説明

ガスバリアフィルム、ガスバリアフィルムの製造方法、ガスバリアフィルムを有する有機光電変換素子及び該素子を有する太陽電池

【課題】生産性が高く、且つ、極めて高いガスバリア性能と高い耐久性を達成できるガスバリア層を有するガスバリアフィルムの製造方法とその製造方法によるガスバリアフィルム、該ガスバリアフィルムを用いた有機光電変換素子と該素子を用いた太陽電池を提供する。
【解決手段】プラスチックフィルムの少なくとも一方の面に、複数のガスバリア層を有するガスバリアフィルムの製造方法において、該ガスバリア層は、ポリシラザン化合物を含有する塗布液を塗布乾燥後、酸素及び水蒸気を含む窒素雰囲気下で180nm以下の波長成分を有する真空紫外線照射により酸化処理して形成され、更に、該ガスバリア層の少なくとも1層の酸化処理の雰囲気が他のガスバリア層と異なることを特徴とするガスバリアフィルムの製造方法、ガスバリアフィルム、有機光電変換素子及び太陽電池。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主に電子デバイス等のパッケージ、または有機EL素子や太陽電池、液晶等のプラスチック基板と言ったディスプレイ材料に用いられるガスバリアフィルムの製造方法、及び該ガスバリアフィルムを用いた有機光電変換素子に関する。
【背景技術】
【0002】
従来、プラスチック基板やフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を作製したガスバリアフィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。
【0003】
また、包装用途以外にも液晶表示素子、太陽電池、有機エレクトロルミネッセンス(EL)基板等で使用されている。
【0004】
この様なガスバリアフィルムを作製する方法として、TEOSに代表される有機珪素化合物を用いて減圧下の酸素プラズマで酸化しながら基板上に成膜する化学体積法(プラズマCVD)や半導体レーザーを用いて金属Siを蒸発させ酸素の存在下で基板上に堆積するスパッタ法が知られている。
【0005】
これらの方法は正確な組成の薄膜を基板上に作製できるためSiOをはじめとする金属酸化物薄膜の作製に好ましく使われてきたが、減圧下での成膜となるため、減圧及び大気開放に時間を要すること、連続生産が難しいこと、設備が大型化することなど著しく生産性が悪いという問題点があった。
【0006】
かかる問題を解決するため、生産性の向上を目的に、珪素含有化合物を塗布し、その塗膜を改質することで酸化ケイ素薄膜を作製する方法、及び同じCVD法でも大気圧下でプラズマを発生し大気圧下で成膜する試みが行われており、ガスバリアフィルムにおいても検討されている。
【0007】
一般的に湿式塗布プロセスで作製可能な酸化ケイ素膜としては、アルコキシド化合物を原料として、ゾル−ゲル法と呼ばれる方法で作製する技術が知られている。
【0008】
このゾル−ゲル法は一般的に高温に加熱する必要があり、更に脱水縮合反応の過程で大きな体積収縮が起こり、膜中に多数の欠陥が生じやすいという問題がある。
【0009】
これを防ぐために原料溶液に酸化物の作製に直接関与しない有機物などを混合する手法なども見いだされてはいるが、これらの有機物が膜中に残存することによって膜全体のバリア性の低下が懸念されている。
【0010】
これらのことから、ゾル−ゲル法で作製する酸化膜をそのままフレキシブル電子デバイスの保護膜として用いるのは困難であった。
【0011】
その他の方法としては原料にシラザン構造(Si−N)を基本構造とするポリシラザン化合物を用いて酸化ケイ素を作製することが提案されており、この場合の反応は脱水縮重合ではなく窒素から酸素への直接的な置換反応であるため、反応前後の質量収率が80%から100%以上と大きく、体積収縮による膜中欠陥が少ない緻密な膜が得られることが知られている。
【0012】
しかしながら、シラザン化合物の置換反応による酸化ケイ素薄膜の作製には450℃以上の高温が必要であり、プラスチック等のフレキシブル基板に適応することは不可能である。
【0013】
昨今ではシラザン化合物内の原子間結合力より大きい真空紫外光(VUV光)と呼ばれる100nm〜200nmの光エネルギーを用いて、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化ケイ素薄膜の作製をおこなう方法が提案されている。
【0014】
例えば、ポリシラザンを主成分とする塗布液を塗布し、大気圧下で紫外線により表面処理をする技術が開示されており、アミン系の触媒を含有するポリシラザン膜を湿式法で作製し、波長150nm〜200nmのVUV光を照射することでポリシラザン膜を酸化ケイ素膜に改質し、ガスバリア層を作製する技術が開示され、更に、酸化ケイ素への進行を十分にするための波長230nm〜300nmの紫外光(UV光)と同時または交互に照射する方法や水蒸気濃度規定、オゾンの追加導入等の方法が開示されている(例えば、特許文献1参照。)。
【0015】
しかしながら、この方法では、特に高密度改質膜作製のため、改質エネルギー(例えば真空紫外線照射時間を長くする等)を多量に与えると膜面にヒビ割れが発生しやすいこと、また恐らく低密度の触媒を含むことから、触媒が膜内に残る場合には触媒部分が低密度欠陥になり、改質処理のエネルギーにより触媒が膜内から抜ける場合も、触媒が抜けた部分は空隙を作製すると考えられるため改質後の膜密度向上には限界があり水蒸気透過率として、有機光電変換素子には最低限必要とされる1×10−2g/m・dayを大きく下回る様な、ガスバリア性の実現は困難であった。
【0016】
更には、恐らく、アミン触媒により加水分解が進行し、膜内に多量のSi−OHが存在するため、経時で徐々に脱水縮合反応が進行するためと考えられるが、膜の経時劣化が大きく実用には耐えないものであった。
【0017】
更に、真空紫外線照射時に酸化ガス(例えば酸素ガス)を導入し、ポリシラザン結合を効率的に切断した後、更に加熱水蒸気や酸化ガス雰囲気で100℃〜400℃で加熱酸化処理し、その後、更に不活性雰囲気で400℃〜1000℃で焼成する技術が開示されている(例えば、特許文献2参照。)。
【0018】
この方法はポリシラザン膜の酸化をより促進するために真空紫外線照射時にも酸素ガスに代表される酸化ガスを導入しているが、真空紫外線照射を照射する場合、真空紫外線が酸素ガスをオゾンや活性酸素にする能力が非常に高いため、照射庫内に酸化ガスを高濃度に発生させることが可能な反面、真空紫外線が酸素に吸収されてしまい、非常に短い距離で光量が減衰してしまうため、真空紫外線のもつ非常に高い光子エネルギーは、殆ど塗膜面に届かず、高濃度の酸化ガスのみでの酸化処理になってしまい、即ち、ポリシラザンの分子結合を切断する効果が殆ど無くなってしまい処理効率が非常に悪い問題点がある。
【0019】
実際、本発明者らが、実際の生産を加味して数分の処理時間内で検討した結果、高濃度酸化ガスのみの酸化では、1×10−2g/m・dayを大きく下回るレベルの水蒸気透過率のガスバリア性膜を得ることはできなかった。
【0020】
更に、特許文献2では、加熱を併用した後酸化処理や焼成処理が開示されているが、加熱温度が非常に高く、安価な汎用プラスチック基材を用いることは実質不可能であった。
【0021】
樹脂基材上にポリシラザン等の無機化合物の膜を形成して、高いガスバリア性を付与するためには膜厚を1μm以上にする必要があるが、膜厚が厚くなるとクラックの発生等により所望も性能が得られない。そこで、2層以上のポリシラザンを積層する技術が開示されている(例えば、特許文献3参照。)。
【0022】
この方法は250nm以下のポリシラザン膜を形成後に真空紫外線照射というステップを繰り返し複数積層することで基材上に生ずる孔や凹部等の欠陥を防止でき、かつ得られた基板はクラックが発生しにくいとしている。しかし、より高いガスバリア性を得ようと単に積層を繰り返していくと結局はクラック等を生じ、屈曲性についても必ずしも十分とはいえないという課題が残った。
【0023】
以上、現在開示されている方法では、フレキシブル電子デバイス用途に適用できる、平滑性並びに屈曲性に優れ、尚且つ高いガスバリア性を持つガスバリア性膜及びガスバリアフィルムは製造することが困難であり、それらの問題点の解決が要望されている。
【先行技術文献】
【特許文献】
【0024】
【特許文献1】特表2009−503157号公報
【特許文献2】特開2009−76869号公報
【特許文献3】特開2009−255040号公報
【発明の概要】
【発明が解決しようとする課題】
【0025】
本発明の目的は、生産性が高く、且つ、極めて高いガスバリア性能と高い耐久性を達成できるガスバリア層を有するガスバリアフィルムの製造方法とその製造方法によるガスバリアフィルム、該ガスバリアフィルムを用いた有機光電変換素子と該素子を用いた太陽電池を提供することである。
【課題を解決するための手段】
【0026】
本発明の上記目的は、以下の構成により達成することができる。
【0027】
1.プラスチックフィルムの少なくとも一方の面に、複数のガスバリア層を有するガスバリアフィルムの製造方法において、該ガスバリア層は、ポリシラザン化合物を含有する塗布液を塗布乾燥後、酸素及び水蒸気を含む窒素雰囲気下で180nm以下の波長成分を有する真空紫外線照射により酸化処理して形成され、更に、該ガスバリア層の少なくとも1層の酸化処理の雰囲気が他のガスバリア層と異なることを特徴とするガスバリアフィルムの製造方法。
【0028】
2.前記ガスバリア層の少なくとも1層の酸化処理雰囲気の酸素濃度が他のガスバリア層と異なることを特徴とする前記1記載のガスバリアフィルムの製造方法。
【0029】
3.前記酸素濃度が0.01%〜1%であることを特徴とする前記1または2記載のガスバリアフィルムの製造方法。
【0030】
4.前記プラスチックフィルムに近い方のガスバリア層の酸化処理の酸素濃度が、遠い方のガスバリア層の酸化処理の酸素濃度より高いことを特徴とする前記2または3記載のガスバリアフィルムの製造方法。
【0031】
5.前記ガスバリア層の少なくとも1層の酸化処理雰囲気の水蒸気濃度が他の層と異なることを特徴とする前記1記載のガスバリアフィルムの製造方法。
【0032】
6.前記酸化処理雰囲気の水蒸気濃度が1%〜10%相対湿度であることを特徴とする前記5記載のガスバリアフィルムの製造方法。
【0033】
7.前記プラスチックフィルムに近い方のガスバリア層の酸化処理雰囲気の水蒸気濃度が、遠い方のガスバリア層の酸化処理雰囲気の水蒸気濃度より高いことを特徴とする前記5または6記載のガスバリアフィルムの製造方法。
【0034】
8.前記1〜7のいずれか1項記載のガスバリアフィルムの製造方法により製造されたことを特徴とするガスバリアフィルム。
【0035】
9.前記8記載のガスバリアフィルムを有することを特徴とする有機光電変換素子。
【0036】
10.前記9記載の有機光電変換素子を有することを特徴とする太陽電池。
【発明の効果】
【0037】
本発明の目的は、生産性が高く、且つ、極めて高いガスバリア性能と高い耐久性を達成できるガスバリア層を有するガスバリアフィルムの製造方法とその製造方法によるガスバリアフィルム、該ガスバリアフィルムを用いた有機光電変換素子と該素子を用いた太陽電池を提供することができた。
【図面の簡単な説明】
【0038】
【図1】バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。
【図2】バルクヘテロジャンクション型で、発電層がp−i−nの三層構成となっている有機光電変換素子からなる太陽電池の一例を示す断面図である。
【図3】タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池の一例を示す断面図である。
【発明を実施するための形態】
【0039】
以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
【0040】
従来、ポリシラザンを含有する塗布組成物を塗布乾燥したガスバリア層は知られているが、これを近年フレキシブル化の要望からプラスチックフィルム基材に適用すると、ポリシラザンがシリカに転化するためには、反応触媒の併用等によりゾルゲル法のような高温(例えば450℃以上)は必要ないが、それでも比較的高温で長時間の加熱処理が必要で、プラスチックフィルム基材の熱耐性からポリシラザンがシリカに転化するための十分な加熱処理ができず、高いバリア性が得られない。そこで、低温でその表面を真空紫外線照射等で処理すると良好なバリア性が得られることが分かったが、より高いバリア性を得るためのバリア層の厚膜化はクラック発生等による限界があり、複数積層による向上を試みたが前記のように高いガスバリア性能と高い耐久性の両立は十分には得られなかった。そこで、本発明者らは、さらに検討を行なった結果、複数積層する際の真空紫外線照射による酸化処理する雰囲気の条件(酸素濃度や湿度条件)を層ごとに適宜変更し、得られたポリシラザンより形成したガスバリアフィルムのガスバリア性はガスバリア性と耐久性を会い備えたものになることを見出した。
【0041】
特に基材に近い方の層の酸化処理の酸素濃度が、遠い方の層の酸化処理の酸素濃度より高いとき、及びまたは湿度が高い条件で複数積層した場合に優れたガスバリア性能と耐久性の両立がみられることを見出した。また、一端、低酸素濃度で積層したのちに高酸素濃度で積層するとさらに折り曲げ耐性等の耐久性が向上する。また酸化処理時の雰囲気水蒸気濃度(相対湿度)に対しても同様の傾向を見出した。
【0042】
このような効果が発現される機構として、以下のように推定している。
【0043】
ポリシラザンはシリカに転化するセラミック前駆体ポリマーであり、真空紫外線照射によって、原子の結合を切り、窒素から酸素への直接的な置換反応が主に起こっていると推定されるが、その際、膜中に生じた収縮応力によるマイクロクラックや層界面での局所的な密着不良等の発生によりバリア性が劣化するのではないかと推定される。そこで本発明のように、特に基材に近い方の層の酸化処理の酸素濃度が、遠い方の層の酸化処理の酸素濃度より高いとき、及びまたは湿度が高い条件で複数積層した結果として、基材に近い側の膜密度の小さいシリカ膜の上により膜密度の大きいシリカ膜を形成することになり、下のシリカ膜が上の膜を形成する際の収縮応力を低減しマイクロクラックや層界面での局所的な密着不良等の発生を抑制し、また出来上がった膜も折り曲げ等の力が加わった際に応力を低減することが可能になったものと推定している。また、十分膜密度の大きいシリカ膜の上に密度の低い膜を形成することで折り曲げ等の応力を緩和する保護膜のような働きを持つためと推定している。
【0044】
以下、本発明とその構成要素、及び本発明を実施するための形態について詳細に説明する。
【0045】
《ガスバリアフィルムの製造方法及びガスバリアフィルム》
本発明のガスバリアフィルムの製造方法及び該製造方法により製造された本発明のガスバリアフィルムについて説明する。
【0046】
本発明のガスバリアフィルムの製造方法は、プラスチックフィルムの少なくとも一方の面に、複数のガスバリア層を有するガスバリアフィルムの製造方法において、該ガスバリア層は、ポリシラザン化合物を含有する塗布液を塗布乾燥後、酸素及び水蒸気を含む窒素雰囲気下で180nm以下の波長成分を有する真空紫外線照射により酸化処理して形成され、更に、該ガスバリア層の少なくとも1層の酸化処理の雰囲気が他のガスバリア層と異なることによって、生産性が高く、且つ、極めて高く耐久性に優れるガスバリア性能を有するガスバリアフィルムの製造方法である。
【0047】
前記ガスバリア層少なくとも1層の酸化処理雰囲気としては、特に酸素濃度が他のガスバリア層と異なることが好ましく、より好ましくは、後述のようにその酸素濃度が1%以下で処理される。この時ガスバリア層少なくとも1層が0.01%〜1%で処理されれば良い。
【0048】
さらにガスバリア層の複数積層において、プラスチックフィルムに近い方のガスバリア層の酸化処理の酸素濃度が、遠い方のガスバリア層の酸化処理の酸素濃度より高いことが更に好ましい。
【0049】
この場合、必ずしもガスバリア層の全層の酸素濃度が異なる必要はなく1層でも異なっていれば良い。また、例えば3層で考えた場合、下層と上層を高酸素濃度で処理して形成する酸化ケイ素の膜を低酸素濃度で処理した中層を挟むことよって、高バリアかつ高耐久性のガスバリア膜を形成することも可能である。
【0050】
また別の態様としては、前記ガスバリア層の少なくとも1層の酸化処理雰囲気の水蒸気濃度が他のガスバリア層と異なることが好ましく、更に、その雰囲気の水蒸気濃度が1%〜10%相対湿度で処理されることがより好ましい。
【0051】
さらにガスバリア層の複数積層において、プラスチックフィルムに近い方のガスバリア層の酸化処理雰囲気の水蒸気濃度が、遠い方の層の酸化処理雰囲気の水蒸気濃度より高いことが更に好ましい。
【0052】
真空紫外線処理は、後述のように、ポリシラザンの分子結合を切断し、また膜内または雰囲気内に微量に存在する酸素でも効率的にオゾンまたは活性酸素に変換することが可能であり、塗膜のセラミックス化(シリカ改質)が促進され、また得られるセラミックス膜が一層緻密になる。このとき後述のように酸素濃度が高いと真空紫外線が酸素により吸収され改質処理効果が低下する。逆の酸素濃度が低いと有効に改質されると考えられ、このような現象を利用して前記のような本発明の複数積層での効果が得られる。
【0053】
酸化処理の雰囲気湿度についても同様であり、湿度が高い真空紫外線が水の分解に消費され改質処理効果が低下する。逆の湿度が低いと水の分解による消費がへり、より有効に改質処理に働くと考えられる。
【0054】
(真空紫外線(VUV)を用いたポリシラザンを含有する塗膜の改質処理)
本発明に係るガスバリア層(バリア層、バリア膜ともいう)は、ポリシラザンを含有する溶液を基材上に塗布した後、ポリシラザンを含む塗膜に真空紫外線(VUV)を照射する方法で改質処理される。
【0055】
この真空紫外線(VUV光)照射により、ポリシラザンの分子結合を切断し、また膜内または雰囲気内に微量に存在する酸素でも効率的にオゾンまたは活性酸素に変換することが可能であり、塗膜のセラミックス化(シリカ改質)が促進され、また得られるセラミックス膜が一層緻密になる。
【0056】
本発明に係る真空紫外線(VUV)照射は、ポリシラザンを含有する塗膜の作製後であればいずれの時点で実施しても有効である。
【0057】
本発明に係る真空紫外線照射には、具体的には100nm〜200nmの真空紫外線(VUV光)が用いられる。
【0058】
真空紫外線の照射は、照射される塗膜を担持している基材がダメージを受けない範囲で照射強度または照射時間を設定する。
【0059】
基材としてプラスチックフィルムを用いた場合を例にとると、基材(支持体)表面の真空紫外線最大照射強度が10mW/cm〜300mW/cmになるように基材−ランプ間距離を設定し、0.1秒〜10分間、好ましくは0.5秒〜3分の照射を行うことが好ましい。
【0060】
尚、本発明に係る基材(支持体ともいう)については後に詳細に説明する。
【0061】
真空紫外線照射装置は、市販のもの(例えば、ウシオ電機製)を使用することが可能である。
【0062】
真空紫外線(VUV)照射はバッチ処理にも連続処理にも適合可能であり、被塗布基材の形状によって適宜選定することができる。
【0063】
例えば、バッチ処理の場合には、ポリシラザンを含有する塗膜を表面に有する基材(例、シリコンウェハー)を、真空紫外線発生源を具備した真空紫外線焼成炉で処理することができる。
【0064】
真空紫外線焼成炉自体は一般に知られており、例えば、ウシオ電機(株)製を使用することができる。また、ポリシラザン塗膜を表面に有する基材が長尺フィルム状である場合には、これを搬送させながら上記のような真空紫外線発生源を具備した乾燥ゾーンで連続的に真空紫外線を照射することによりセラミックス化することができる。
【0065】
該真空紫外光はほとんどの物質の原子間結合力より大きいため、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断することが可能であるため好ましく用いることができる。この作用を用いることにより、加水分解を必要とせず低温でかつ効率的に改質処理が可能となる。
【0066】
これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。
【0067】
1.エキシマ発光とは、Xe、Kr、Ar、Neなどの希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし,放電などによりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることが出来る。希ガスがキセノンの場合には、
e+Xe→Xe
Xe+2Xe→Xe+Xe
Xe→Xe+Xe+hν(172nm)
となり、励起されたエキシマ分子であるXeが基底状態に遷移するときに172nmのエキシマ光を発光する。エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。
【0068】
また、余分な光が放射されないので、対象物の温度を低く保つことができる。更には、始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
【0069】
エキシマ発光を得るには誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる、雷に似た非常に細いmicro dischargeと呼ばれる放電で、micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。
【0070】
このmicro dischargeが管壁全体に広がり、生成・消滅を繰り返している放電である。このため肉眼でも分る光のチラツキを生じる。
【0071】
また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。
【0072】
効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外に無電極電界放電でも可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極及びその配置は基本的には誘電体バリア放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。
【0073】
無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキが無い長寿命のランプが得られる。
【0074】
誘電体バリア放電の場合はmicro dischargeが電極間のみで生じるため、放電空間全体で放電を行なわせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。
【0075】
このため細い金属線を網状にした電極が用いられる。この電極は光を遮らないように出来るだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。
【0076】
これを防ぐためにはランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。
【0077】
二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば酸素雰囲気中の距離を一様に出来、一様な照度分布が得られる。
【0078】
無電極電界放電を用いた場合には外部電極を網状にする必要は無い。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。
【0079】
外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリア放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。
【0080】
細管エキシマランプの最大の特徴は構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行なうためのガスを封入しているだけである。したがって、非常に安価な光源を提供できる。
【0081】
二重円筒型ランプは内外管の両端を接続して閉じる加工をしているため、細管ランプに比べ取り扱いや輸送で破損しやすい。細管ランプの管の外径は、始動に高電圧が必要になることを抑制する観点から、6nm〜12mm程度が好ましい。
【0082】
放電の形態は誘電体バリア放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。
【0083】
またアルミで曲面を鏡面にすれば光の反射板にもなる。
【0084】
尚、エキシマランプは複数社より市販されており、各々、ランプ構造、ランプユニットのデザインや最大照射強度等が異なっているが、目的に応じて適宜選択が可能である。
【0085】
Xeエキシマランプは波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。
【0086】
この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。
【0087】
また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。
【0088】
この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。
【0089】
したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。
【0090】
エキシマランプは光の発生効率が高いため低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単を波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。
【0091】
(真空紫外線(VUV)照射時の酸素濃度、水蒸気濃度(相対湿度))
本発明に係る真空紫外線(VUV)照射時の酸素濃度は0.01%〜1%(10000ppm)が好ましく、更に好ましくは100ppm(0.01%)〜5000ppm(0.5%)である。
【0092】
前記の酸素濃度の範囲に調整することにより、後述するように酸素過多のガスバリア膜の生成を防止してガスバリア性の劣化を防止することができる。
【0093】
また、大気との置換時間が不必要に長くなるのを防ぎ、同時に、ロール・トゥ・ロールの様な連続生産を行う場合にウエッブ搬送によって真空紫外線(VUV)照射庫内に巻き込む空気量(酸素を含む)の増大を防ぎ、酸素濃度の調整不能になることを防ぐことができる。
【0094】
また、本発明者らの検討によると、ポリシラザン含有塗膜中には、塗布時に酸素及び微量の水分が混入し、更には塗膜以外の支持体にも吸着酸素や吸着水があり、照射庫内に敢えて酸素を導入しなくとも改質反応に要する酸素を供給する酸素源は十分にあることが分かった。
【0095】
むしろ、酸素ガスが多く(数%レベル)含まれる雰囲気でVUV光を照射した場合、改質後のガスバリア膜が酸素過多の構造となり、ガスバリア性が劣化する。
【0096】
また、前述した様に172nmの真空紫外線(VUV)が、酸素により吸収され膜面に到達する172nmの光量が減少してしまい、光による処理の効率を低下しやすい。
【0097】
即ち、真空紫外線(VUVJ)照射時には、できるだけ酸素濃度の低い状態で、VUV光が効率良く塗膜まで到達する状態で改質処理することが好ましい。
【0098】
この点はCVD等の原子堆積法の様に、予め制御された組成比の膜を堆積して作製する方法と塗布による前駆体膜作製+改質処理という方法の大きく異なる点であり、大気圧下の塗布法に独特な点である。
【0099】
真空紫外線(VUV)照射時にこれら酸素以外のガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から一般に乾燥窒素ガスを使用する。改質処理雰囲気の湿度は1%〜10%相対湿度であることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。湿度が高いと真空紫外線が水の分解に消費され改質処理効果が低下し、できるだけ低湿度で光が効率良く塗膜まで到達する状態で改質処理することが好ましい。
【0100】
《ポリシラザン化合物を含有する塗布液による塗布膜》
本発明に係るポリシラザンを含有する塗膜について説明する。
【0101】
本発明に係るポリシラザンを含有する塗膜は、本発明に係るポリシラザンを含有する塗布液をプラスチックフィルム上に複数層塗布することにより作製される。
【0102】
塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。塗布厚みは、目的に応じて適切に設定され得る。例えば、塗布厚みは、乾燥後の厚みが好ましくは5nm〜2μm程度、さらに好ましくは10nm〜1μm程度、最も好ましくは30nm〜0.5μm程度となるように設定され得る。
【0103】
本発明のガスバリアフィルムの製造方法においては、ポリシラザン化合物を含有する塗布液をケイ素化合物層の塗布乾燥から真空紫外線照射で酸化処理する工程の温度としては特に限定はないが、使用するプラスチックフィルム基材の耐熱性にもよるが、概ね150℃以下であることが好ましい。これより高温で乾燥すると、使用するプラスチック基材、塗布膜厚等によっては、塗布膜側へのカールが大きくなったり、塗布膜にクラックが生じたりする場合がある。逆にこれより低温になると密着性が低下することがある。乾燥時間は乾燥温度と塗布膜厚によるが、溶剤が蒸発してケイ素化合物層が形成できればよく、概ね数秒〜数分である。
【0104】
尚、ポリシラザン化合物を含む溶液を塗布して塗膜を形成する工程〜該塗膜を改質処理する工程については、後に詳細に説明する。
【0105】
(ポリシラザンを含有する塗膜の低湿化処理)
本発明のガスバリアフィルムの製造方法においては、改質処理前に加水分解反応が進行し、膜内に多量のSi−OHを含む塗膜をVUV光等で改質処理しても、経時でガスバリア性が劣化することがあるため、真空紫外線(VUV)照射による改質処理前に、ポリシラザンの加水分解反応を起こさないかポリシラザンを含有する塗膜の低湿化処理することが好ましい。
【0106】
低湿化処理としては、ポリシラザンを含有する塗膜を一旦、湿度の高い状態に晒してしまうと、その塗膜から脱水するのは困難なこと、更には加水分解反応が進行をはじめてしまうことから、低湿化処理としては、特に、ポリシラザン含有溶液塗布からVUV光照射による改質処理までの間を露点10℃(25℃39%RH)以下の雰囲気、更に好ましくは露点8℃(25℃10%RH)以下の雰囲気で保管若しくは取り扱うことが好ましい。
【0107】
尚、露点温度とは雰囲気中の水分量を表す指標であり、露点温度とは、水蒸気を含む空気を冷却したとき、凝結が始まる温度をいう。
【0108】
露点温度計により直接測定を行なうか、気温と相対湿度から水蒸気圧を求め、その水蒸気圧を飽和水蒸気圧とする温度を求めることにより得ることができる。相対湿度が100%の場合は現在の温度がそのまま露点温度にある。
【0109】
〈ポリシラザン〉
本発明で用いられるポリシラザンとは、珪素−窒素結合を持つポリマーで、Si−N、Si−H、N−H等からなるSiO、Si、及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
【0110】
フィルム基材を損なわないようにするには、特開平8−112879号公報に記載されているように比較的低温でセラミック化してシリカに変性するものがよく、下記一般式(1)で表されるものを好ましく用いることができる。
【0111】
【化1】

【0112】
式中、R、R、Rは、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基を表す。パーヒドロポリシラザンは、R、R、Rの全てが水素原子であり、オルガノポリシラザンは、R、R、Rのいずれかがアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基である。本発明では得られるバリア膜としての緻密性から、R、R、Rの全てが水素原子であるパーヒドロポリシラザンが特に好ましい。
【0113】
パーヒドロポリシラザンは直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)であり、液体または固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま塗布液として使用することができる。
【0114】
低温でセラミック化するポリシラザンの別の例としては、前記のケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)以外に、上記一般式(1)で表されるポリシラザンにグリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等が挙げられ、目的のバリア性を損なわない範囲で添加することができる。
【0115】
ポリシラザンを含有する液体を調製する有機溶媒としては、特にポリシラザンと容易に反応するようなアルコール系や水分を含有するものを用いることは好ましくない。有機溶媒としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリコロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの溶剤は、ポリシラザンやアルキキシシランの溶解度や溶剤の蒸発速度等、目的にあわせて選択し、複数の溶剤を混合してもよい。
【0116】
ポリシラザンを含有する塗布液中のポリシラザン濃度は、目的とするシリカ膜厚や塗布液のポットライフによっても異なるが、0.2〜35質量%程度である。
【0117】
本発明においては、オルガノポリシラザンを併用することが好ましい。本発明において好ましく用いられるオルガノポリシラザンは、前記一般式(1)で、R、R、Rのいずれかがアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基である。R、R、Rとしては、アルキル基、特に最も分子量の小さいメチル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいシリカ膜に靭性を持たせることができ、膜厚を厚くした場合でもクラックの発生が抑えられる。
【0118】
オルガノポリシラザンの市販品としては、AZエレクトロニックマテリアルズ(株)製 アクアミカ MHPS等が挙げられる。
【0119】
(ポリシラザンを含有する塗布液に含有される反応触媒の濃度)
低温でシリカへの転化を促進するために、アミンや金属の触媒を添加することもできる。具体的なパーヒドロポリシラザンの市販品としては、AZエレクトロニックマテリアルズ(株)製 アクアミカ NAX120、NN110、NN120、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140等が挙げられる。
【0120】
本発明に係るポリシラザンを含有する溶液(塗布液とも云う)中には、必要に応じて、反応触媒が、ポリシラザンの質量に対して5質量%で含有されることが好ましい。
【0121】
尚、ポリシラザンを含有する溶液(塗布液)の塗布時の調湿度とも密接な関係が有るが、加水分解・脱水縮合を適切に促進するためには、反応触媒の添加量をポリシラザンの質量に対して5質量%以下に含有するように調整することにより、Si−OH基の生成速度の大幅な変化を防ぎ、過剰なSi−OH基により経時変化が大きな膜になることを効果的に防止することができる。
【0122】
また、真空紫外線(VUV)照射の様な分子結合を切断するのに十分なエネルギーを与えた場合、特にアミン系触媒は分解、蒸発してしまうことがあり、触媒の分解、蒸発が起こると改質膜内に不純物や空隙が含まれることになり、バリア性は劣化する等の問題点が起こる場合もある。
【0123】
そのような観点から、本発明では、触媒による過剰なシラノール作製、及び膜密度の低下、膜欠陥の増大を避けるため、ポリシラザンに対する反応触媒の含有量を5質量%以下に調整することが好ましいが、更に好ましくは、Si−OH生成を抑制する観点から、ポリシラザンを含有する塗布液は反応触媒を含有しない(反応触媒を添加しないともいう)ことが好ましい。
【0124】
ここで、ポリシラザンを含有する塗布液が反応触媒を含有しないとは、塗布液中の反応触媒の含有量が0質量%〜0.0001質量%の範囲の場合を示す。
【0125】
本発明では、前記膜中で残留したSiOH基の経時による脱水縮合反応による課題に対して、アルコキシシランを併用しても良い。前記SiOHとアルコキシシランが優先的に反応し、ポリシラザン由来のSiOH同士の反応を抑制することが考えられるが、本発明で用いられるアルコキシシランとしては、例えば下記一般式(2)で表される化合物が挙げられる。
【0126】
一般式(2) (R4−nSi(OR
式中、Rは水素原子、アルキル基またはアシル基を表し、Rは水素原子、アルキル基または芳香族基を表し、nは1〜4の整数を表す。)
で表されるアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等を挙げることができ、アシル基としてはアセチル基、プロピオニル基等を挙げることができる。メチル基、エチル基、プロピル基が特に好ましく、最も好ましくはエチル基である。nは2〜4が好ましく、3〜4が特に好ましく、4が最も好ましい。従って、テトラアルコキシシランが好ましく、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランが特に好ましく、テトラエトキシシランが最も好ましい。nが2及び3の場合は、Rで示されるアルキル基としては、炭素数1〜18、好ましくは1〜5のアルキル基等を挙げることができ、芳香族基としてはフェニル基等を挙げることができる。
【0127】
本発明のアルコキシシランは、塗布組成物の不揮発固形分に対して5〜40質量%含有することが好ましい。より好ましくは10〜30質量%、さらに好ましくは15〜25質量%が好ましい。5質量%より少ないと熱、湿度、経時でのバリア性の劣化が見られ、シリカへの転化反応を抑制するには不十分なためと推定される。40質量%より多いと熱、湿度、経時でのバリア性変化は小さいものの、初期のバリア性が不十分であった。
【0128】
(ガスバリアフィルム)
前記のような製造方法により得られる本発明のガスバリアフィルムは、樹脂フィルム基材(支持体)、例えばポリエチレンテレフタレート上の少なくとも片面に、ポリシラザン膜に180nm以下の波長成分を有する真空紫外線照射により酸化処理を施して形成された2層以上のガスバリア層を有しており、その少なくとも1層の酸化処理の雰囲気が他の層と異なることに特徴がある。
【0129】
なお、本願において、「ガスバリア性」とは、JIS K 7129B法に準拠した方法で測定された水蒸気透過度(60±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下であり、JIS K 7126−1987に準拠した方法で測定された酸素透過度が、1×10−3ml/m・24h・atm以下であることをいう。
【0130】
<水蒸気透過率の測定>
前述のJIS K 7129B法に従って水蒸気透過率を測定には種々の方法が提案されている。例えば、カップ法、乾湿センサー法(Lassy法)、赤外線センサー法(mocon法)が代表として挙げられるが、ガスバリア性が向上するに伴って、これらの方法では測定限界に達してしまう場合があり、以下に示す方法も提案されている。水蒸気透過率の測定方法は特に限定するところではないが、本発明に於いてはCa法による評価を行った。
【0131】
(前記以外の水蒸気透過率測定法)
Ca法
ガスバリアフィルムに金属Caを蒸着し、該フィルムを透過した水分で金属Caが腐食される現象を利用する方法。腐食面積とそこに到達する時間から水蒸気透過率を算出する。
【0132】
(株)MORESCOの提案する方法(平成21年12月8日NewsRelease)
大気圧下の試料空間と超高真空中の質量分析計の間で水蒸気の冷却トラップを介して受け渡す方法。
【0133】
HTO法(米General Atomics社)
三重水素を用いて水蒸気透過率を算出する方法。
【0134】
A−Star(シンガポール)の提案する方法(WO05/95924号)
水蒸気又は酸素により電気抵抗が変化する材料(例えばCa、Mg)をセンサーに用いて電気抵抗変化とそれに内在する1/f揺らぎ成分から水蒸気透過率を算出する方法。
【0135】
〈プラスチックフィルム〉
次に本発明のガスバリアフィルムで基材として用いられるプラスチックフィルム(樹脂フィルム支持体)について説明する。
【0136】
基材である樹脂フィルム支持体は、前述のガスバリア層を保持することができる有機材料で形成されたものであれば特に限定されるものではない。
【0137】
例えばアクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila−DEC、チッソ株式会社製)、さらには前記樹脂を2層以上積層して成る樹脂フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等が好ましく用いられ、また、光学的透明性、耐熱性、無機層、ガスバリア層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムが好ましく用いることができる。支持体の厚みは5〜500μm程度が好ましく、さらに好ましくは25〜250μmである。
【0138】
また、本発明に係る樹脂フィルム支持体は透明であることが好ましい。支持体が透明であり、支持体上に形成する層も透明であることにより、透明なガスバリアフィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
【0139】
また、上記に挙げた樹脂等を用いた樹脂フィルム支持体は、未延伸フィルムでもよく、延伸フィルムでもよい。
【0140】
本発明に用いられる樹脂フィルム支持体は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の支持体を製造することができる。また、未延伸の支持体を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、支持体の流れ(縦軸)方向、または支持体の流れ方向と直角(横軸)方向に延伸することにより延伸支持体を製造することができる。この場合の延伸倍率は、支持体の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2〜10倍が好ましい。
【0141】
また、本発明においては、ガスバリア層を形成する前に樹脂フィルム支持体をコロナ放電処理してもよい。
【0142】
さらに、本発明に係る支持体表面には、蒸着膜との密着性の向上を目的としてアンカーコート剤層を形成してもよい。このアンカーコート剤層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコーン樹脂、及びアルキルチタネート等を、1または2種以上併せて使用することができる。これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1〜5g/m(乾燥状態)程度が好ましい。
【0143】
(平滑層)
本発明において、基材樹脂フィルム上には平滑層が設けられていることが好ましい。
【0144】
平滑層は、突起等が存在する透明樹脂フィルム支持体の粗面を平坦化し、あるいは、透明樹脂フィルム支持体に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性樹脂を硬化させて形成される。
【0145】
平滑層の感光性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
【0146】
光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、イソボニルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトリキエチルアクリレート、メトキシエチレングリコールアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサジオールジアクリレート、1,3−プロパンジオールアクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ポリオキシエチルトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、エチレンオキサイド変性ペンタエリスリトールトリアクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート、プロピオンオキサイド変性ペンタエリスリトールトリアクリレート、プロピオンオキサイド変性ペンタエリスリトールテトラアクリレート、トリエチレングリコールジアクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、ブチレングリコールジアクリレート、1,2,4−ブタンジオールトリアクリレート、2,2,4−トリメチル−1,3−ペンタジオールジアクリレート、ジアリルフマレート、1,10−デカンジオールジメチルアクリレート、ペンタエリスリトールヘキサアクリレート、及び、上記のアクリレートをメタクリレートに換えたもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいは、その他の化合物との混合物として使用することができる。
【0147】
感光性樹脂の組成物は光重合開始剤を含有する。光重合開始剤としては、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。
【0148】
平滑層の形成方法は特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。
【0149】
平滑層の形成では、上述の感光性樹脂に、必要に応じて、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。
【0150】
感光性樹脂を溶媒に溶解または分散させた塗布液を用いて平滑層を形成する際に使用する溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等を挙げることができる。
【0151】
平滑層の平滑性は、JIS B 0601で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。この範囲よりも値が小さい場合には、後述のケイ素化合物を塗布する段階で、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合に、塗布性が損なわれる場合がある。また、この範囲よりも大きい場合には、ケイ素化合物を塗布した後の、凹凸を平滑化することが難しくなる場合がある。
【0152】
表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。
【0153】
(平滑層の添加剤)
好ましい態様のひとつは、前述の感光性樹脂中に表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)を含むものである。ここで光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基等を挙げることができる。また感光性樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する不飽和有機化合物を含むものであってもよい。また感光性樹脂としては、このような反応性シリカ粒子や重合性不飽和基を有する不飽和有機化合物に適宜汎用の希釈溶剤を混合することによって固形分を調整したものを用いることができる。
【0154】
ここで反応性シリカ粒子の平均粒子径としては、0.001〜0.1μmの平均粒子径であることが好ましい。平均粒子径をこのような範囲にすることにより、後述する平均粒子径1〜10μmの無機粒子からなるマット剤と組合せて用いることによって、防眩性と解像性とをバランスよく満たす光学特性と、ハードコート性とを兼ね備えた平滑層を形成し易くなる。尚、このような効果をより得易くする観点からは、さらに平均粒子径として0.001〜0.01μmのものを用いることがより好ましい。本発明に用いられる平滑層中には、上述の様な無機粒子を質量比として20%以上60%以下含有することが好ましい。20%以上添加することで、ガスバリア層との密着性が向上する。また60%を超えると、フィルムを湾曲させたり、加熱処理を行った場合にクラックが生じたり、ガスバリアフィルムの透明性や屈折率等の光学的物性に影響を及ぼすことがある。
【0155】
本発明では、重合性不飽和基修飾加水分解性シランが、加水分解性シリル基の加水分解反応によって、シリカ粒子との間に、シリルオキシ基を生成して化学的に結合しているようなものを、反応性シリカ粒子として用いることができる。
【0156】
加水分解性シリル基としては、例えば、アルコキシリル基、アセトキシリル基等のカルボキシリレートシリル基、クロシリル基等のハロゲン化シリル基、アミノシリル基、オキシムシリル基、ヒドリドシリル基等が挙げられる。
