説明

ガス/流体センサ

【課題】より生産性を高め、かつ手頃な価格にすることができるセンサを提供する。
【解決手段】 微細加工集積光−熱センサ(10)は、高速に強度が変動する、または脈動する光源(14)、干渉フィルタ(16)、シャドウ・マスク(113)または熱センサから光の反射遮蔽(19)、または差動動作、検出されるガス(21)がチャネル(114)を介して流入するガス・キャビティ(20)またはフィルタ、および検出される特定のガスが特定の波長で光を吸収することによって生じるガスの加熱を感知する熱検出器素子を含む。センサの他の型は、2重キャビティのものである。一方のキャビティ(121)は検出されるガスを含み、他方のキャビティ(122)は周囲環境から密閉され、ガスを含まない。両方のキャビティの検出器からの信号は互いから差し引かれ、結果的に検出器に当たる放射線による固定信号(127)が除去される。

【発明の詳細な説明】
【背景の技術】
【0001】
本発明はガス・センサに関し、特に有毒ガス・センサに関する。より詳しくは、本発明は微細加工集積回路ガスおよび流体センサに関する。
燃焼プロセスで生成されるCO、CO2 、NO、NO2 およびVOCなどの有毒ガスを感知する関連技術のデバイスは、金属酸化物薄膜導電度、化学ルミネセンス、蛍光、様々な形のIR吸収等の変化を示すセンサに基づいていた。これらのセンサは非常に高価で、不安定であるか、あるいは非常に感度が悪くて、低価格で信頼性の高い有毒ガス・センサという要求を満たすことはできなかった。これらのセンサで、健康や生命に有害な可能性があるレベルに匹敵する濃度のそのような有毒ガスを感知することは困難である。特に、低価格で、手頃に買える信頼性の高いセンサでそれを行うのは、困難である。安く上げようとする使用者が使用する古いガス・エンジンまたは加熱器は、しばしば、これらの使用者や他の人を危うくする有毒ガスの発生源に非常になり易い。このような使用者は、誰かが手頃で適切な方法を彼らのところに持って来なければ、有毒ガス指示器を一番買おうとしない人達である。
【0002】
光音響ガス・センサは、ガスを吸収する波長で狭帯域変調された照明でガスの温度変化を誘起して低濃度のガスを感知する。変調された温度信号が直接感知されるのではなくて、密閉したまたはほぼ密閉したガス試料セルが使用され、そのセルで小さなガス温度信号を圧力信号に変換し、その圧力信号がマイクロフォンで検出される。密閉したまたはほぼ密閉したガス・セルのために、ガスがガス・セルに入ったり出たりすることは困難になる。
【発明の概要】
【0003】
光熱型感知と呼ばれるガス温度変調信号の直接感知により、密閉したまたはほぼ密閉したガス・セルは必要でなくなる。ガス温度信号の直接感知は、適当に高感度(すなわち、ナノ度の感度)で高速応答のガス温度センサがないことで不利になっている。微細加工熱電センサ・アレイを使用することで、小さなガス温度変調信号を適当に高感度かつ高速応答で検出することが可能である。好都合にも、このようなアレイをシリコン微細加工技術で作ることができる。
【0004】
本発明は、存在するガスのガス温度信号の新規な、有用な、低価格で信頼性の高い直接感知を提供し、また、有毒ガスまたは燃焼生成物の好ましくない成分の存在を推定して指示する。有毒ガスまたは好ましくないガスの存在を示す、または有意義な確率レベルで推定するような現象を特定できれば、それらのガスを直接に測定する必要はない。したがって、本センサは、有毒ガスの直接NDIR感知に比べて小型で、信頼性が高く、手頃に使える検出を提供する。また、直接感知による高濃度のCO2 または他のガスに対する特別の検出/警報保護を提供する。
【0005】
本センサは、CO2 の検出によってCO、NOx およびVOCなどの有毒燃焼生成物を間接的に示すことを利用し、これによって、安価な集積ガス・センサの設計を合理的な価格で利用できるようにし、排出口のない空間でヒータ(または、台所のストーブ)を使用する人の有毒ガス感知の要求および車または車の近くの排気ガスを検出したいと思う自動車運転者の要求を満たす。
