するように設定し、逆に、信号イオンを積極的にフラグメント化させたい場合には、比較的大きなエネルギーを持つ電子を照射するように設定する。但し、このとき新たなHe*の生成を避けるために、照射する電子のエネルギーは、He*の励起エネルギーよりも低くなるようにする。ここで、基底状態のHeを電離してHe+にするためのエネルギーは24.6 eVであり、基底状態のHeを準安定状態のHe*に励起するのに必要なエネルギーは21S He*で20.61 eV, 23S He*では19.82 eVである。従って、具体的には、4.78 eV以上のエネルギーを有する電子又は光子をHe*に照射することにより、He*をHe+に電離させることが可能であり、信号イオンのフラグメント化を抑えたい場合は、4.78 eVより極端に大きくないエネルギーを持つ電子(光子)を照射し、信号イオンのフラグメント化を意図的に起こす場合には、19.82 eV以下でより大きめのエネルギーを有する電子(光子)を照射する。
【0026】
このように、本実施例のガスクロマトグラフ質量分析装置は、オフアクシス方式のようにHe*を光路から逸脱させるのではなく、電子ビームの照射によってHe*を電離させて根本的に除去するものであり、二次的なバックグラウンドイオンの発生もなく、効率的にバックグラウンドの低減を行うことができる。
【0027】
なお、上記実施例のガスクロマトグラフ質量分析装置は、更に、上記のようなHe*電離用電子(又は光子)源を複数設けたものとしてもよい。このような構成とすることにより、He*電離領域を大きくし、He*除去量を容易に増大させることができる。
【0028】
[実施例2]
本実施例のガスクロマトグラフ質量分析装置の構成を図3及び図4に示す。なお、上記実施例1と同様の構成については同一符号を付し、説明を省略する。
【0029】
本実施例のガスクロマトグラフ質量分析装置においては、イオン化室32とQMF36の間にガス分子を保持するための衝突室39が設けられおり、衝突室39内部の空間にはガス供給部40によってN2ガス分子が導入される。衝突室39はイオン輸送光学系35を兼ねており、内部に複数の電極を有し、これらの電極には信号イオンの輸送のために適当なRF電圧・DC電圧が印加される。
【0030】
イオン化室32から流入してきたHe*は衝突室39内でN2と相互作用し、N2をイオン化して、自身は基底状態のHeとなる(ペニングイオン化)。この結果、QMF36に流入するHe*量を減少させると共に、He*に起因する二次的なバックグラウンドイオンの発生を抑えることができる。なお、ペニングイオン化により発生したN2+は信号イオンと共にQMF36に流入し、そこでQMF36の質量分離機能によって信号イオンと区別されて除去される。その結果、He由来バックグラウンドが問題となるような高感度分析において、S/N比を向上させることが可能になる。
【0031】
また、イオン化室32で生成された信号イオンが上記イオン輸送光学系35の電極が作る電界によってQMF36へと輸送される際に、衝突室39内のN2と適当な頻度で衝突すると、信号イオンが光軸上に集まってQMF36へのイオンの導入率が高まる。従って、衝突室39内のガス種及び圧力を最適化することで、He*をHeに緩和すると同時に、信号イオン強度を増大させることができ、よりS/N比の高い分析を実現することができる。
【0032】
また、上記のように衝突室を設けず、真空チャンバ内に直接Heガス分子等を導入することによって、He*由来のバックグラウンドを低減させることもできる。この場合には、イオン化室から出てきたHe*がイオン輸送光学系領域又はQMF領域を通過する間に上記Heガス分子と衝突し、内部エネルギーを失ってHeへと緩和されることにより、He*由来のバックグラウンドが低減されるものと考えられる。
【0033】
以上、実施例を用いて本発明のガスクロマトグラフ質量分析装置を実施するための最良の形態について説明したが、本発明はこれに限定されるものではなく、本発明の趣旨の範囲で種々の変更が許容されるものである。例えば、本発明のガスクロマトグラフ質量分析装置は上記のようにHeをキャリアガスとして使用する場合に限らず、他の希ガスをキャリアガスとして使用する場合においても同様に適用することができる。
【図面の簡単な説明】
【0034】
【図1】本発明の第一の実施例であるガスクロマトグラフ質量分析装置の概略構成を示す断面図。
【図2】同実施例のガスクロマトグラフ質量分析装置のイオン化室及びイオン輸送光学系周辺の構成を示す断面図。
【図3】本発明の第二の実施例であるガスクロマトグラフ質量分析装置の概略構成を示す断面図。
【図4】同実施例のガスクロマトグラフ質量分析装置のイオン化室及びイオン輸送光学系周辺の構成を示す断面図。
【図5】従来のガスクロマトグラフ質量分析装置の概略構成を示す断面図。
【図6】曲線状光軸を有するイオン輸送光学系を示す図。
【符号の説明】
【0035】
10…GC部
11…インジェクタ
12…カラム
13…カラムオーブン
20…インターフェイス部
21…試料導入管
30…MS部
31…真空チャンバ
32…イオン化室
33…イオン化用電子源
34…引き出し電極
35、60…イオン輸送光学系
36…質量分離器(QMF)
37…イオン検出器
38…He*電離用電子源
39…衝突室
40…ガス供給部

【特許請求の範囲】
【請求項1】
試料を時間的に分離するカラムを備えたガスクロマトグラフ部と、ガスクロマトグラフ部から導入された試料をイオン化するイオン化室、該イオンを質量に基づいて分離する質量分離器、及び質量分離されたイオンを検出するイオン検出器を備えた質量分析部を備えたガスクロマトグラフ質量分析装置において、
前記イオン化室と質量分離器との間に、前記イオン化室内で発生した準安定希ガスを電離させるための電子照射手段又は光子照射手段を設けたことを特徴とするガスクロマトグラフ質量分析装置。
【請求項2】
上記電子照射手段又は光子照射手段によって、上記イオン化室で発生する準安定希ガスを電離させるために必要な最小限のエネルギーを有する電子又は光子を照射することを特徴とする請求項1に記載のガスクロマトグラフ質量分析装置におけるバックグラウンドの低減方法。
【請求項3】
上記電子照射手段又は光子照射手段により、上記イオン化室で発生する準安定希ガスの電離及び信号イオンのフラグメント化が可能であって、かつ、準安定希ガスを新たに生成することがない程度のエネルギーを有する電子又は光子を照射することを特徴とする請求項1に記載のガスクロマトグラフ質量分析装置におけるバックグラウンドの低減方法。
【請求項4】
試料を時間的に分離するためのカラムを備えたガスクロマトグラフ部と、ガスクロマトグラフ部から導入された試料をイオン化するイオン化室、該イオンを質量に基づいて分離する質量分離器、及び質量分離されたイオンを検出するイオン検出器を備えた質量分析部を備えたガスクロマトグラフ質量分析装置において、
前記イオン化室と質量分離器の間の空間及び/又は前記質量分離器内部の空間に、中性のガス分子を導入するためのガス供給手段を設けたことを特徴とするガスクロマトグラフ質量分析装置。
【請求項5】
上記イオン化室と質量分離器との間に衝突室を有し、上記ガス供給手段が該衝突室に中性のガス分子を導入することを特徴とする請求項4に記載のガスクロマトグラフ質量分析装置。
【請求項6】
上記中性のガス分子が、N2又はHeであることを特徴とする請求項4又は5に記載のガスクロマトグラフ質量分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate