説明

コヒーレント積分を用いた信号検出器

【課題】より短い時間で生じる相関データの中でターゲットSNRを達成する。
【解決手段】所望の信号のコンプレックスサンプルが仮説を表すデータと、乗算器38で乗算され、その乗算結果のデータが、仮説と信号の間の相関レベルを表す相関データを提供する所望の継続時間にわたってコヒーレント積分器40で、コヒーレントに積分される。

【発明の詳細な説明】
【技術分野】
【0001】
(技術分野)
本発明は、相関分析を用いた信号検出に関し、特に、ターゲット信号対雑音比(SNR)を迅速に達成するためにコヒーレント積分器を相関分析に利用した信号検出の分野に関する。
【背景技術】
【0002】
(背景技術)
グローバルポジショニングシステム(GPS)は24基の軌道衛星の集合体である。各GPS衛星は、地球の表面から約11,000マイルの上空の軌道を周回する。GPS受信器は、少なくとも3つの衛星を自動追跡し、それに応じて、その正確な位置を測定することができる。各衛星は、固有の擬似ノイズ(PN)コードで調整された信号を送信する。各PNコードは、1.023MHzのチップ速度に対応しているmS毎に繰り返される1023チップのシーケンスである。各衛星は同じ周波数で送信する。公衆の適用については、周波数がL1として知られており、1575.42MHzである。GPS受信器は、受信器から可視状態にある複数の衛星からの送信信号を混在した形で受信する。受信器は、受信される信号を衛星毎のPNコードのシフトバージョンと関連づけることにより、特定の衛星からの送信であることを検出する。相関のレベルが十分に高い場合、特定のシフトPNコードを達成する相関の値にはピークがあり、受信器は特定のPNコードに対応する衛星の送信を検出する。その後、受信器は、衛星からの次なる送信との同期を達成するためにシフトPNコードを使用する。
【0003】
受信器は、衛星からの送信のコード位相の決定により、衛星からの距離を決定する。コード位相(CP)は、衛星からの送信が衛星から地表への約11,000マイルを移動する際のチップ、チップの断片の遅延である。受信器は、ドップラーシフトの補正後の受信信号と衛星のPNコードのシフトバージョンとを相関することにより、特定の衛星のコード位相を決定する。衛星のコード位相は、受信信号との相関度を最大限にシフトすることにより決定される。
【0004】
受信器は、衛星のコード位相を時間遅延に変換する。そして、時間遅延に衛星からの送信の速度を乗算することにより、衛星からの距離を決定する。受信器は、さらに衛星の各々の正確な軌道を識別する。衛星の位置情報の更新は、各衛星から受信器に送信される。これは、衛星から送信されるPNコード上に低周波(50Hz)のデータ信号を調整することにより遂行される。データ信号は、衛星の位置情報をコード化する。受信器は、この情報を利用し、受信器が位置するはずの衛星を取り囲む球体範囲を定義する。この球体範囲の半径は、受信器がコード位相から決定した衛星と受信器の距離と等しい。受信器は、少なくとも3つの衛星に対し、このプロセスを実行する。受信器は、定義した少なくとも3つの球の交点から、受信器の正確な場所を導き出す。
【0005】
ドップラーシフト(DS)は、line-of -sight(LOS)に沿った、衛星と受信器の相対的運動により生じる信号の周波数シフトである。周波数シフトは、VLOS /λにより導き出される。VLOS は、line-of -sight(LOS)に沿った、衛星と受信器の相対的運動の速度であり、λは送信の波長である。ドップラーシフトは、受信器と衛星がLOSに沿って互いに近づく方向にある場合はポジティブであり、遠ざかる方向にある場合はネガティブである。ドップラーシフトは、その実効値から衛星の送信のコード位相を変更する。従って、相関分析によって衛星のコード位相を決定することを試みる前に、GPS受信器は、ドップラーシフトによる衛星の送信の補正を行わなくてはならない。
【0006】
図1は、GPS受信器10と、3つのGPS衛星12a、12b、12cの状況を示す。各衛星12a、12b、12cはGPS受信器10に送信している。衛星12aは、LOSに沿って、速度va+14でGPS受信器10へ近づいている。衛星12bは、LOSに沿って、速度vb+16でGPS受信器10から遠ざかっている。衛星12cは、LOSに沿って、速度vc+18でGPS受信器10から遠ざかっている。従って、搬送波長をλと仮定すると、衛星12aからの送信はポジティブなドップラーシフトva+ /λを、衛星12bからの送信はネガティブなドップラーシフトvb- /λを、衛星12bからの送信はネガティブなドップラーシフトvc- /λを生じる。
【0007】
GPS受信器は、定義されたサンプリングウインドウ上にて受信信号20をサンプリングし、サンプルを処理する。サンプリングウインドウの継続時間は、ターゲット信号対雑音比(SNR)を達成するために選択される。ターゲットSNRは衛星の存在および範囲が正確に検出されることを可能にするために選択される。継続時間が短すぎると、信号は、他の仮説により検定された相関値よりも著しく大きい、特定の仮説セットによる結果との相関値を示さない可能性がある。サンプリングウインドウの継続時間は、受信信号20の信号対雑音比を増加させるために延長され、それにより受信器から可視状態にある衛星の存在および範囲を正確に検出することが可能となる。
【0008】
GPS搬送の両位相PN変調に加えて、さらに50Hzのデータ変調がある。このデータ変調は、衛星軌道に関する情報を搬送する。ナビゲートのために、システムはこのデータを収集し、時間の関数を用いて衛星の位置を計算する。これは、PNコード位相から衛星の範囲を決定するために必要な情報の一部である。50Hzにおいては、20mSあるいはデータエポックごとに未知の位相フリップを生じる。GPS受信器は、GPS衛星群の特定の衛星との同期を達成し、次に、連続的なトラッキング動作方式において同期を維持する。しかしながら、建物の内部からの使用、断続的もしくはコードトラッキングオンリーモードの時のように消費電力が低いもしくは本質的にC/Noが低い場合、トラッキングループ帯域幅を縮小し、ループSNRを維持する。例えば、C/Noが26-28 dB-Hz以下に落ちた場合、データ収集およびキャリアトラッキングは、もはや不可能である。また、GPS受信器は、ビット同期を導くための50Hzのデータ・ストリームを受信することができない場合、モードをコードトラックオンリーモードに変更する。
【0009】
これらの場合、先行技術受信器においては、所望の信号の仮説とサンプルのセグメントをかけ、サンプリングウインドウの継続時間のプロダクト値を非コヒーレント積分することにより、所望の信号または、所望の信号のパラメータを検出することを試みた。データエポックの位相反転が未知であることから、非コヒーレント積分を利用し、対辺の位相反転の値は引き算をする。結果は望まれるような増加ではなく積分時間を備えた信号電圧の減少である。典型的な実施においては、プロダクト値の連続する振幅が加えられ、また、連続値によって表わされる位相情報は無視される。結果はサンプルのセグメントと仮説の間の相関度の基準としての相関値である。
【発明の開示】
【発明が解決しようとする課題】
【0010】
問題は、プロダクト値によるノイズが振幅を持っていることから、プロダクト値が加算される場合、非コヒーレント積分により各ノイズの振幅が最終的には漸増的に蓄積されることである。言いかえれば、連続の間隔からのノイズは、前の間隔からのノイズをキャンセルすることはできない。連続する値のノイズ振幅が加えられることから、最終的な相関値におけるノイズの累積結果による影響は非常に重大なものといえる。
【0011】
ノイズの累積結果により、ターゲットSNRを達成するためにはサンプリングウインドウの継続時間を本質的に増加させなければならない。その結果、GPS受信器が可視状態にある衛星と同期を達成するのに必要な時間は、劇的に増加する。さらに、受信器が消費する電力も劇的に増加する。その問題は、移動無線器にGPS受信器を統合する場合に特に顕著となる。そのようなデバイスによる過度の電力の消費はバッテリーを消耗し、無線器の利用可能な呼び出し時間を減少する。
【0012】
従って、先行技術の欠点を解決する信号検出器が必要である。同様に、先行技術の欠点を解決するGPS受信器が必要である。
【課題を解決するための手段】
【0013】
(発明の開示)
本発明の目的を以下に記述する。本発明は、受信信号中の所望の信号もしくは所望の信号のパラメータに関する仮説を検定する相関分析を用い、また仮説と受信信号間の相関度の相関値を導き出すためにコヒーレント積分を用いた信号検出器を提供する。受信信号は、ノイズまたは擬似ノイズによって乱された所望の信号を含む。受信される信号の正確な構成は受信器で未知である。受信器は、相関分析によって、受信信号中の所望の信号もしくは所望の信号のパラメータの存在についての様々な仮説を検定する。相関値のピークを産出する仮説は正確な仮説として選択される。
【0014】
本発明は、低いC/No、デューティサイクル、あるいは、GPS波形が連続的に追跡されないGPS受信器の低消費電力オペレーションに特に適用される。ビット同期、データエポックの所在およびデータエポックの位相反転は、GPS波形そのものから導き出されるのではなく、セルラー電話ネットワーク、基地局あるいはそれと同等のもののような他の情報源より導き出され、GPSシステムに関するタイミング情報を提供することができる。
【0015】
第1の実施例では、仮説のデータ類型は、定義された継続時間に関する受信信号のコンプレックスサンプルに乗算される。コンプレックスサンプルは、実数と虚数および振幅と位相を持つ。サンプルのコンプレックス和は、コヒーレントに決定され、各サンプルが持つ位相情報などの定義された継続時間による結果としてのプロダクト値にともに追加される。また、それは各プロダクト値に影響され、保持される。形成された相関値は、コンプレックス相関値である。
【0016】
第2の実施例では、所望の信号はフレームに分割され、フレーム間の境界で位相反転に従う。受信信号のサンプルのセグメントは、所望の信号のフレーム境界をクロスする場合もある。この第2の実施例では、検出器が位相反転を検出し、それに対し、フレーム中のサンプルの符号をフリップする。これは、コヒーレント積分がフレーム境界をクロスすることを可能にする。
【0017】
第3の実施例では、所望の信号は再びフレームに分割され、フレーム間の境界で位相反転に従い、検出器がフレーム境界を検出するが、位相反転が境界で生じたかについては検出しない。この実施例では、コヒーレント積分がフレーム境界で実行され、結果は、検定された仮説のための一時的なストレージに蓄えられる。その後、コヒーレント積分は、フレーム境界の反対側の始まりから実行される。実行後、一時的なストレージに格納された値は、現行値と非コヒーレントに組み合わされる。
【0018】
第4の実施例では、所望の信号はフレームへ再び分割され、フレーム境界で位相反転に従う。検出器はフレーム境界を検出するが、位相反転については必ずしも検出しない。この実施例によれば、コヒーレント積分はフレーム境界で実行され、フレーム境界において所望の信号位相についての別の仮説下においてコヒーレント積分は継続して行われる。1つの代替の仮説によれば、位相は同じであると仮定される。別の代替の仮説によれば、位相はフレーム境界でフリップされたと仮定される。積分が完了すると、積分の最大値を産出する位相仮説が正確な仮説であると仮定される。
【0019】
1つの適用においては、本発明の信号検出器はGPS受信器の一部となる。この実施例では、GPS受信器は、無線周波数(RF)受信器、サンプリング回路、タイミング回路、PNコード発生器、整合フィルタおよびGPSプロセッサから構成される。RF受信器は、ベースバンド信号を得るために受信信号を復調する。サンプリング回路は、タイミング回路により形成されるタイミング信号に応じて、定義されたサンプリングウインドウに得られたベースバンド信号のサンプルのセグメントを提供する。整合フィルタは、複数のPNコード、ドップラーシフトおよびコード位相仮説に従い、サンプルのセグメントを処理する。
【0020】
1つの実施例では、所望の信号はより低い周波数のバイナリデータ信号によって調整された、繰り返しのPNコードである。このデータ信号はフレームを定義する。データ値がフレーム境界で状態を切り替える場合、所望の信号は位相反転に従う。
【0021】
この実施例では、整合フィルタがサンプルのセグメントを一度に処理し、セグメントはフレーム境界をクロスする可能性もある。1つの実施例において、セグメントの継続時間はフレームのそれである。それゆえ、各セグメントは多くても1つのフレーム境界をクロスするだろう。
【0022】
この実施では、整合フィルタが、PNコード、ドップラーシフトおよびコード位相仮説の様々な組合せをサンプルのセグメントと関連させることにより派生した相関データを出力する。この実施によれば、相関データは、特定の仮説および仮説の範囲の様々な組合せに相当するグループへグループ化される。1つの実施例において、相関データは複数の配列から構成される。各配列はPNコード仮説に相当し、配列の各行はドップラーシフト仮説に相当する。配列の各列はコード位相仮説に相当する。また、配列中の各エントリは、サンプルのセグメントのエントリ相関に対応するPNコード、ドップラーシフトおよびコード位相仮説を組み合わせた基準である。
【0023】
PNコード発生器は、PNコード仮説を生成し、整合フィルタに入力値として提供される。1つの実施例では、ドップラーシフト仮説が、整合フィルタ内部に生成される。GPSプロセッサはサンプリング回路にデータ獲得コマンドを発送し、整合フィルタは、サンプルのセグメントを獲得するためにサンプリング回路に命令し、サンプルのセグメントを処理するために整合フィルタに命令する。
【0024】
1つの実施例では、サンプルがコンプレックスサンプルである。また、サンプルの各セグメントはインクリメントの部分あるいはサブセグメントに分割され、一度に1つのサブセグメントが処理される。1つの実施では、サブセグメントの継続時間が、フレーム内のサブセグメントフィットの積分値として選択される。1つの実施例において、コンプレックスサンプルの与えられたサブセグメントの処理に起因する相関データは、多くの複雑な配列を含み、各配列は特定のPNコード仮説に相当し、配列の各行は特定のドップラーシフト仮説に相当する。累積的な相関配列は、第1のサブセグメントの相関配列で維持され初期化される。その後、第2のサブセグメントの相関配列は、複雑な追加を通じて累積的な相関配列と一度に1つの配列エレメントを結合する。そのプロセスは、サンプルのセグメント中の各サブセグメントについて継続する。
【0025】
1つの実施では、検出回路が、フレーム境界のデータ信号によって課されたフレーム境界および位相反転を検出する。検出回路がフレーム境界で位相反転を示す場合、続いて起こるサンプルの位相が反転にされる。1つの実施例において、これは、ドップラーシフトのために修正するべきドップラー発生器によって生成されたコンプレックスフェーザの符号をフリップすることにより遂行される。コンプレックスミキサは受信信号のコンプレックスサンプルにコンプレックスフェーザを乗算する。コンプレックスフェーザの符号をフリップすることによって、続いて起こるサンプルの符号は有効に反転される。コヒーレント積分は、このようにフレーム境界を越えて続行するかもしれない。
【0026】
第2の実施では、検出回路はフレーム境界を検出するが、必ずしもフレーム境界での位相反転を検出しない。この実施では、コヒーレント積分がフレーム境界まで実行され、結果は一時記憶域に格納される。その後、累積的なデータはリセット、コヒーレント積分はフレーム境界の反対側に再開される。これが完了した場合、一時記憶域中の結果はセグメントの開始部分にわたってコヒーレント積分を表わす。また、現在の累積的な値は、セグメントの別の残る部分上のコヒーレント積分を表わす。
【0027】
第2の実施によれば、これらの結果は非コヒーレントに組み合わせられる。1つの実施例において、手順は、実数と虚数の各値の平方の和の平方根をとって、各々のコンプレックス相関値の振幅がどれによって決定されるかに使用される。この手順は、セグメントの第1の部分を表示する一時記憶域中の各相関値、およびセグメントの第2の部分を表す各相関値のために使用される。その後、振幅値は、第1と第2の部分のためにともに対応する値を単に加えることにより組み合わせられる。
【0028】
第3の実施では、検出回路器が再びフレーム境界を検出するが、必ずしもフレーム境界での位相反転を検出しない。再び、コヒーレント積分はフレーム境界まで実行される。その後、結果は、位相反転に関する多くの代替仮説のために模写される。1つの実施例において、結果は一度模写され、位相反転に関する代替仮説に対応する、2つの積分のトータルが並行して実行される。この実施例によれば、1つの仮説は、位相がフレーム境界を越えて不変であるということであり、他方は、位相がフレーム境界を越えてフリップしたということである。その後、コヒーレント積分は、代替位相仮説と調和して並行して導かれている多数の積分をフレーム境界を越えて続ける。このプロセスの結論では、決定は、どの位相仮説が最も大きな相関値を生ずるによってなされる。その後、そうする位相仮説は正確な仮説として選択されている。また、この位相仮説に対応する相関値は、含まれていた他の仮説に正確なものとして選ばれる。
【0029】
所定の仮説のためのプロダクトデータをコヒーレントに積分することによって、本発明は、より短い量の時間で生じる相関データの中でターゲットSNRを達成することができる。その理由は、連続の信号サンプルを乱すノイズの連続のサンプルが、それの位相情報がコヒーレント積分によって考慮される場合にそれ自体を相殺する傾向にあるからである。その結果は、本発明の実施の形態に係る信号検出器またはGPS受信器がより速く、先行技術の検出器および受信器より少ない力を消費するということである。
【0030】
オペレーションおよびコンピュータ読取り可能な媒体に関連する方法も提供される。
【発明を実施するための最良の形態】
【0031】
(発明を実施するための最良の形態)
I. 信号検出器の第1の実施の形態
本発明の趣旨に従い、信号検出器の実施形態の第1の例のブロック・ダイヤグラムを、図2に示す。図に示すように、信号検出器30は、信号を受信するために構成された受信器32を含み、それのサンプルを提供する。信号は、ノイズによって乱された所望の信号を含むことが想定される。また、スペクトル拡散環境に従って、信号は、複数の擬似ノイズ(PN)コードのうちの1つを使用して、各々コード化もしくは調整された所望の多重信号の組合せを含むことが想定される。この場合、他の信号は、特定の所望の信号へのノイズとして現われる。信号のサンプルは、各々実数と虚数、あるいは等しく、振幅と位相を有する。1つの実施では、信号の各サンプルが、次の形式: I+jQの複素数として表わすことができる、in-phase(I)およびquadrature(Q)コンポーネントを持っている。
【0032】
仮説発生器34は、所望の信号に関する複数の仮説を発生する。相関器36は、乗算器38およびコヒーレント積分器40から構成される。コヒーレント積分器40は仮説発生器34から複数の仮説を、および受信器32より受信信号のサンプルを受信する。そしてそれに応じて、受信信号のサンプルのプロダクトデータ類型、および多くの生成された仮説のデータ類型を生成する。
【0033】
プロダクトデータは、コヒーレント積分器40により提供される。それは定義された継続時間の所定の仮説のためのプロダクトデータをコヒーレント積分する、すなわち、コヒーレント積分器40は、所定の仮説のためのプロダクトデータに反映される受信器32からのサンプルのための位相情報を考慮する。プロダクト値は、各々実数と虚数あるいは、振幅と位相を有する。そして、コヒーレント積分は、プロダクト値の実数と虚数および等しく振幅と位相を別々に積分することにより達成される。その結果、相関値は実数と虚数および、振幅と位相を有する。また、受信信号との相関度を測定するために仮説が与えられる。
【0034】
先の手順は、仮説発生器34により発生した所望の仮説の各々について繰り返される。その結果、複数の相関値がコヒーレント積分器40によって各々出力され、それぞれが所定の仮説、実数と虚数および振幅と位相から成る。その後、これらの相関値は解析され、応じて、検定された仮説のうちのひとつが正確なものとして選択される。1つの実施では、他の相関値より明らかに大きい振幅を持つ相関値を選択することによるピーク検出によって遂行される。その後、この相関値に対応する仮説は正確な仮説として選択される。
【0035】
本発明の趣旨に従う先の実施形態に関する信号検出器のオペレーションの方法のフローチャートを、図3に示す。図に示すように、プロセスは、信号のサンプルのセグメントを受信するステップ50で始まる。典型的には、信号は、ノイズまたは擬似ノイズによって乱された所望の信号から構成される。
【0036】
次に、ステップ52において、複数の仮説が検定のために生成される。次に、ステップ56において、信号のサンプルとステップ54において選択された仮説のデータ類型の間のプロダクトが形成される。
【0037】
次に、ステップ58において、ステップ56から得られたプロダクトデータは、定義された継続時間に対しコヒーレント積分される。そして、ステップ60において、ステップ58で実行されたコヒーレント積分より相関値が導き出され、仮説のために保存される。次にステップ62において、ステップ52で生成された複数の仮説のうち検定が必要な仮説がさらにあるかについて決定を行う。もしある場合は、ステップ54にジャンプし、検定が必要な仮説について、この段階からの処理を再度実行する。ない場合は、処理を終了する。
【0038】
II. 信号検出器の第2の実施の形態
本発明の趣旨に従い、信号検出器の実施形態の第2の例のブロック・ダイヤグラムを、図4に示す。各要素は番号で識別する形で図2と比較することができる。
【0039】
この実施形態において、受信器32は信号を受信する。信号は典型的にはノイズあるいは擬似ノイズによって乱された所望の信号である。所望の信号は、定義されたフレーム境界で生じる位相反転に従う。1つの実施では、これらの位相反転は、搬送信号上に調整された、繰り返しのPNコードを含むより高い周波数信号上に調整される低周波データ信号により生じる。受信器32は信号をサンプリングし、コヒーレント積分器38と、相関器40から構成される乗算器38にサンプルを提供する。前述と同様、仮説発生器34は検定のための複数の仮説を生成し、同様に乗算器8に提供する。乗算器38は、仮説発生器34によって生成された仮説および受信器32からのサンプルに応じて、サンプルと仮説の各々の間にプロダクトを形成し、コヒーレント積分器40にプロダクトデータを提供する。
【0040】
位相反転検出器70もまた提供される。1つの実施では、それは信号検出器の外部である。別の実施では、それは信号検出器の内部である。位相反転検出器が信号検出器の内部にある場合、位相反転検出器は、受信信号に関する受信器32からの受信タイミングおよび他の情報を受信、それに応じて、所望の信号がフレーム境界で位相反転を起こすことを検出する。この情報は、コヒーレント積分器40に提供され、乗算器38によって提供されるプロダクト値をコヒーレント積分するため使用される。
【0041】
位相反転検出器が信号検出器の外部にある場合、位相反転検出器は、サンプルが由来する波形以外の情報源(ソース)から位相反転を検出する。1例において、位相反転検出器はcellularかPCS電話の一部であり、移動通信網において電話サービスを行う基地局からのタイミング情報に基づき位相反転を検出する。
【0042】
コヒーレント積分器40は、乗算器38からプロダクト値を受信し、位相反転情報を位相反転検出器70から受信する。そして、それに応じて、所定の仮説に対するプロダクト値をコヒーレント積分し、フレーム境界で生じる可能性のある位相反転を調節する。位相反転は、位相反転に従わないプロダクト値から蓄積された偏相関値を破壊的にではなく創造的に追加することを確実にするために起こる。1つの実施では、位相反転検出器70による位相反転の検出に対し乗算器38へのサンプル入力の符号をフリップすることにより遂行される。その後、コヒーレント積分器40は、仮説発生器34で生成される仮説ごとの相関値を提供し、各相関値は、位相反転検出器70によって検出された位相反転を考慮し決定される。