二酸化炭素(CO2 )は、好ましくない濃度の燃焼生成物が存在することを示す。CO2 はCO、NOx またはVOCの濃度の10倍から100倍の濃度で、燃焼プロセスで生成される。さらに、上記のガスの3から30倍低い濃度レベルのCO2 を測定することができ、特に、NDIRで可能である。燃焼生成物、特にガソリンまたはディーゼル燃料の燃焼生成物は、5〜15%のCO2 、10〜20%のH2 O、0〜10%のO2 、70〜80%のN2 、0.001から0.4%のNOx 、0.001から0.2%のCO(使い古した、または調整不良の自動車エンジンではCOは2%にもなることがある)、および0.001から0.3%の炭化水素(HC)から構成されることが知られている。すなわち、CO2 濃度は常に支配的である。なお、前の車の排気ガスは、後続の車の室内空気の取入れ口に達する前に、10から1000倍に希釈されると予想されるので、CO2 濃度はわずか0.005から1.5%になるだろうが、これは測定可能である。一方で、有毒ガスの濃度は0.0001から0.04%の範囲である。後者の濃度は測定するのが非常に困難であり、特に、低価格のセンサでは困難である。低価格のセンサは、気分を悪くさせる、または健康に悪影響を与える濃度で存在しているにもかかわらず、それらのガスを感知し始めないことが多い。
【0006】
本センサの集積化設計により、より生産性が高められより手頃な価格になる。ガス・セル、熱検出器および光フィルタが、安価な1つの小型の微細加工された装置に集積される。すなわち、高価なセンサよりも手頃で広く応用可能である。赤外線は小さな電球から、または電気的に加熱されたマイクロブリッジ(マイクロ発光体)から得ることができる。電子回路もシリコン材料に集積される。センサはより小型であり、したがって、より頑丈であり、全体としてより実用的である。存在するガスの検出器として使用される集積光−熱センサは、より高感度で、より高速応答で、より安定な検出をもたらす。密閉したまたはほぼ密閉したガス・セルを必要としないので、一層高速な応答が得られる。
【0007】
集積センサは関連技術のセンサよりも10から100倍小さく、これによって本システムは一層手頃な、携帯可能な、実用的なものになる。本検出器は、シリコン微細加工技術を使用して大量生産することができるので、関連技術検出器よりも10倍から100倍安価である。
【0008】
非常に正確な本ガス検出器は、微細加工シリコン技術で形成され、そのため関連技術による検出器よりもはるかに小さい。
以上をまとめると、本発明は、低価格な光−熱感知システムであり、それは微細加工集積センサである。この微細加工集積センサには、パルス加熱発光体、適当な多層干渉フィルタ(IF)、反射防止(AR)膜、光が熱センサに当たるのを防ぐためのシャドウ・マスキングまたは反射防止、および赤外線(IR)または他の波長の光を最大にするために、例えばCO2 の4.3ミクロン波長帯にエネルギー効率を与えるように設計された特殊なエッチングが行われたシリコン・ウエハまたはマスキング、ガスがチャネルを介して流入および流出できる、または、キャビティを形成するために使用された犠牲層を溶解するために先に製造で使用されたエッチ孔に、または多孔質圧縮ステンレス鋼フリットを介して拡散して出入りできる試料ガス・キャビティ、および単一出力または差動出力の方法で動作する微細加工ガス温度センサが含まれている。
【0009】
ゆっくりした周囲温度の変動のセンサに対する影響は、熱電接合対の配列によって、必然的に阻止される。空気および/またはガスの通気によって起きるガス温度変動の影響は、適当な多孔質バッフルおよびロックイン検出によって最小にすることができる。バックグラウンド信号を最小にするために、熱電温度センサは、光放射線で直接照らされないようにすることができるし、また、反射材料で被覆することができるし、さらに、光照射装置とガス温度センサの間に適当なIFを配置することおよび適当なガス導入の配列によって、差動の方法で動作させることができる。
【実施形態の説明】
【0010】