【0157】
重合性不飽和基としては、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニイル基、シンナモイル基、マレート基、アクリルアミド基等が挙げられる。
【0158】
本発明における平滑層の厚みとしては、1〜10μm、好ましくは2〜7μmであることが望ましい。1μm以上にすることにより、平滑層を有するフィルムとしての平滑性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、平滑層を透明高分子フィルムの一方の面にのみ設けた場合における平滑フィルムのカールを抑え易くすることができるようになる。
【0159】
(ブリードアウト防止層)
ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、フィルム支持体中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染してしまう現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。
【0160】
ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
【0161】
ブリードアウト防止層に含ませることが可能な、重合性不飽和基を有する不飽和有機化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。
【0162】
ここで多価不飽和有機化合物としては、例えばエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等が挙げられる。
【0163】
また単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
【0164】
その他の添加剤として、マット剤を含有してもよい。マット剤としては、平均粒子径が0.1〜5μm程度の無機粒子が好ましい。
【0165】
このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種または2種以上を併せて使用することができる。
【0166】
ここで無機粒子からなるマット剤は、ハードコート剤の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが望ましい。
【0167】
またブリードアウト防止層には、ハードコート剤及びマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。
【0168】
このような熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。
【0169】
また熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。
【0170】
また電離放射線硬化性樹脂としては、光重合性プレポリマー若しくは光重合性モノマー等の1種または2種以上を混合した電離放射線硬化塗料に電離放射線(紫外線または電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。
【0171】
また光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−(4−モルフォリニル)−1−プロパン、α−アシロキシムエステル、チオキサンソン類等が挙げられる。
【0172】
以上のようなブリードアウト防止層は、ハードコート剤、マット剤、及び必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液を支持体フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。尚、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる100〜400nm、好ましくは200〜400nmの波長領域の紫外線を照射する、または走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。
【0173】
本発明におけるブリードアウト防止層の厚みとしては、1〜10μm、好ましくは2〜7μmであることが望ましい。1μm以上にすることにより、フィルムとしての耐熱性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、平滑層を透明高分子フィルムの一方の面に設けた場合におけるガスバリアフィルムのカールを抑え易くすることができるようになる。
【0174】
本発明のガスバリアフィルムは、種々の封止用材料、フィルムとして用いることができる。
【0175】
〈有機光電変換素子〉
本発明のガスバリアフィルムは、例えば有機光電変換素子に用いることができる。有機光電変換素子に用いる際に、本発明のガスバリアフィルムは透明であるため、このガスバリアフィルムを支持体として用いてこの側から太陽光の受光を行うように構成できる。即ち、このガスバリアフィルム上に、例えば、ITO等の透明導電性薄膜を透明電極として設け、有機光電変換素子用樹脂支持体を構成することができる。そして、支持体上に設けられたITO透明導電膜を陽極としてこの上に多孔質半導体層を設け、さらに金属膜からなる陰極を形成して有機光電変換素子を形成し、この上に別の封止材料を(同じでもよいが)重ねて前記ガスバリアフィルム支持体と周囲を接着、素子を封じ込めることで有機光電変換素子を封止することができ、これにより外気の湿気や酸素等のガスによる素子への影響を封じることができる。
【0176】
有機光電変換素子用樹脂支持体は、このようにして形成されたガスバリアフィルムのセラミック層上に、透明導電性膜を形成することによって得られる。
【0177】
透明導電膜の形成は、真空蒸着法やスパッタリング法等を用いることにより、また、インジウム、スズ等の金属アルコキシド等を用いたゾルゲル法等塗布法によっても製造できる。
【0178】
透明導電膜の膜厚としては、0.1〜1000nmの範囲の透明導電膜が好ましい。
【0179】
次いでこれらガスバリアフィルム、またこれに透明導電膜が形成された有機光電変換素子用樹脂支持体を用いた有機光電変換素子について説明する。
【0180】
前記セラミック層を有するガスバリアフィルムにおいてセラミック層上に、さらに透明導電膜を形成し、これを陽極としてこの上に、有機光電変換素子を構成する層、陰極となる層とを積層し、この上にさらにもう一つのガスバリアフィルム(封止材料)を封止フィルムとして、重ね接着することで封止することができる。
【0181】
用いられるもう一つのガスバリアフィルム(封止材料)としては、本発明に係わる前記緻密な構造を有するセラミック層を有するガスバリアフィルムを用いることができる。また、例えば、包装材等に使用される公知のガスバリアフィルム、例えばプラスチックフィルム上に酸化ケイ素や、酸化アルミニウムを蒸着したもの、緻密なセラミック層と、柔軟性を有する衝撃緩和ポリマー層を交互に積層した構成のガスバリアフィルム等を封止フィルムとして用いることができる。また特に、樹脂ラミネート(ポリマー膜)された金属箔は、光取りだし側のガスバリアフィルムとして用いることはできないが、低コストでさらに透湿性の低い封止材料であり光取り出しを意図しない(透明性を要求されない)場合封止フィルムとして好ましい。
【0182】
本発明において金属箔とはスパッタや蒸着等で形成された金属薄膜や、導電性ペースト等の流動性電極材料から形成された導電膜と異なり、圧延等で形成された金属の箔またはフィルムを指す。
【0183】
金属箔としては、金属の種類に特に限定はなく、例えば銅(Cu)箔、アルミニウム(Al)箔、金(Au)箔、黄銅箔、ニッケル(Ni)箔、チタン(Ti)箔、銅合金箔、ステンレス箔、スズ(Sn)箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で特に好ましい金属箔としてはAl箔が挙げられる。
【0184】
金属箔の厚さは6〜50μmが好ましい。6μm未満の場合は、金属箔に用いる材料によっては使用時にピンホールが空き、必要とするバリア性(透湿度、酸素透過率)が得られなくなる場合がある。50μmを越えた場合は、金属箔に用いる材料によってはコストが高くなったり、有機光電変換素子が厚くなりフィルムのメリットが少なくなったりする場合がある。
【0185】
樹脂フィルム(ポリマー膜)がラミネートされた金属箔において樹脂フィルムとしては、機能性包装材料の新展開(株式会社 東レリサーチセンター)に記載の各種材料を使用することが可能であり、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリアミド系樹脂、エチレン−ビニルアルコール共重合体系樹脂、エチレン−酢酸ビニル共重合体系樹脂、アクリロニトリル−ブタジエン共重合体系樹脂、セロハン系樹脂、ビニロン系樹脂、塩化ビニリデン系樹脂等が挙げられる。ポリプロピレン系樹脂、ナイロン系樹脂等の樹脂は、延伸されていてもよく、さらに塩化ビニリデン系樹脂をコートされていてもよい。また、ポリエチレン系樹脂は、低密度あるいは高密度のものも用いることができる。
【0186】
後述するが、2つのフィルムの封止方法としては、例えば、一般に使用されるインパルスシーラー熱融着性の樹脂層をラミネートして、インパルスシーラーで融着させ、封止する方法が好ましく、この場合、ガスバリアフィルム同士の封止は、フィルム膜厚が300μmを超えると封止作業時のフィルムの取り扱い性が悪化するのとインパルスシーラー等による熱融着が困難となるため膜厚としては300μm以下が望ましい。
【0187】
(有機光電変換素子の封止)
本発明では、本発明に係わる前記セラミック層を有する樹脂フィルム(ガスバリアフィルム)上に透明導電膜を形成し、さらに、有機光電変換素子を構成する各層を形成した後、上記封止フィルムを用いて、不活性ガスによりパージされた環境下で、上記封止フィルムで陰極面を覆うようにして、有機光電変換素子を封止することができる。
【0188】
不活性ガスとしては、Nの他、He、Ar等の希ガスが好ましく用いられるが、HeとArを混合した希ガスも好ましく、気体中に占める不活性ガスの割合は、90〜99.9体積%であることが好ましい。不活性ガスによりパージされた環境下で封止することにより、保存性が改良される。
【0189】
また、前記の樹脂フィルム(ポリマー膜)がラミネートされた金属箔を用いて、有機光電変換素子を封止するにあたっては、ラミネートされた樹脂フィルム面ではなく、金属箔上にセラミック層を形成し、このセラミック層面を有機光電変換素子の陰極に貼り合わせることが好ましい。封止フィルムのポリマー膜面を有機光電変換素子の陰極に貼り合わせると、部分的に導通が発生したりすることがある。
【0190】
封止フィルムを有機光電変換素子の陰極に貼り合わせる封止方法としては、一般に使用されるインパルスシーラーで融着可能な樹脂フィルム、例えばエチレン酢酸ビニルコポリマー(EVA)やポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム等の熱融着性フィルムを積層して、インパルスシーラーで融着させ封止する方法がある。
【0191】
接着方法としてはドライラミネート方式が作業性の面で優れている。この方法は一般には1.0〜2.5μm程度の硬化性の接着剤層を使用する。ただし接着剤の塗設量が多すぎる場合には、トンネル、浸み出し、縮緬皺等が発生することがあるため、好ましくは接着剤量を乾燥膜厚で3〜5μmになるように調節することが好ましい。
【0192】
ホットメルトラミネーションとはホットメルト接着剤を溶融し支持体に接着層を塗設する方法であるが、接着剤層の厚さは一般に1〜50μmと広い範囲で設定可能な方法である。一般に使用されるホットメルト接着剤のベースレジンとしては、EVA、EEA、ポリエチレン、ブチルラバー等が使用され、ロジン、キシレン樹脂、テルペン系樹脂、スチレン系樹脂等が粘着付与剤として、ワックス等が可塑剤として添加される。
【0193】
エクストルージョンラミネート法とは高温で溶融した樹脂をダイスにより支持体上に塗設する方法であり、樹脂層の厚さは一般に10〜50μmと広い範囲で設定可能である。
【0194】
エクストルージョンラミネートに使用される樹脂としては一般に、LDPE、EVA、PP等が使用される。
【0195】