【0043】
先の実施例に従う信号検出器のオペレーションの方法を、図5に示す。図に示すように、プロセスは、信号のサンプルのセグメントを受信するステップ80で始まる。典型的には、信号は、ノイズまたは擬似ノイズによって乱された所望の信号から構成される。所望の信号は、定義されたフレーム境界で生じる位相反転に従う。次に、ステップ82において、所望の信号または所望の信号のパラメータに関する複数の仮説が生成される。次にステップ84において、ステップ82で生成された仮説のうちのひとつが検定のために選択される。その後、受信されるサンプルは、インクリメントの部分あるいはサブセグメントに分割される。
【0044】
次にステップ86において、サンプルの次のインクリメント部分およびステップ84で選択された仮説のデータ類型間のプロダクトが形成される。次にステップ88において、コヒーレント積分が、ステップ86から得られたプロダクト値に関して実行される。次にステップ90において、サンプルのインクリメント部分がフレーム境界にあるか、また位相反転がフレーム境界にあるかについて決定を行う。両方の条件が存在する場合、ステップ92が実行される。そうでない場合、そのプロセスは、ステップ92を介さずに、ステップ96に直接移る。
【0045】
ステップ92において、サブセグメントのプロダクト値が蓄積された値に対して破壊的にではなく構造的に追加することを保証する位相反転を考慮して、調節が行われる。1つの実施例では、このステップは、次の位相反転が検出されるまで後に続くサンプルの符号をフリップすることを含む。その後、そのプロセスはステップ96に移る。
【0046】
ステップ96において、選択仮説に対し積分が完全であるか、すなわち選択仮説のためにこれから処理される受信サンプルのインクリメント部分があるかについて決定を行う。積分が完全でない場合、プロセスはステップ86にジャンプし、プロセスはこの時点から繰り返される。仮説に対し積分が完全な場合、ステップ98が実行される。ステップ98において、仮説に対する相関値は積分により導き出され、格納される。その後、ステップ100が実行される。ステップ100において、複数の仮説のうち検定が必要な仮説がさらにあるかについて決定を行う。もしある場合は、ステップ84にジャンプし、検定が必要な仮説について、この段階からの処理を再度実行する。ない場合は、処理を終了する。
【0047】
III. 信号検出器の第3の実施の形態
本発明の趣旨に従い、信号検出器の実施形態の第3の例のブロック・ダイヤグラムを、図6に示す。各要素は番号で識別する形で図2、図4と比較することができる。この実施形態において、図4と同様に受信器32は信号を受信する。信号は典型的にはノイズあるいは擬似ノイズによって乱された所望の信号である。
【0048】
また、所望の信号は、定義されたフレーム境界で生じる位相反転に従う。受信器32は乗算器38に信号のサンプルを提供する。仮説発生器34は、検定のための複数の仮説を生成する。相関器36は、乗算器38、コヒーレント積分器40、非コヒーレント積分器110から構成される。乗算器38は、仮説発生器から仮説を、受信器32からサンプルを受信し、サンプルのプロダクトのデータ類型および検定のための各仮説についてデータ類型を形成する。
【0049】
フレーム検出器112は、信号検出器の一部として内部的に、あるいはセルラーもしくはPCS電話からのように外部的に提供される。フレーム検出器が、シグナル検出器の内部にある実施例の場合、フレーム検出器は、受信器32からタイミング情報を受信し、それに応じて、フレーム間の境界を検出する。また、この情報を含む信号をコヒーレント積分器40に提供する。フレーム検出器が、シグナル検出器の外部にある実施例の場合、フレーム検出器は、サンプルに由来する波形以外の情報源から、タイミング情報を受け取る。1つの実施例として、このタイミング情報はセルラー、ワイアレスもしくはPCSネットワークから得られる。コヒーレント積分器40は、乗算器38からプロダクト値を受信し、フレーム検出器からフレーム境界情報を受信し、それに応じて、フレーム境界までの所定の仮説に対し、プロダクト値のコヒーレント積分を行う。フレーム境界が検出されると、一部の積分値は仮説のための一時的な場所にストアされ、それから一部の積分値は仮説用にリセットされる。それから、コヒーレント分析は、フレーム境界の反対側のサンプルに対し再開される。もう一方のフレーム境界が検出される場合、先のものが繰り返される。この手順は、検定のための仮説の各々について繰り返される。
【0050】
この時点において、各仮説について複数の相関値がストアされる。各相関値はクロスしないフレーム境界間のプロダクト値のコヒーレント分析を示す。この情報は、その後、非コヒーレント積分器110に提供される。非コヒーレント積分器110はこの情報を受信し、それに応じて、非コヒーレントにコヒーレント積分値と所定の仮説を組み合わせる。1つの実施では、各積分値は、実数と虚数を有し、積分値の振幅は、実数と虚数の平方の和の平方根により得られる。所定の仮説に対する振幅値は、所定の仮説に対する相関値に到達するために、ともに追加される。先の手順は、各仮説に対し繰り返される。
【0051】
この第3の実施形態に従う信号検出器のオペレーションの方法を、図7に示す。ステップ120において、信号のサンプルのセグメントを受信する。ステップ122において、所望の信号に関する複数の仮説が生成される。ステップ124において、ひとつの仮説が選択される。ステップ126において、サンプルと仮説のデータ類型との間のプロダクトが形成される。その結果得られるプロダクト値は、複数のインクリメントの部分とサブセグメントに分割される。
【0052】
ステップ128において、選択された仮説に対するプロダクト値の次のインクリメント部分が、コヒーレントに積分される。ステップ130において、フレーム境界が検出されるかの決定が行われる。検出された場合、ステップ132が実行される。検出されなかった場合、ステップ132は回避され、ステップ134を直接実行する。
【0053】
ステップ132において、仮説に対する現在の積分値は、それまでのフレームに対し得られたそれまでの積分値と非コヒーレントに組み合わされる。1つの実施では、現在の積分値の振幅は、実数と虚数の平方の和の平方根、もしくは実数と虚数の平方の和により得られる。この値は、それまでのフレームに対し得られた振幅に追加される。
【0054】
ステップ134において、選択仮説に対し積分が完全であるかについて決定を行う。積分が完全でない場合、プロセスはステップ128にジャンプし、プロダクト値に対する次のインクリメント部分に対し、プロセスはこの時点から繰り返される。仮説に対し積分が完全な場合、ステップ136が実行され、仮説に対する相関値は積分により導き出され、格納される。その後、ステップ138において、複数の仮説のうち検定が必要な仮説がさらにあるかについて決定を行う。もしある場合は、ステップ124にジャンプし、ない場合は、処理を終了する。このプロセスの結果、複数の相関値が、検定された各仮説に対応する相関値とともに利用可能となる。
【0055】
IV. GPS受信器における信号検出器の適用
先の信号検出器をGPS受信器等の様々な場合に対し、有益に適用することについて熟考を行う。本発明は、低いC/N0 あるいはデューティサイクル、GPS波形が連続的ではなく断続的に追跡されるようなGPS受信器の低消費電力オペレーションに特に適用される。このような適用では、ビット同期、データエポックの位置、データエポックの位相反転についての情報は、GPS波形そのものから直接利用することはできない。しかしながら、セルラー、PCS電話ネットワーク、基地局、あるいはGPS衛星に保持されている原子時計と同期されているローカルクロックのような別のソースから導き出さなければならない。本発明の趣旨に従うGPS受信器の1実施形態を、図8に示す。図に示すように、受信器は、無線波長(RF)受信器300、サンプリング回路308、タイミング回路307、PNコード発生器312、整合フィルタ310、GPSプロセッサ303から構成される。1つの実施例では、GPS受信器300によって受信される信号は、受信器から可視状態にある各衛星からの複数の信号から構成される。各衛星の信号は、衛星ごとに特有のPNコードの繰り返しを含む。各PNコードは、1.023MHzのチップ速度に対応しているmS毎に繰り返される1023チップの繰り返しから構成される。各衛星の信号は、50Hzのデータ信号で調整される。各データ信号は、20mSごとにフレームを定義する。データ信号の1つの目的は受信器に衛星の位置情報を伝えることである。