第1図は、推論型光−熱ガス・センサ10の基本的な構造を示す図である。シリコン・ウエハ11は一方の側にエッチングされた空間12を有する。一組のマイクロ発光体14を有するシリコン・ウエハ13が、ウエハ11の凹部12を有する側に近づけて配置されている。マイクロ発光体14に近いウエハ11の表面または側面に反射防止(AR)被膜15が形成される。ウエハ11の他方の側に、CO2 の吸収波長(4.3ミクロン)と同じ波長の赤外線だけを通すように設計された狭帯域干渉フィルタ(IF)16がある。ARおよびIFの被膜または薄膜は、互いに場所を取り換えてもよい。ウエハ17がフィルタ16の反対面に形成される。シリコン・ウエハ18がシリコン・ウエハ17接して形成される。シリコン・ウエハ17と18がエッチングされて、キャビティ20とチャネル114が形成される。チャネル114は、キャビティ20とセンサ10の外部の周囲ボリュームまたは空間との間の経路を形成する。ガスまたは空気21は、オリフィス、経路またはチャネル114を介してキャビティ20に拡散で、または流れて入ったり出たりすることができる。ウエハ18は、ピット116の上に形成された熱センサ19を有する。マイクロ発光体14と熱センサ19は接点パッド24に接続されている。ウエハ13または18上に、マイクロ発光体14を制御するまたは熱センサ19からの信号を処理する電子回路25を設ける集積回路(IC)または用途特定集積回路(ASIC)を形成してもよい。ウエハ11はガラス板と取り換えてもよい。ウエハ17もガラスと取り換えることができる。下に開示される実施形態では、IFフィルタおよびAR被膜をガラス上に位置付けることができ、また形成することができる。
【0011】
発光体14は32×32のマイクロ発光体のアレイであり、赤外線源として機能する。アレイ14で、小型タングステン電球の約2.8倍の4.3ミクロンの総発光が得られる。キャビティ20は、おおよそ深さ100ミクロン×幅500ミクロンである。キャビティ20は小さすぎてはいけない。小さすぎると、キャビティ表面でのガス冷却によって、ガス・センサ10の感度が減少する。
【0012】
熱センサは、直列接続されたNiFe:Cr熱電センサ19の64×64のアレイである。各センサは、50ミクロン×50ミクロンの各窒化ケイ素マイクロブリッジごとに2つの熱電金属接合を有し、その1つはマイクロブリッジ上に1つは近くのシリコン上にあり、接合対ごとに10オームの抵抗を持ち、接合対のゼーベック係数は60マイクロボルト/℃である。熱電センサ19は、赤外線の直接吸収を最小にするために、反射金属層で被覆されている。熱センサは、0.5ミリ秒の代表的なマイクロブリッジの応答時間と10Hz照射変調を有している。ロックインの電子回路検出システム(例えば、電球93ではなくて光源素子94を含めた第3図の増幅器102、電源104、ロックイン増幅器103)は、30秒の応答時間(すなわち、帯域幅dF=0.02Hz)を有する。実効雑音電圧=(4KT(64×64)RdF)の平方根=実効値で2.5ナノボルト、および、感度=(2.5e−9)/(64×64×6Oe−6)=実効値で10ナノボルト℃。これによって、約100ppmのCO2 濃度から一般的なガス温度信号を検出することができる。
【0013】
第1図において、発光体14は、光118および119を発する。光119は、シャドウ・マスク113で遮られる。光118は層15およびウエハ11を通過する。狭帯域干渉フィルタ16を通る波長を持つ光118だけが、キャビティ20に入り、空気および/またはガス21分子に衝突することができる。そのようなガス21の吸収波長がフィルタ16を通り、ガス21に衝突する光118の波長と同じであれば、その時に、その光118はガス21で吸収され、ガス21が熱くなる。ガス21の温度の上昇が熱センサ19で感知され、熱センサ19はガス21の存在を示す信号を出力する。ガス21で吸収されない光118は非感熱領域117に当たりセンサ19に影響しない。シャドウ・マスク113のために、光118または119はセンサ19にほとんど当らない。発光体14からの光119は、薄膜15、ウエハ11および狭帯域フィルタ16を通り、マスク113に当たる。マスク113は、キャビティ20に入り熱センサ19に衝突するであろう光119をほとんど遮る。光119がセンサ19に入射すれば、センサ19が加熱し、ガスの存在を示さない固定した信号を与える。光119がセンサ19に入射すれときは、その光119による固定信号を除去し、ガス21の存在を示す本当の信号だけを通すような電子回路を使用すればよい。