次いで、有機光電変換素子を構成する有機光電変換素子材料各層(構成層)について説明する。
【0196】
(有機光電変換素子及び太陽電池の構成)
本発明に係る有機光電変換素子の好ましい態様を説明するが、これに限定されるものではない。有機光電変換素子としては特に制限がなく、陽極と陰極と、両者に挟まれた発電層(p型半導体とn型半導体が混合された層、バルクへテロジャンクション層、i層とも言う)が少なくとも1層以上あり、光を照射すると電流を発生する素子であればよい。
【0197】
有機光電変換素子の層構成の好ましい具体例を以下に示す。
(i)陽極/発電層/陰極
(ii)陽極/正孔輸送層/発電層/陰極
(iii)陽極/正孔輸送層/発電層/電子輸送層/陰極
(iv)陽極/正孔輸送層/p型半導体層/発電層/n型半導体層/電子輸送層/陰極
(v)陽極/正孔輸送層/第1発電層/電子輸送層/中間電極/正孔輸送層/第2発電層/電子輸送層/陰極
ここで、発電層は、正孔を輸送できるp型半導体材料と電子を輸送できるn型半導体材料を含有していることが必要であり、これらは実質2層でヘテロジャンクションを形成していてもよいし、1層の内部で混合された状態となっているバルクへテロジャンクションを形成してもよいが、バルクへテロジャンクション構成の方が、光電変換効率が高いため好ましい。発電層に用いられるp型半導体材料、n型半導体材料については後述する。
【0198】
有機EL素子等と同様、発電層を正孔輸送層、電子輸送層で挟み込むことで、正孔及び電子の陽極・陰極への取り出し効率を高めることができるため、それらを有する構成((ii)、(iii))の方が好ましい。また、発電層自体も正孔と電子の整流性(キャリア取り出しの選択性)を高めるため、(iv)のようにp型半導体材料とn型半導体材料単体からなる層で発電層を挟み込むような構成(p−i−n構成ともいう)であってもよい。また、太陽光の利用効率を高めるため、異なる波長の太陽光をそれぞれの発電層で吸収するような、タンデム構成((v)の構成)であってもよい。
【0199】
本発明に係る有機光電変換素子の好ましい態様を下記に説明する。
【0200】
図1は、バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池の一例を示す断面図である。図1において、バルクヘテロジャンクション型の有機光電変換素子10は、基板11の一方面上に、陽極12、正孔輸送層17、バルクヘテロジャンクション層の発電層14、電子輸送層18及び陰極13が順次積層されている。
【0201】
基板11は、順次積層された陽極12、発電層14及び陰極13を保持する部材である。本実施形態では、基板11側から光電変換される光が入射するので、基板11は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材である。基板11は、例えば、ガラス基板や樹脂基板等が用いられる。この基板11は、必須ではなく、例えば、発電層14の両面に陽極12及び陰極13を形成することでバルクヘテロジャンクション型の有機光電変換素子10が構成されてもよい。
【0202】
発電層14は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプタ)として機能する。
【0203】
図1において、基板11を介して陽極12から入射された光は、発電層14のバルクヘテロジャンクション層における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、陽極12と陰極13の仕事関数が異なる場合では陽極12と陰極13との電位差によって、電子は、電子受容体間を通り、また正孔は、電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。例えば、陽極12の仕事関数が陰極13の仕事関数よりも大きい場合では、電子は、陽極12へ、正孔は、陰極13へ輸送される。なお、仕事関数の大小が逆転すれば電子と正孔は、これとは逆方向に輸送される。また、陽極12と陰極13との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。
【0204】
なお図1には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の他の層を有していてもよい。
【0205】
太陽光利用率(光電変換効率)の向上を目的として、図1に示す有機光電変換素子10におけるサンドイッチ構造に替わって、一対の櫛歯状電極上にそれぞれ正孔輸送層14、電子輸送層16を形成し、その上に光電変換部15を配置するといった、バックコンタクト型の有機光電変換素子構成とすることもできる。
【0206】
さらに好ましい構成としては、前記発電層14が、いわゆるp−i−nの三層構成となっている構成(図2)である。通常のバルクへテロジャンクション層は、p型半導体材料とn型半導体層が混合した、i層単体であるが、p型半導体材料単体からなるp層、及びn型半導体材料単体からなるn層で挟むことにより、正孔及び電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。図3において、発電層はバルクへテロジャンクション層14iは、p型半導体層14p、及びn型半導体層14nで挟まれた構造をもっている。
【0207】
さらに、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。図3は、タンデム型のバルクヘテロジャンクション層を備える有機光電変換素子からなる太陽電池を示す断面図である。タンデム型構成の場合、基板11上に、順次透明電極12、第1の発電層14′を積層した後、電荷再結合層15を積層した後、第2の発電層16、次いで対電極13を積層することで、タンデム型の構成とすることができる。第2の発電層16は、第1の発電層14′の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。また第1の発電層14′、第2の発電層16がともに前述のp−i−nの三層構成であってもよい。
【0208】
以下有機光電変換素子を構成する要素について説明する。
【0209】
(p型半導体材料)
本発明の発電層(バルクへテロジャンクション層)に用いられるp型半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマー・オリゴマーが挙げられる。
【0210】
縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、へプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。
【0211】
また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基を持ったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
【0212】
共役系ポリマーとしては、例えば、ポリ3−ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン−チエノチオフェン共重合体、国際公開第08/000664号パンフレットに記載のポリチオフェン−ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン−チアゾロチアゾール共重合体,Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。
【0213】
また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。
【0214】
これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。
【0215】
また、発電層上に電子輸送層を塗布で製膜する場合、電子輸送層溶液が発電層を溶かしてしまうという課題があるため、溶液プロセスで塗布した後に不溶化できるような材料を用いてもよい。
【0216】
このような材料としては、Technical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、及び特開2008−16834等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料等を挙げることができる。
【0217】
(n型半導体材料)
本発明のバルクへテロジャンクション層に用いられるn型半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型半導体の水素原子をフッ素原子に置換したパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
【0218】
しかし、各種のp型半導体材料と高速(〜50fs)かつ効率的に電荷分離を行うことができる、フラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、及びこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
【0219】
中でも[6,6]−フェニルC61−ブチリックアシッドメチルエステル(略称PCBM)、[6,6]−フェニルC61−ブチリックアシッド−nブチルエステル(PCBnB)、[6,6]−フェニルC61−ブチリックアシッド−イソブチルエステル(PCBiB)、[6,6]−フェニルC61−ブチリックアシッド−nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis−PCBM、特開2006−199674号公報等のアミノ化フラーレン、特開2008−130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。
【0220】
(正孔輸送層・電子ブロック層)
本発明の有機光電変換素子10は、バルクへテロジャンクション層と陽極との中間には正孔輸送層17を、バルクへテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
【0221】
これらの層を構成する材料としては、例えば、正孔輸送層17としては、スタルクヴイテック社製、商品名BaytronP等のPEDOT、ポリアニリン及びそのドープ材料、国際公開第06/019270号パンフレット等に記載のシアン化合物、等を用いることができる。なお、バルクへテロジャンクション層に用いられるn型半導体材料のLUMO準位よりも浅いLUMO準位を有する正孔輸送層には、バルクへテロジャンクション層で生成した電子を陽極側には流さないような整流効果を有する、電子ブロック機能が付与される。このような正孔輸送層は、電子ブロック層とも呼ばれ、このような機能を有する正孔輸送層を使用する方が好ましい。このような材料としては、特開平5−271166号公報等に記載のトリアリールアミン系化合物、また酸化モリブデン、酸化ニッケル、酸化タングステン等の金属酸化物等を用いることができる。また、バルクへテロジャンクション層に用いたp型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。バルクヘテロジャンクション層を形成する前に、下層に塗布膜を形成すると塗布面をレベリングする効果があり、リーク等の影響が低減するため好ましい。
【0222】
(電子輸送層・正孔ブロック層)
本発明の有機光電変換素子10は、バルクへテロジャンクション層と陰極との中間には電子輸送層18を形成することで、バルクへテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
【0223】
また電子輸送層18としては、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、バルクへテロジャンクション層に用いられるp型半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、バルクへテロジャンクション層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。このような電子輸送層は、正孔ブロック層とも呼ばれ、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、バルクへテロジャンクション層に用いたn型半導体材料単体からなる層を用いることもできる。これらの層を形成する手段としては、真空蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。