【0056】
データ信号は20mS毎、すなわちフレーム境界において状態を変更することができる。データ信号が状態を変更する場合、基礎をなす信号は位相反転を起こす。データ信号が同じのままである場合、基礎をなす信号の位相は同じままである。
【0057】
RF受信器セクション300は、信号ライン302を通してサンプリング回路308に提供されるベースバンド信号を得るために、受信信号を復調する。サンプリング回路308は、タイミング回路307により形成されたタイミング信号に応じて、定義されたサンプリングウィンドウ上のベースバンド信号のサンプルのセグメントを提供する。サンプルのセグメントは、信号ライン309を通して整合フィルタ310に提供される。整合フィルタ310は、複数のPNコード、ドップラーシフトおよびコード位相仮説に従い、サンプルのセグメントを処理する。複数のPNコード、ドップラーシフトおよびコード位相仮説が使用される場合、最大の相関値によって仮説を選択する処理方法を図9に示す。ステップ360において、コンプレックスサンプルのセグメントが受信される。ステップ362において、PNコード、ドップラーシフトおよびコート位相仮説が生成される。ステップ364において、仮説が選択され、ステップ366において、仮説の相関値が導き出される。ステップ368において、よし多くの仮説が必要かどうかについて決定がなされる。必要な場合、ステップ364にジャンプし、上記のプロセスが継続される。必要でない場合、ステップ370において、最大の相関値を持った仮説を選択する処理が実行される。1つの実施例を図11に示す。サンプルの各セグメントについて、整合フィルタはサンプルのセグメントから導き出されたデータの相関配列500、501、502を出力する。この実施によれば、各配列500、501、502は各PNコード仮説、PN1、PN2…PNrに相当し、配列500、501、502の各行は、ドップラーシフト仮説、DS1、DS2…DSmに相当し、配列500、501、502の各列は、コード位相仮説、CP1、CP2…CPnに相当する。また、配列500、501、502中の各エントリは、サンプルのエントリ相関に対応するPNコード、ドップラーシフトおよびコード位相仮説を組み合わせた基準である。従って、図11では、相関配列500はPNコード仮説PN1に、相関配列502はPNコード仮説PN2に、相関配列502はPNコード仮説PNrに相当する。
【0058】
図8に戻ると、PNコード発生器312は、PNコード仮説を生成し、信号ライン315を通して整合フィルタ310に提供する。1つの実施例では、ドップラーシフト仮説が、整合フィルタ内部に生成される。GPSプロセッサ303は、信号ライン314を通して、サンプリング回路308および整合フィルタ310へデータ獲得コマンドを実施する。各データ獲得コマンドは、サンプルのセグメントを獲得するためにサンプリング回路308に送られ、サンプルのセグメントを処理するために整合フィルタ310に送られる。タイミング回路307は、受信器300によって提供される第1のタイミング信号に応じて、サンプリング回路308および整合フィルタ310に入力値として提供される、第2のタイミング信号を生成する。1つの実施では、RF受信器300によって生成された第1のタイミング信号は、RF受信器内のローカル発振器によって生成され、GPSサテライトによって維持されたタイムベースに関連したローカルタイムベースを定義する。1つの実施例では、セグメントの相関配列は、PNコード仮説および与えられたPNコード仮説に対するドップラーシフト仮説によりグループ化される。その結果、PNコード仮説とドップラーシフト仮説の特定の組み合わせに各グループが相当する。1つの実施例として、各衛星に対応する相関配列は、衛星の存在および範囲を検出するために使用される。典型的には、特定の仮説のセットに対する相関データが代替仮説の相関データよりも著しく大きい場合にこれが生じる。
【0059】
V. 整合フィルタ中の信号検出器の適用
上述した信号検出器はGPS受信器で用いられるように様々な適用で有用に使用することができる。本発明は、特に低いC/N0 あるいはデューティサイクル、GPS波形が連続的ではなく断続的に追跡されるGPS受信器の低消費電力オペレーションに適用できる。このような適用では、ビット同期、データエポックの位置およびデータエポックの位相反転に関する情報が、GPS波形自体から直接利用可能ではないが、セルまたはPCSの電話ネットワークあるいは基地局のような別のソース、あるいはGPS衛星に保持される原子時計で周期的に同期されるローカルクロックに由来しなければならない。
【0060】
a. 整合フィルタのコンポーネントおよびコンポーネント・オペレーションの実施例
図10は、図8中の整合フィルタ310の1つの実施例を示す。図8と比較して、図10での同様の要素が同種のものを識別している数字で参照される。図に示すように、整合フィルタのこの具体化は信号ライン309上にサンプリング回路308(図8)からサンプルのセグメントを受信するように設定されるランダム・アクセス・メモリー(RAM)400を構成する(さらに図8を参照)。1つの実施例では、セグメントが継続時間、フレーム継続時間と比べて同じ20mSであり、RAM400は、一度にサンプルの1つの20mSセグメントを受信するように設定される。この実施例によれば、サンプルの各20mSセグメントは、40920サンプルを含み、それは20.46MHzの名目上のサンプリング・レートでベースバンド信号をサンプリングし、次に、デシメーションフィルタリングを実行することにより得られる。この実施例では、セグメントはフレームと比べて同じ継続時間を持つが、一般に、フレーム境界がセグメント境界で同義的に生じず、実際、セグメント境界間に典型的に起こるであろうことに注意すべきである。
【0061】
各サンプルは、I+jQとして複素形式の中で表わすことができる同相(I)コンポーネントおよび直角位相(Q)コンポーネントのコンプレックスサンプルである。1つの実施例では、各コンポーネントは値の上で-1、0および+1を呈することができ、2ビットで表わすことができる。この実施例では、各サンプルは4ビットで表わすことができる。また、サンプルの20mSフレームは、それの記憶装置用のRAM400の40,920x4ビット=163Kビットを要する。
【0062】
1つの実施では、図10の整合フィルタが1mSのインクリメントの部分あるいはサブセグメントに、PNコード期間と比べて同じ継続時間でサンプルのセグメントを分割して、一度に1mSサブセグメントを処理するように設定される。この実施例では、サンプルの各1mSサブセグメントは2046のサンプルで構成され、各々はIとQのコンポーネントを含み、このようなコンポーネントは2ビットで表わされる。
【0063】
整合フィルタはさらにコンプレックスミキサ403およびインクリメントのドップラー発生器401を構成する。1つの実施では、RAM400が、セグメントからのサンプルの1mSサブセグメントが同時にそこに格納した信号ライン404上のコンプレックスミキサ403に提供するように設定される。
【0064】
インクリメントのドップラー発生器401は、信号ライン405上のコンプレックスミキサ403に一度に1つの仮説が提供される複数のドップラーシフト仮説を生成する。1つの実施例では、インクリメントのドップラー発生器401が、入力サンプリングプロセスによって修正されない現地時間ベースの不正確を考慮に入れるために±62,000Hzの範囲のドップラーシフト仮説を生成する。
【0065】