この動作方法は、固定信号を除去するために非常に安定な電子回路を必要とする。第6a図の別の方法では、熱センサ19の2つのアレイ121と122が使用される。両方のアレイとも赤外線フィルタ125を介して同じ発光体120で照射され、一方のアレイ121はガス21に露出しており、他方のアレイ122はガス21に露出していない。第6b図において、2つのアレイ121と122からのそれぞれ2つの信号123と124は、放射が熱センサすなわち温度検出器19に入射することで生じる固定信号を実質的に除去するために、電子的に差し引かれて差動増幅器126による信号127を与える。
【0014】
第6c図は別の差動の方法を示す。この場合には、共通のガス・キャビティ139の中の熱電センサ130の2つのアレイ128と129は、電球134と2つの異なる干渉フィルタ132と133で得られる2つの異なる波長で照射される。ここで、2つの波長は実質的に同じ強度で、一方の波長はガス131で吸収されて直接感知されるが、他方の波長は吸収されないようになっている。直接感知されるガスの濃度に依存した信号成分と共にセンサ130での放射線の入射と吸収による固定信号を含む第1の電気信号はアレイ128から取り出される。センサ130での放射線の入射と吸収による固定信号だけを含む第2の電気信号はアレイ129から取り出される。2つの信号は、それぞれリード線135と136を介して第6(d)図に示される差動増幅器137に供給され、センサ130での放射線の衝突と吸収による固定信号が実質的に除去された差し引かれた信号138を生成する。
【0015】
第6(a)図から第6(d)図に示される差動の方法で、第2信号の大きさを発光体の強度の基準として使用することができるので、発光体の強度の変化を検出でき、したがって信号を補正することができる。
非差動の方法におけるように、差動の方法で使用される熱センサにもまた放射線用マスクを設け、または反射金属層で被覆して、赤外線の直接の衝突と吸収を最小にすることができる。
【0016】
第2図は、反対の方向に通る放射線を有する光−熱ガス・センサ70の断面図である。シリコン・ウエハ46は、約5×5ミリメータ(mm)平方であり、厚さは約20ミルである。ウエハ46上にIR放射線用の加熱発光体47が形成されている。発光体47は、抵抗加熱材料を有する窒化ケイ素などの耐熱材料から作られる。発光体47の熱損失を最小にするために、溝またはピット48がウエハ46にエッチングされる。約1ミルの太さのリード線60が接点49に取り付けられ、10から100Hzの周波数でAC信号を供給して、放射線51を発生するように発光体47を活性化する。取付け材料50がチップまたはウエハ46の周囲に形成される。約25ミル厚さのシリコン・ウエハ52が真空中で取り付けられ、空間55から空気が排出される。AR被膜53がウエハ52の第1の側に形成され、4.3ミクロンの光を通す狭帯域IF多重層54がウエハ52の第2の側に形成される。AR薄膜層53は、異なる屈折率の材料を交互にする4分の1波長の厚さの約2から6層膜である。IF層54は、異なる屈折率の材料を交互にする2分の1波長の積層膜である。排気された熱的に分離した空間55を形成するために、ウエハ46上の取付け材料50をウエハ52の周囲表面に接触させて、ウエハ52とウエア46とを近接させる。
【0017】
1から2ミクロン以内の固体シリコン基板である加熱発光体47は、速い応答を有し、できるだけ高い周波数(一般には、10から100Hz)で変調され、高感度を得るために基本的なことであるが、キャビティを光で満たす。光源47が小型タングステン・フィラメント白熱灯であれば、AC励起信号の最大パルス速度は約10Hzであろう。低周波電子雑音は少ないので、周波数を高くすると一層感度がよくなる。この集積回路光源47は100Hzまで有効に繰返しまたは脈動が可能であり、センサ70の感度は向上することになる。
【0018】