【0224】
(その他の層)
エネルギー変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層等を挙げることができる。
【0225】
(透明電極(第一電極))
透明電極は、陰極、陽極は特に限定せず、素子構成により選択することができるが、好ましくは透明電極を陽極として用いることである。例えば、陽極として用いる場合、好ましくは380〜800nmの光を透過する電極である。材料としては、例えば、インジウムチンオキシド(ITO)、SnO、ZnO等の透明導電性金属酸化物、金、銀、白金等の金属薄膜、金属ナノワイヤ、カーボンナノチューブ用いることができる。
【0226】
またポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性高分子等も用いることができる。また、これらの導電性化合物を複数組み合わせて透明電極とすることもできる。
【0227】
(対電極(第二電極))
対電極は導電材単独層であってもよいが、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。対電極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。対電極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。
【0228】
対電極の導電材として金属材料を用いれば対電極側に来た光は反射されて第1電極側に反射され、この光が再利用可能となり、光電変換層で再度吸収され、より光電変換効率が向上し好ましい。
【0229】
また、対電極13は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤ、ナノ構造体であってもよく、ナノワイヤの分散物であれば、透明で導電性の高い対電極を塗布法により形成でき好ましい。
【0230】
また、対電極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の対電極に適した導電性材料を薄く1〜20nm程度の膜厚で作製した後、上記透明電極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性対電極とすることができる。
【0231】
(中間電極)
また、前記(v)(または図3)のようなタンデム構成の場合に必要となる電荷再結合層15を構成する中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層または金属ナノ粒子・金属ナノワイヤを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
【0232】
なお、前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。
【0233】
(金属ナノワイヤ)
一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする線状構造体のことをいう。特に、本発明における金属ナノワイヤとはnmサイズの直径を有する線状構造体を意味する。
【0234】
本発明に係る金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、また、適度な光散乱性を発現するために、平均長さが3μm以上であることが好ましく、さらには3〜500μmが好ましく、特に3〜300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10〜300nmが好ましく、30〜200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。
【0235】
本発明に係る金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。本発明に係る金属ナノワイヤが2種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。
【0236】
本発明において金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833〜837;Chem.Mater.,2002,14,4736〜4745等、Auナノワイヤの製造方法としては特開2006−233252号公報等、Cuナノワイヤの製造方法としては特開2002−266007号公報等、Coナノワイヤの製造方法としては特開2004−149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。
【0237】
本発明においては、金属ナノワイヤが互いに接触し合うことにより3次元的な導電ネットワークを形成し、高い導電性を発現するとともに、金属ナノワイヤが存在しない導電ネットワークの窓部を光が透過することが可能となり、さらに、金属ナノワイヤの散乱効果によって、有機発電層部からの発電を効率的に行うことが可能となる。第1電極において金属ナノワイヤを有機発電層部に近い側に設置すれば、この散乱効果がより有効に利用できるのでより好ましい実施形態である。
【0238】
(機能層)
本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層等を設けてもよい。
【0239】
また、その他の機能性層として、易接着層等を塗設してもよい。
【0240】
反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57〜1.63とすることで、フィルム基板と易接着層との界面反射を低減させることができるので好ましい。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
【0241】
集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
【0242】
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
【0243】
また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物等のナノ粒子・ナノワイヤ等を無色透明なポリマーに分散した層等を挙げることができる。
【0244】
(各種の層の形成方法)
電子受容体と電子供与体とが混合されたバルクヘテロジャンクション層、及び輸送層・電極の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、バルクへテロジャンクション層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
【0245】
この際に使用する塗布方法に制限は無いが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。
【0246】
塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、バルクヘテロジャンクション層を適切な相分離構造とすることができる。その結果、バルクへテロジャンクション層のキャリア移動度が向上し、高い効率を得ることができるようになる。
【0247】
発電層(バルクヘテロジャンクション層)14は、電子受容体と電子供与体とが均一に混在された単一層で構成してもよいが、電子受容体と電子供与体との混合比を変えた複数層で構成してもよい。この場合、前述したような塗布後に不溶化できるような材料を用いることで形成することが可能となる。
【0248】
(パターニング)
本発明に係る電極、発電層、正孔輸送層、電子輸送層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
【0249】
バルクへテロジャンクション層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。
【0250】
電極材料等の不溶性の材料の場合は、電極を真空堆積時にマスク蒸着を行ったり、エッチングまたはリフトオフ等の公知の方法によってパターニングしたりすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。
【0251】
(包装形態)
本発明のガスバリアフィルムは、連続生産しロール形態に巻き取ることが出来る。その際に、ガスバリア層を形成した面に保護シートを貼合して巻き取ることが好ましい。次工程において表面に付着したゴミ(パーティクル)が原因で欠陥となることを防ぐため、クリーン度の高い場所で保護シートを貼合してゴミの付着を防止することは非常に有効である。併せて、巻取り時の裏面接触によるガスバリア層への傷防止に有効である。
【0252】
保護シートとしては、特に限定するものではないが、膜厚100μm以下の樹脂基材に弱粘着性の接着層を付与した構成の一般的な保護シート、剥離シートを用いることが出きる。
【実施例】
【0253】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0254】
実施例1
《ガスバリアフィルムの作製》
(支持体)
プラスチックフィルム支持体として、両面に易接着加工された125μm厚みのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET Q83)を基板として用いた。
【0255】
ガスバリアフィルムの作製は、上記支持体を20m/分の速度で搬送しながら、以下の形成方法により、片面にブリードアウト防止層、反対面に平滑層を形成した後、粘着性保護フィルムを貼合した、ロール状のガスバリアフィルムを得た。
【0256】
(ブリードアウト防止層の形成)
上記支持体の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7535を塗布、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプを使用して500mJ/cmで硬化し、ブリードアウト防止層を形成した。
【0257】
(平滑層の形成)
続けて上記支持体の反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7501を塗布、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプを使用して500mJ/cmで硬化し、平滑層を形成した。
【0258】
この時の最大断面高さRt(p)は21nmであった。最大断面高さRt(p)は、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を多数回測定し、微細な凹凸の振幅に関する平均の粗さである。
【0259】
《ガスバリア層の作製》
次に、上記平滑層及びブリードアウト防止層を設けたフィルムの平滑層の上に、下記ポリシラザン化合物塗布液調製し、次いで、ワイヤレスバーの番手と脱水ジブチルエーテルによる希釈で、乾燥後の膜厚が0.15μmになるように調整し、23℃50%RH環境下で塗布した後、80℃、1分(工程中の雰囲気を露点温度10℃に調製)で乾燥し1分乾燥した。
【0260】
(ポリシラザン化合物塗布液)
アクアミカ NN120−20(パーヒドロポリシラザン、AZエレクトロニックマテリアルズ(株)製、20質量%ジブチルエーテル溶液)
(改質処理A)
前記塗布試料を下記の条件で改質処理を行いガスバリア層1層目を形成した。
【0261】
(改質処理装置)
株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200、波長 172nm、ランプ封入ガス Xe
稼動ステージ上に固定した試料を以下の条件で改質処理を行った。
【0262】
(改質処理条件)
エキシマ光強度 60mW/cm(172nm)
試料と光源の距離 1mm
ステージ加熱温度 100℃
照射装置内の酸素濃度 30000ppm(3%)
改質処理時の水蒸気濃度 10%RH(23℃)
実エキシマ照射時間 3秒
さらにその上に、前記ポリシラザン化合物塗布液をワイヤレスバーの番手と脱水ジブチルエーテルによる希釈で、乾燥後の膜厚が0.15μmになるように調整し、23℃50%RH環境下で塗布した後、80℃、1分(工程中の雰囲気を露点温度10℃に調製)で乾燥し1分乾燥した。