コンプレックスミキサ403は、信号ライン404上のRAM400からサンプルのサブセグメントおよびインクリメントのドップラー発生器401からのドップラーシフト仮説を受信し、そしてそれに応じて、wd がインクリメントのドップラー発生器401によって提供されるドップラーシフト仮説を表わす形式ejwdtのコンプレックスフェーザでサンプルを乗算する。サンプルのドップラー修正されたサブセグメントが生じ、サンプルレジスタ406に格納される。この手順についての補足詳細が、1998年9月1日、ファイルされ、「DOPPLER CORRECTED SPREAD SPECTRUM MATCHED FILTER」とタイトルを付けられて、全部明らかにされるように、ここに以前に参照によって含まれ、米国特許出願書シリアル No.09 / 145,055で利用可能である。1つの実施例では、サンプルの各修正されたサブセグメントが2046のコンプレックスサンプルを構成し続ける。それらはI+jQとして一緒に表わすことができるIとQのコンポーネント持ち、それの各々の離散値の1つの上にでも-2、-1、0、+1および+2を要することができる。この実施例では、各コンポーネントが、それを表すのための3ビットおよびそれで修正されたサブセグメントの2046サンプルがそれの記憶装置用レジスタ406で2046x6ビット=12,276ビットを要求することを必要とする。
【0066】
PNコードレジスタ415は信号ライン315上に、PNコード発生器312(図8)によって提供された現在のPNコード仮説を格納するために提供される。1つの実施では、各PNコード仮説が、PNコードの1つの期間を表わす。1つの実施例では、PNコード期間は1mSであり、それぞれのPN コード仮説が、1.023MHzのチップ・レートを表わして、すべての1mSを繰り返す1023チップを表わす。この実施例では、PNコードレジスタ415が同時に1023チップを格納する。
【0067】
信号ライン414によって示されるように、コード位相遅れ仮説に対応する量によってPNコードレジスタ415を変えることができる。PNコードの期間が1023チップである実施例で、コード位相遅れの値は0〜2045の半チップインクリメントの範囲まで及ぶことができる。PNコードレジスタ415は、この実施例で考慮中のコード位相遅れ仮説に対応するチップのどんな少数によって循環的にシフトされるように設定される。
【0068】
積和回路407も提供される。この回路はサンプルレジスタ406に格納された修正されたサンプルのサブフレームと、PNコードレジスタ415に格納されたPNコード仮説間のプロダクトのコヒーレントな積分を形成するために構成される。
【0069】
サンプルレジスタ406に格納されたサンプルのサブセグメントが2046サンプルを含み、そのそれぞれがIとQのコンポーネントを持ち、PNコードレジスタ415に格納されたPNコード仮説は1023チップを含む。以前に説明された実施例では、一致はサンプルレジスタ406中のサンプルのうちの2つと、PNコードレジスタ415の中のチップのうちの1つの間で存在する。2つのサンプルの各々のIおよびQコンポーネントは対応するPNチップよって乗算される。その後、Iコンポーネントプロダクトの和、Qコンポーネントプロダクトの和は別々に決定される。Iコンポーネントプロダクトの和は、信号ライン408に出力され、Qコンポーネントプロダクトの和は信号ライン409に出力される。
【0070】
方程式の形式で、この実施例の積和回路407の関数は以下のように表わすことができる。
【0071】
(1)
【0072】
【数1】

(2)
【0073】
【数2】

CHIPiがPNコード仮説でI番目のチップである、Ii1 がCHIPi ,に対応する2つのサンプルの最初の1コンポーネントである、Ii2 がCHIPi ,に対応する2つのサンプルの第2の1コンポーネントであるところ、Qi1 がCHIPi ,に対応する2つのサンプルの最初のQコンポーネントである、そして Qi2 がCHIPi ,に対応する2つのサンプルの第2のQコンポーネントである。
【0074】
b. 整合フィルタのコヒーレントおよび非コヒーレントオペレーションの実施例
整合フィルタは、コヒーレントスイッチ433の状態によって制御された2つの動作モードができる。GPSプロセッサ303(図8)は、コヒーレントスイッチ433の状態を「0」あるいは「1」のいずれかにセットすることができる。スイッチ433の状態が「1」にセットされるときに定義された第1の動作モードでは、整合フィルタがコヒーレントに前のサブセグメントのために決定された、対応するSIおよびSQ値で計算されたSIとSQの値を積分するために構成される。スイッチ433の状態が「0」にセットされるときに定義された別の動作モードでは、整合フィルタが非コヒーレントに対応するSIおよび前のサブセグメントに対するSQ値で計算されたSIとSQの値を積分するために構成される。スイッチ433の状態は、スイッチ432aおよびスイッチ432bの状態を制御する。スイッチ433が「1」にセットされる場合、スイッチ432aとスイッチ432bはコンプレックス加算器411に信号ライン408および409からそれぞれSIとSQの値を直接通過するように構成される。スイッチ433が「0」にセットされる場合、スイッチ432aは平方和回路410の出力をコンプレックス加算器411へ渡すために構成される。また、スイッチ432bはコンプレックス加算器411にヌル値を提供するために構成される。
【0075】
コンプレックス加算器411は、その2つの入力で提供される2つの複素数値のコンプレックス加算を実行し、かつコンプレックスRAM413に結果を格納するように構成される。コンプレックス加算器411への入力のうちの1つは、信号ライン412上のコンプレックスRAM 413から提供される。別の入力はスイッチ432aおよびスイッチ432bから提供される。平方和回路410は、信号ライン408および409上のSIとSQの値をそれぞれ受信し、かつこれらの2つの値の平方の和の平方根を計算するために構成される。方程式の形で、回路は値を計算する:
(3)
【0076】
【数3】

平方和回路431は、コンプレックスRAM413から複素数を受信し、かつそれの振幅(すなわちそれの実数と虚数の平方の和の平方根、あるいは等しく、実数と虚数のコンポーネントの平方の和)を計算するように構成される。その後、結果はバス313によってコンプレックスRAM413に格納することができる。ピーク検出器430はRAM413から複数の相関値を受け取るように構成され、それに応じてそれの最大値を選択する。一度選択されると、最大値は、GPSプロセッサ303あるいはコンプレックスRAM413にそれを提供することができるところのバス313に提供される。
【0077】
c. 整合フィルタのタイミング方法の実施例
タイミング回路307(図8)は、信号ライン317上のタイミング回路435にクロックを提供する。それに応じて、タイミング回路435は、すべてのサブセグメントのためのタイミング・パルスを生成する。カウンタ436はタイミング回路435からタイミング・パルスを受信し、それに応じて、整合フィルタ310(図8)によって処理されたサブセグメント数を数える。レジスタ438は、次のフレーム境界が生じるサブセグメント数を格納する。それはバス313上にGPSプロセッサ303(図8)によってこの数がロードされるように構成される。セグメント継続時間が20mSであり、サブセグメント継続時間が1mSである1つの実施では、セグメント境界は20サブセグメント毎に生じる。ビット回路439は、次のフレーム境界に所望の信号上に調整されたデータ信号の値を格納するように構成される。それはバス313上にGPSプロセッサ303(図8)によってこの値がロードされるように構成される。ビット回路439も、比較回路437によるフレーム境界の検出および次のデータ・ビットの状態に応じて、位相反転がセグメント境界で所望の信号にあるかどうか決定するように構成される。データ信号がフレーム境界で状態を変更しない場合、フレーム境界で位相反転はないだろう。逆に、データ信号がフレーム境界で状態を変更する場合、フレーム境界で位相反転がある。フレーム境界にフレーム反転がある場合、ビット回路439からのフリップ信号出力が主張される。このフリップ信号も入力としてインクリメントのドップラー発生器401に提供される。この信号の主張に応じるので、インクリメントのドップラー発生器401は、コンプレックスミキサ403によるサンプルの現在のサブセグメントによって乗算されるコンプレックスフェーザの符号をフリップする。したがって、フェーザの符号が正で、次にフリップ信号が主張される場合、コンプレックスフェーザの符号は負になる。方程式の形で、コンプレックスフェーザはejwdtから-ejwdtになる。逆に、フェーザの符号が負で、次にフリップ信号が主張される場合、コンプレックスフェーザは-ejwdtからejwdtになる。修正済のフェーザがコンプレックスミキサ403により入って来るサンプルによって乗算される場合、サンプルの位相反転はフレーム境界で、データ信号の状態変化によって引き起こされた位相反転を打ち消すためにインプリメントされる。