シリコン検出器ウエハ69が、4.3ミクロン狭帯域光干渉フィルタ54とシリコン・ウエハ52の上に第1の表面を持って形成される。ウエハ69は、放射線51を反射するように、および素子71とガスとの熱接触を向上させるようにウエハ69の第2の表面に形成された、またはエッチングされた溝またはピット72を有する。熱電(TE)温度センサまたは検出器の層73はウエハ69上に形成される。温度感応素子71はピット72の上に形成される。素子71は、反射金属で被覆されて赤外線の直接吸収を最小にする。センサ層73の温度に感応しない放射線51に透明な部分74が、ウエハ69の第2の表面のエッチングされない部分に形成される。リード線60を介して層73との電気信号伝送のやりとりのために、電気接点75が検出器層73に形成される。取付け材料115が層73の周囲とウエハ69の第2の表面に形成される。最上部のシリコン・ウエハの蓋77が形成され、キャビティ78を形成するように取り付けられる。ガスおよび/または空気がキャビティ78に入ることができるように1つまたは複数のビアもしくはチャネルまたは穴79が形成されるか、取付けが行われる。
【0019】
光−熱ガス・センサ70の動作は、IR成分を持つ変動または脈動する放射線51の放出を含む。光51は、AR層53を通って、ウエハ52を通ってIF層54に達する。光51の一部は、例えば4.3ミクロン(CO2 検出のため)の波長の光だけを通す狭帯域薄膜層54でろ波して除去される。他の帯域波長を有するフィルタを、検出されるガスまたは流体の種類に応じて使用することができる。光の4.3ミクロン部分がウエハ69に入る。ピット72に当たる光51のほとんど全てが、光80として反射される。ウエハ69の第2の表面のエッチングされていない部分に当たる光51は、検出器部分74を通ってキャビティ78に入る。温度感応部71が入力光51の熱で影響されないように、ピット72は光51を反射する。空気および/またはCO2 等のガス67はチャネル79を介してキャビティ78に流れ込み通過する。光51の波長とCO2 の吸収波長は同じなので、光51はCO2 によって吸収され、CO2 が加熱し、センサ71が加熱して、熱を検出し、したがってCO2 の存在を検出するようになる。ガス67はキャビティ78を通過するか、キャビティに存在しているので、光51は大きさまたは強度が変動または脈動し、ガス67のCO2 を加熱させたり冷却させたりする。検出器素子71からの電気信号は、接点75およびリード線60を介してプロセッサ81に達する。プロセッサ81は、CO2 の存在と量を決定し、ガス・センサ70の直近の環境に存在する有毒ガスの存在を推定的に示す。反射光80は、プロセッサ81に行く固定信号を最小にするために、センサ素子71から遠ざけられる。第6a図、第6b図、第6c図および第6d図のような差動配列が使用されてもよい。センサ70の変更を、他の種類のガスや流体を直接感知するためにセンサ10に対する変更と同じように行ってもよい。
【0020】
ガス・センサ70を、CO2 以外の他のガスまたは流体の存在を直接に検出して示すように設計してもよい。狭帯域フィルタ54は、検出し測定する他の種類のガスの吸収波長に等しい違った波長の光51を通すフィルタに変えられるだろう。例えば、COをセンサ70で直接検出しようとすれば、4.6ミクロンの波長の光を通すように、フィルタは設計されるだろう。炭化水素(CH)結合を有するガスまたは流体(VOC)をセンサ70で直接検出しようとすれば、3.2から3.4ミクロンの波長に設計されるだろう。
【0021】
第3図は、他の光−熱ガス・センサ82を図示する。シリコン基板83はエッチ・ピット84を有する。熱電受容器85がエッチ・ピット84の上に位置付けられる。スペーサ86が基板83の上に形成されている。スペーサ86の上にシリコン基板87が配置されている。基板87の一方の表面に狭帯域干渉フィルタ88が形成される。基板87の他方の平らな表面に反射防止膜89が形成されている。フィルタ88にシャドウ・マスク90が形成され、これによって、熱電センサ85の直ぐ上の領域だけを除いて、薄膜89、基板87およびフィルタ88を通してキャビティ91に入ってくる入射光が遮られる。各シャドウ・マスク90の目的は、キャビティ91に入ってくる光92がセンサ素子85に入射するのを大部分阻止することである。放射線または光92の供給源は白熱電球93または、供給源基板またはウエハ95に形成されたマイクロ発光体のアレイ94であってもよい。光または発光体素子94を含む基板またはウエハ95を支持するために、スペーサ96が、基板87または薄膜89に形成されてもよい。スペーサ96で支持された基板95は、ウエハ87または薄膜89上に形成される時に、ウエハ95とウエハ87または薄膜89の間に熱絶縁されたキャビティを形成することなる。