【0263】
(改質処理B)
前記塗布2層目を塗布した試料を下記の条件で改質処理を行い、ガスバリア層2層目を形成した。
【0264】
(改質処理装置)
株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL−M−1−200、波長 172nm、ランプ封入ガス Xe
稼動ステージ上に固定した試料を以下の条件で改質処理を行い、ガスバリアフィルム1を得た。
【0265】
(改質処理条件)
エキシマ光強度 60mW/cm(172nm)
試料と光源の距離 1mm
ステージ加熱温度 100℃
照射装置内の酸素濃度 50000ppm(5%)
改質処理時の水蒸気濃度 10%RH(23℃)
実エキシマ照射時間 3秒
《ガスバリアフィルム2〜17の作製》
ガスバリアフィルム1の作製において、改質処理雰囲気の酸素濃度、水蒸気濃度を表1に記載のように変更した以外は同様にして、本発明のガスバリアフィルム2〜17を各々作製した。
【0266】
《比較のガスバリアフィルム1、2の作製》
ガスバリアフィルム1の作製において、改質処理雰囲気の酸素濃度、水蒸気濃度を表1に記載のように変更した以外は同様にして、比較のガスバリアフィルム1、2を各々作製した。
【0267】
《ガスバリアフィルム18〜23の作製》
ガスバリアフィルム1の作製において、前記ポリシラザン化合物塗布液をワイヤレスバーの番手と脱水ジブチルエーテルによる希釈で、乾燥後の膜厚が0.10μmになるように調整し、改質処理雰囲気の酸素濃度、水蒸気濃度を表2に記載のように変更し、積層する層数が3層、4層になった以外は同様にして、本発明のガスバリアフィルム18〜23を各々作製した。
【0268】
《比較のガスバリアフィルム3の作製》
ガスバリアフィルム1の作製において、前記ポリシラザン化合物塗布液をワイヤレスバーの番手と脱水ジブチルエーテルによる希釈で、乾燥後の膜厚が0.10μmになるように調整し、改質処理雰囲気の酸素濃度、水蒸気濃度を表2に記載のように変更し積層する層数が3層になった以外は同様にして、比較のガスバリアフィルム3を作製した。
【0269】
《ガスバリアフィルムの評価》
〈水蒸気透過率(WVTR)の評価〉
以下の方法により評価した。
【0270】
(装置)
蒸着装置:日本電子(株)製真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
(原材料)
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)
(水蒸気バリア性評価用セルの作製)
予め、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返したガスバリアフィルムのセラミック層面に、真空蒸着装置(日本電子製真空蒸着装置 JEE−400)を用い、透明導電膜を付ける前のガスバリアフィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製、)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、屈曲前後のバリア性の変化を確認するために、上記屈曲の処理を行わなかったガスバリアフィルムについても同様に、水蒸気バリア性評価用セルを作製した。
【0271】
得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、特開2005−283561記載の方法に基づき、金属カルシウムの腐蝕量からセル内に透過した水分量を計算した。
【0272】
なお、ガスバリアフィルム面から以外の水蒸気の透過が無いことを確認するために、参考試料としてガスバリアフィルムの代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐蝕が発生しないことを確認した。
【0273】
水蒸気透過率を下記基準で評価した。
【0274】
5:1×10−4g/(m・24h)未満
4:1×10−4g/(m・24h)以上、1×10−3g/(m・24h)未満
3:1×10−3g/(m・24h)以上、1×10−2g/(m・24h)未満
2:1×10−2g/(m・24h)以上、1×10−1g/(m・24h)未満
1:1×10−1g/(m・24h)以上。
【0275】
《ガスバリアフィルムの経時安定性評価》
得られたガスバリアフィルム1〜23、比較のガスバリアフィルム1〜3の各々について、85℃、85%RHに調整した高温高湿槽(恒温恒湿度オーブン:Yamato Humidic ChamberIG47M)内に、100時間連続で保管し、その後上記と同様にして水蒸気透過率をランク評価した。
【0276】
得られた結果を表1及び表2に示す。
【0277】
【表1】

【0278】
【表2】

【0279】
表1、表2から、比較のガスバリアフィルム1〜3に比べて、本発明のガスバリアフィルム1〜23は、フィルム作製後の水蒸気透過率はいずれも実用可能なランクであり、且つ、経時後の水蒸気透過率もいずれも実用可能なランクであることが明らかである。
【0280】
実施例2
《有機光電変換素子1〜23、比較の有機光電変換素子1〜3の作製》
予め、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返した、実施例1で作製し屈曲を行ったガスバリアフィルム1〜22、及び、比較のガスバリアフィルム1〜3に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗10Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて2mm幅にパターニングし第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
【0281】
この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を膜厚が30nmになるように塗布乾燥した後、150℃で30分間熱処理させ正孔輸送層を製膜した。
【0282】
これ以降は、基板を窒素チャンバー中に持ち込み、窒素雰囲気下で作製した。
【0283】
まず、窒素雰囲気下で上記基板を150℃で10分間加熱処理した。次に、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ−3−ヘキシルチオフェン)とPCBM(フロンティアカーボン社製:6,6−フェニル−C61−ブチリックアシッドメチルエステル)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタでろ過しながら膜厚が100nmになるように塗布を行い、室温で放置して乾燥させた。続けて、150℃で15分間加熱処理を行い、光電変換層を製膜した。
【0284】
次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10−4Pa以下にまでに真空蒸着装置内を減圧した後、蒸着速度0.01nm/秒でフッ化リチウムを0.6nm積層し、さらに続けて、2mm幅のシャドウマスクを通して、蒸着速度0.2nm/秒でAlメタルを100nm積層することで第2の電極を形成し(受光部が2×2mmに成るように第1の電極パターンと直交させて蒸着)、有機光電変換素子を作製した。
【0285】
得られた有機光電変換素子を窒素チャンバーに移動し、封止用キャップとUV硬化樹脂を用いて封止を行って、受光部が2×2mmサイズの有機光電変換素子を作製した。
【0286】
(有機光電変換素子の封止)
窒素ガス(不活性ガス)によりパージされた環境下で、基板に用いたものと同じ2枚のガスバリアフィルムのガスバリア層を設けた面を内側にして、シール材としてエポキシ系光硬化型接着剤をガスバリア層に塗布し、上記有機光電変換素子をガスバリアフィルム間に挟み込んで密着させた後、片側の基板側からUV光を照射して硬化させた。こうして、ガスバリアフィルム1〜23、及び、比較のガスバリアフィルム1〜3から、それぞれ両面封止済みの有機光電変換素子1〜23、及び、比較の有機光電変換素子1〜3を作製した。
【0287】
《有機光電変換素子の評価》
〈耐久性の評価〉
作製した有機光電変換素子について、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、I−V特性を評価することで、短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)及びフィルファクターFF(%)を、同素子上に形成した4箇所の受光部をそれぞれ測定し、下記式に従って求めたエネルギー変換効率PCE(%)の4点平均値を見積もった。
【0288】
PCE(%)=〔Jsc(mA/cm)×Voc(V)×FF(%)〕/100mW/cm
初期電池特性としての変換効率を測定し、性能の経時的低下の度合いを60℃、90%RH環境で1000時間保存した加速試験後の変換効率残存率(加速試験後の変換効率/初期変換効率)により、下記基準で評価した。
【0289】
5:変換効率残存率が90%以上
4:変換効率残存率が70%以上、90%未満
3:変換効率残存率が40%以上、70%未満
2:変換効率残存率が20%以上、40%未満
1:変換効率残存率が20%未満
評価の結果を表3に示す。
【0290】
【表3】

【0291】
表3から、比較の有機光電変換素子1〜3にくらべて、本発明の有機光電変換素子1〜23は、60℃、90%RHという極めて過酷な環境(高温高湿条件下)においても極めて高い耐久性を示すことが分かった。
【符号の説明】
【0292】
10 バルクヘテロジャンクション型の有機光電変換素子
11 基板
12 陽極
13 陰極
14 発電層(バルクヘテロジャンクション層)
14p p型半導体層
14i バルクヘテロジャンクション層
14n n型半導体層
14′ 第1の発電層
15 電荷再結合層
16 第2の発電層
17 正孔輸送層
18 電子輸送層

【特許請求の範囲】
【請求項1】
プラスチックフィルムの少なくとも一方の面に、複数のガスバリア層を有するガスバリアフィルムの製造方法において、該ガスバリア層は、ポリシラザン化合物を含有する塗布液を塗布乾燥後、酸素及び水蒸気を含む窒素雰囲気下で180nm以下の波長成分を有する真空紫外線照射により酸化処理して形成され、更に、該ガスバリア層の少なくとも1層の酸化処理の雰囲気が他のガスバリア層と異なることを特徴とするガスバリアフィルムの製造方法。
【請求項2】
前記ガスバリア層の少なくとも1層の酸化処理雰囲気の酸素濃度が他のガスバリア層と異なることを特徴とする請求項1記載のガスバリアフィルムの製造方法。
【請求項3】
前記酸素濃度が0.01%〜1%であることを特徴とする請求項1または2記載のガスバリアフィルムの製造方法。
【請求項4】
前記プラスチックフィルムに近い方のガスバリア層の酸化処理の酸素濃度が、遠い方のガスバリア層の酸化処理の酸素濃度より高いことを特徴とする請求項2または3記載のガスバリアフィルムの製造方法。
【請求項5】
前記ガスバリア層の少なくとも1層の酸化処理雰囲気の水蒸気濃度が他の層と異なることを特徴とする請求項1記載のガスバリアフィルムの製造方法。
【請求項6】
前記酸化処理雰囲気の水蒸気濃度が1%〜10%相対湿度であることを特徴とする請求項5記載のガスバリアフィルムの製造方法。
【請求項7】
前記プラスチックフィルムに近い方のガスバリア層の酸化処理雰囲気の水蒸気濃度が、遠い方のガスバリア層の酸化処理雰囲気の水蒸気濃度より高いことを特徴とする請求項5または6記載のガスバリアフィルムの製造方法。
【請求項8】
請求項1〜7のいずれか1項記載のガスバリアフィルムの製造方法により製造されたことを特徴とするガスバリアフィルム。
【請求項9】
請求項8記載のガスバリアフィルムを有することを特徴とする有機光電変換素子。
【請求項10】
請求項9記載の有機光電変換素子を有することを特徴とする太陽電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−173057(P2011−173057A)
【公開日】平成23年9月8日(2011.9.8)
【国際特許分類】
【出願番号】特願2010−38450(P2010−38450)
【出願日】平成22年2月24日(2010.2.24)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】