【0078】
DEレジスタ438およびビット回路439にそれぞれ格納されたデータエポック・タイミング、およびデータ・ビット値は、サンプルがRAM400に格納したGPS波形以外に典型的にはソースに由来する。
【0079】
1つの実施例では、この情報は、GPS受信器の中で保持され、データエポック・タイミングおよびデータ値を保存するためにGPS衛星上で維持された原子時計で周期的に同期した正確なクロックに由来する。
【0080】
別の実施例では、GPS受信器は連続的な動作モード中で通常操作され、低消費電力オペレーションが望まれる時、あるいは受信器が建物に入るそのような場合のように受信信号のC/No値が低い時には、断続的な動作モードに切り替えられる。ローカルのクロックは、GPS受信器が連続的なトラッキング動作方式中で作動している場合に、正確なデータエポック・タイミングおよびデータ値を提供するためにGPS衛星で維持された原子時計と同期する。ローカルのクロックは、断続的な動作モード中で受信器が操作される間データエポック・タイミングおよびデータ値に関する正確な情報を提供することができる。
【0081】
別の実施例では、この情報が、セルラー電話またはPCSネットワークあるいは基地局のようなGPS受信器に外部の別のソースに由来する。セルラーネットワークあるいはPCSネットワークは一般にGPS衛星を追跡し、GPS受信器にこの情報を提供することができる。
【0082】
また別の実施例では、GPS受信器は、位置推算暦と暦のデータを集めるために連続的なトラッキング動作方式中で周期的に操作される。位置推算暦収集は18秒を要し、1時間に一度行われなければならない。暦収集は6秒を各々要し、24の衛星の各々のために毎週集められなければならない。暦データは、週期間で通常一定である。また、位置推算暦データは、1時間の期間の間通常一定である。従って、一旦この情報が集められれば、それは時間の関数としてデータ位相変化を予言するために使用することができる。
【0083】
d. データの予期しない変化の説明
この方法中で考慮されなければならない1つの様相がある。位置推算暦データはその週の既知の時間に、毎時間および暦データ変更の一番上に通常変わるが、必要な場合、GPSシステムは変更の任意の回を考慮に入れる。GPS制御セグメントが衛星への新しいデータをアップロードする場合、これらのイベントが通常生じる。人工衛星がアップリンク地上ステーションの上を通過するとき、これらのアップロードは起こるが、それは一般に標準的な交換時にはない。したがって、データの予期しない変化は説明される必要がある。
【0084】
レジスタ441およびレジスタ442(図10)は、それぞれ積分が開始するRAM400に格納されたサンプルのセグメントのサンプルの先頭アドレス、積分が進むことであるmSの数を格納するために(それぞれ)使用される。これらの2つのレジスタはバス313上にGPSプロセッサ303(図8)によってロード可能である。ともに、それらは積分が進むことである現在のセグメントの任意の部分を定義するために使用される。
【0085】
第1の動作モードでは、スイッチ433がコヒーレント積分が実行されることになっていることを示して、「1」にセットされる。コンプレックスサンプルのセグメントはRAM400に格納される。同時に1つのサブセグメントが、ドップラーシフトのために修正するべきコンプレックスフェーザによって乗算され、そのサンプルはサンプルレジスタ406に格納される。その後、レジスタ415に格納されたPNコード、および回路407によって計算されたSIおよびSQ積和値をサンプルに乗算する。その後、SIとSQの値は、それぞれ信号ライン408および信号ライン409に提供され、RAM400に格納されたセグメントの前のサブセグメント用のコンプレックスRAM413に以前に格納された任意の対応する値にコンプレックス加算器411によって加えられる。
【0086】
もし考慮中のそしてサンプルレジスタ406に格納されたサブセグメントが所望のセグメントのために第1のサブセグメントである場合、前述の値はPNコード、ドップラーシフトおよび考慮中のコード位相仮説の組合せに対応するRAM413の配列エントリに格納される。配列は、それらが図11で描いたのと同じフォーマットであり、結局RAM400中のサンプルの現在のセグメントの相関アレイになる。
【0087】
もし考慮中のそしてサンプルレジスタ406に格納されたサブセグメントが所望のセグメントのために分析された第1のサブセグメントでない場合、RAM413にPNコード、ドップラーシフトおよび考慮中のコード位相仮説の組合せに対応するエントリに格納された前述のサブセグメントから導き出された値が既にあるかもしれない。この場合には、決定されたSIとSQの値は、信号ライン412上の加算器411に提供されるエントリに対する以前に格納された値に加算器411によって加えられる。その後、結果は以前に格納された値の代わりに、コヒーレント化PNコード、ドップラーシフトおよびコード位相仮説に対応する配列エントリに格納される。
【0088】
この手順は図12で示される。配列510は、考慮中のセグメントの前のサブセグメントのためにメモリ413(図10)に蓄えられる累積的な値を表わす。レジスタ512は、特定のPNコード、ドップラーシフトおよびコード位相仮説のための現在のサブセグメントから導き出されたSIとSQの値を含んでいる。図12は、数字512によって識別された対応する値を備えた配列510のエントリ514に対する累積的なSIとSQ値を更新するための手順を示す。数字516の識別により示されるように、これらの累積的な値が検索され、次に、レジスタ512によって識別された対応する値に加えら。この追加のステップは数字518によって識別される。結果として生じる値は、レジスタ520で、エントリ514に格納されたオリジナルの値の代わりに再格納される。レジスタ512の内容を持ったエントリ514を更新するこの手順は、矢印522によって図12で表わされる。その後、次のコード位相仮説は選択され、PNコードレジスタ415(図10)は選択されたコード位相仮説に従って循環的にシフトする。その後、先の手順は次のコード位相仮説のために繰り返される。この手順は、現在のPNコードおよびドップラーシフト仮説に関して検定されることを望まれるコード位相仮説の各々のために継続する。1つの実施では、2046のコード位相は、PNコードの繰返周期に応じて、各1mSサブセグメントについて検定される。この実施で、0〜2045半チップインクリメントからの信頼できる範囲であるコード位相仮説、そして次のコード位相仮説は、半チップによってPNコードレジスタ415を循環的にシフトすることにより単に選択されている。
【0089】
前述の手順は、検定されるPNコードおよびドップラーシフト仮説の各々のために繰り返される。この方法では、RAM413(図10)に格納された相関値の配列が、現在のサブセグメントのために派生した値で漸増的に更新される。すべての必要な仮説が現在のサブセグメントについて検定された場合、前述の手順は、RAM400に格納された次のサブセグメントについて繰り返される。サブセグメントがフレーム境界に行われて、境界で位相フリップがある場合、フリップ信号440は主張され、その結果、サンプルの続いて起こるサブセグメントによって乗算されるコンプレックスフェーザの符号の変化を引き起こす。結果は、RAM413に格納された相関アレイに蓄積する値に破壊的にではなく構造的にこれらの後のサブセグメントから導き出されたSIとSQの値が加えるようなもののために位相反転が帰するということである。