【0022】
マイクロ発光体94または電球93からの光92は変調されて変動する強度またはパルス波形となっている。光92は、マイクロ発光体94が使用される場合には、熱絶縁キャビティ97を通り、電球93が使用される場合には、最初に反射防止膜89を通る。光92は薄膜89、基板87および干渉フィルタ88を通過したのち、キャビティ86に入る。検出されるガスの吸収波長以外の波長を有する光92は、狭帯域フィルタ88で遮られる。全ての波長の光がシャドウ・マスク96によって遮られ、光92が熱センサ85に当たるのを減少させる。熱センサ85を反射金属層で被覆して赤外線の直接吸収を最小にすることができる。センサ82のまわりの周囲環境の空気および/またはガス112は自由にキャビティ91に流入し流出111する。ガス112の吸収波長がフィルタ88を通る光92の波長と同じであれば、その時に光92はそのガス112によって吸収され、結果的に加熱する。ガス112の温度の上昇が熱センサ85で検出される。その吸収波長がフィルタ88を通る光92の波長と同じであるガスがなければ、ガスによる光の吸収はなく、さらにキャビティ91内のガスおよび/または空気の温度の上昇または変化はない。したがって、熱センサ85は温度の変化を検出しない。しかし、シャドウ・マスク90がなければ、その時には、光92は、キャビティ91内の温度の上昇および/または変化を検出する熱センサ85に入射し、それによって、ガスに依存する信号に加えて大きな固定した信号を与えるようになるだろう。
【0023】
第4a図、第4b図、および第4c図は、シャドウ・マスク層90と金属反射層がある場合とない場合のキャビティ91内の光92の効果を図示する。第4a図の波形は、フィルタ88を通ってチャンバ91に入ってくる光92の振幅を示す。第4b図は、シャドウ・マスク90が存在しない場合の熱センサ85の信号99を示す。その吸収波長が干渉フィルタ88を通る光92の波長と同じであるガスがチャンバ91にあれば、その時には、検出されるガスが光92を吸収する結果として上昇するチャンバ内の温度が、曲線100として曲線99に重畳される。所定の位置にシャドウ・マスク90があり、さらに反射層がある場合は、光92が熱センサ85に入射して吸収されるのを阻止するために、信号99は大部分除去される。光92からセンサ85を分離した状態で結果として得られるセンサ信号は、第4c図に示される信号100となる。
【0024】
センサ85からの信号は増幅器102それからロックイン増幅器103に達する。電源104は、電球93またはマイクロ発光体94に供給されて脈動するまたは変動する強度の光92を与えることになる電気信号105を出力する。また、信号105は、ロックイン増幅器103に帰還される。ロックイン増幅器103の信号出力は、キャビティ91で検出されたしたがってセンサ82の周囲環境のガスの濃度量を示す。増幅器103の信号はプロセッサ106に達し、プロセッサ106が、直接検出されたガス、例えばCO2 、の量から、微細加工推論型有毒ガス指示器82の直ぐまわりの周囲環境に存在する様々な有毒ガスの存在および量を推測的に決定する。また、プロセッサ106は、センサ82のまわりの現在または過去の化学的または物理的活量を推定する。また、将来の化学的または物理的活量を予告することもできる。プロセッサ106は、他のガスまたは流体のある濃度量の存在を推定する、特定のガスまたは流体のある濃度量を示す情報テーブルを持つことができる。CO2 などの検出される濃度量が、他の推定されるガスまたは流体のある濃度量よりも最大で数桁大きいので、キャビティ91の中の特定のガスまたは流体のある濃度量の存在によって、他のガスまたは流体のある濃度量の存在がより正確に推定される。
【0025】
第5図は、熱−電センサ85の製造を示す。シリコン基板83は、検出器85を熱的に分離するためのエッチ・ピット84を有する。熱電センサ85の微細加工アレイが薄膜金属107と108を部分的に重ね合わせることで形成される。それらは、シリコン基板83に形成される窒化ケイ素109の層の間に形成される。金属層107と108のセンサ部は、カット110で区画され、エッチ・ピット84の上に位置付けられた金属層107と108の間の部分的な重なりおよび接触の領域として分離されている。金属反射層(金)を、熱−電センサ85による放射線の直接吸収を減少させるために適用する(109a)ことができる。
【図面の簡単な説明】
【0026】
【図1】微細加工推論型光−熱ガス・センサを示す図である。
【図2】推論型光−熱ガス・センサの別の設計を示す図である。
【図3】光−熱ガス・センサのさらに別の設計を示す図である。
【図4】熱センサの光信号と熱信号の波形図である。
【図5】熱センサ素子の構造の図である。
【図6a】差動方法でのセンサの動作を示す図である。
【図6b】差動方法でのセンサの動作を示す図である。
【図6c】差動方法でのセンサの動作を示す図である。
【図6d】差動方法でのセンサの動作を示す図である。

【特許請求の範囲】
【請求項1】
半導体材料に形成された少なくとも1つのマイクロ発光体と、
前記少なくとも1つのマイクロ発光体の近くの前記半導体材料に形成された第1の波長のフィルタと、
前記フィルタの近くに、前記半導体材料に形成された少なくとも1つのピットであって、そのピットに入射する放射線を実質的に反射する少なくとも1つのピットと、
前記少なくとも1つのピットの上に位置付けられた少なくとも1つの熱センサと、
前記少なくとも1つの熱センサの近くに、前記半導体材料に形成されたキャビティであって、前記センサのまわりの周囲環境からガスまたは流体が前記キャビティに入りならびに/あるいは前記キャビティを出るように少なくとも1つの開口を有するキャビティとを含むガス/流体センサ。
【請求項2】
前記少なくとも1つの熱センサが、前記ガスまたは流体の温度変化の大きさを示す信号を出力し、さらに、
前記温度変化の大きさが、前記キャビティの、結果的に前記ガス/流体センサの周囲環境の前記ガスまたは流体の濃度量を示す請求項1に記載のガス/流体センサ。
【請求項3】
さらに、プロセッサを含み、
前記第1の波長に吸収波長を有する前記ガスまたは流体の濃度量を示す前記少なくとも1つの熱センサからの信号が、前記プロセッサに行き、さらに、
前記プロセッサが、前記少なくとも1つの熱センサからの信号を処理し、他のガスまたは流体の存在、ならびに/あるいは将来または現在または過去の化学的または物理的な活量を示す推定情報を提供する請求項2に記載のガス/流体センサ。
【請求項4】
前記プロセッサが、他のガスまたは流体のある濃度量の存在を推定する特定のガスまたは流体のある濃度量を示す情報のテーブルを含み、さらに、
他のガスまたは流体のある濃度量の存在が、前記特定のガスまたは流体のある濃度量の存在によって、後者の濃度量が他のガスまたは流体のある濃度量よりも最大で数桁大きいために、より正確に推定される請求項3に記載のガス/流体センサ。
【請求項5】
前記第1の波長がCO2 の吸収波長にあり、さらに、
CO2 の存在がある燃焼生成物の存在を示す請求項4に記載のガス/流体センサ。
【請求項6】
さらに、前記半導体材料に形成された集積回路を含む請求項5に記載のガス/流体センサ。
【請求項7】
前記集積回路が前記プロセッサを含む請求項6に記載のガス/流体センサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6a】
image rotate

【図6b】
image rotate

【図6c】
image rotate

【図6d】
image rotate


【公開番号】特開2008−180724(P2008−180724A)
【公開日】平成20年8月7日(2008.8.7)
【国際特許分類】
【出願番号】特願2008−31566(P2008−31566)
【出願日】平成20年2月13日(2008.2.13)
【分割の表示】特願平10−547271の分割
【原出願日】平成10年4月28日(1998.4.28)
【出願人】(500035052)ハネウエル・インコーポレーテッド (2)
【Fターム(参考)】