【0090】
前述の手順は、レジスタ441およびレジスタ442(図10)での値によって定義される現在のセグメントの部分内のサブセグメントの各々について繰り返される。この手順が完了した場合、図11で示される形式の相関アレイはRAM 413(図10)の中にある。これらの相関アレイは、信号ライン313上のGPSプロセッサ303に提供される。GPSプロセッサ303(図8)は、上述された方法の衛星の存在および範囲を発見するためにこれらの相関アレイを使用する。
【0091】
スイッチ433(図10)が「0」にいつセットされるか定義された第2の動作モードでは、現在のサブセグメントに対するSIとSQの値は、現在のセグメント中の前のサブセグメントに対する対応する値と非コヒーレントに結合される。平方回路410の和の平方根は現在のSIおよびSQ値からSS値を形成する。その後、このSS値はコンプレックス加算器411へのスイッチ432aによって渡される。それはコンプレックス加算器411への第1の入力の実数部になる。この第1の入力の虚数部はスイッチ432bによって渡されるヌル値434である。その後、複素数値ではなく配列の中で実数の値だけが維持されること以外のこの値は、図12に関して以前に記述されたそれに似ている手順でのRAM413の中で維持された累積的な相関アレイに格納された対応する値に加えられる。
【0092】
さらに、第3と第4の動作モードは、ビット回路439(図10)が提供されないその場合について可能で、フレーム境界がそれ自身できるが、フレーム境界での位相反転を検出することができない。1つの実施では、フレーム境界の検出は、フレーム境界が対抗される場合に出力信号を主張する比較器437によって実行される。1つの実施例では、フレーム境界はデータエポックとして参照される。第3の動作モードでは、オブジェクトが、フレーム境界までのセグメントの部分のための第1のコヒーレント積分を実行し、フレーム境界の向こうのセグメントの部分のための別のコヒーレント積分を実行し、そして2つの積分を非コヒーレントに組み合わせる。セグメントがフレームと同じ継続時間を持っている1つの実施では、積分がセグメントを越えて進むにつれて対抗した高々1つのフレーム境界がある。この実施では、図11で示される2セットの配列の形式が、現在のセグメントについて維持される。1セットの配列はコンプレックスで、第1の動作モードに関して上述された方法でコヒーレントな積分値を蓄積するために用いられる。配列の第2のセットは実数であり、その配列はフレーム境界の一方の面上で実行されたコヒーレント積分を非コヒーレントに組み合わせるために用いられる。
【0093】
フレーム境界に対抗する場合、これらの配列の各エントリの値は、各エントリに格納された実数と虚数の値の平方の和の平方根の計算による回路431(図10)によって非コヒーレントの形式の中に入れられる。その後、これらの値は配列の第2のセットに対応するエントリに格納される。その後、配列の第1のセットはすべて0にリセットされる。その後、コヒーレント積分は再開される。また、それの結果は配列の第1のセットで累算される。これが完了した場合、配列の第1のセットの値は上述された方法で非コヒーレントの形式の中に入れられる。その後、これらの値は、配列の第2のセットに格納された対応する値に加えられる。配列の第2のセットはこのようにセグメントのための相関値になる。
【0094】
第4の動作モードでは、オブジェクトが、フレーム境界までコヒーレント積分を実行し、2つの代替仮説、すなわち、1つはフレーム境界で位相反転がなかったとする仮定、もうひとつはフレーム境界で位相反転があったとする仮定の下、そのポイントを越えたコヒーレントな積分を継続する。
【0095】
セグメント継続時間がフレーム継続時間と比べて同じである1つの実施では、セグメント内に高々1つのフレーム境界がある。この実施では、図11で示される2セットの配列の形式が、現在のセグメントについてRAM413(図10)で維持される。両方はコンプレックスである。配列の第1のセットは記述された方法でフレーム境界までコヒーレントに積分する結果を累算するために用いられる。フレーム境界が検出される場合、累算された結果は配列の第2のセットにコピーされる。その後、コヒーレント積分は、フレーム境界を越えたセグメントの残りの部分について再開される。配列の第1のセットはフレーム境界でそこで位相反転でなかった仮説の下の結果を累算するために用いられる。配列の第2のセットはフレーム境界でそこで位相反転でなかった仮説の下の結果を累算するために用いられる。1つの実施では、これはドップラーシフトのために修正すべきミキサ403によって用いられるコンプレックスフェーザの符号を前後にフリップすることにより達成される。1セットのSIとSQの結果は、コンプレックスフェーザの符号を変更しない間に現在のサブセグメントについて得られる。
【0096】
その後、これらの結果は、配列の第1のセットで維持される対応するエントリへコヒーレントに加えられる。その後、SIとSQの結果の別のセットは、コンプレックスフェーザの符号をフリップする間に現在のサブセグメントについて得られる。その後、これらの結果は、配列の第2のセットで維持される対応するエントリへコヒーレントに加えられる。
【0097】
その後、この手順が現在のセグメントについて完了した場合、ピーク相関器430(図10)は配列の2つのセットのどちらがセグメントとの相関のよりかなりの度に相当するか決めるために使用される。1つの実施では、別の配列の相関値のうちのどれよりも著しく高い1つ以上の相関値を持っている配列が選択されている。その後、この配列に対応する仮説は正確な仮説であるとわかる。その後、コンプレックスフェーザの符号はそれに応じてセットされ、その仮説のための配列は衛星存在と距離範囲を検出するためのGPSプロセッサ303(図8)に提供される。
【0098】
e. 整合フィルタのコヒーレント積分の方法の実施例
本発明に係る整合フィルタの1つの実施例のオペレーションの方法は、図 13A-13Cで示される。各々がコヒーレント積分を含む代替A、BおよびCの三代替動作モードが示される。
【0099】
代替のAは、フレーム境界でのどの位相反転を検出することができるかの上述された第1の動作モードに対応し、アカウントがフレーム境界で起こったかもしれないすべての位相反転に得られた後、コヒーレントな積分はフレーム境界を越えて実行される。
【0100】
代替のBは上述された第3の動作モードに対応し、そこではフレーム境界は、位相反転ではなく検出することができ、第1および第2のコヒーレント積分はフレーム境界の一方の面で実行され、そしてそれの結果は非コヒーレントに結合される。
【0101】
代替のCは上述された第4の動作モードに対応し、そこではフレーム境界は、位相反転ではなく検出することができ、コヒーレント積分は2つの代替仮説の下のフレーム境界を越えて実行され、そしてセグメントを持った最良の相関結果を産出する仮説が選ばれる。
【0102】
図 13A-13Cの方法は、代替のA、代替のBおよび代替のCの順に説明される。
【0103】
ステップ600(図13A)において、サンプルのセグメントは格納される。サンプルは、実数と虚数あるいは、振幅と位相のコンポーネントを持つコンプレックスサンプルである。1つの実施では、各サンプルがIおよびQコンポーネントを持っている。図10の整合フィルタでは、サンプルのセグメントがRAM400に格納される。
【0104】
ステップ602において、PNコード仮説は検定のために選ばれ、循環シフトレジスタに格納される。図10の整合フィルタでは、PNコード仮説がPNコードレジスタ415に格納される。
【0105】
ステップ604において、ステップ600で格納されたサンプルのセグメントのサブセ
グメントは選択される。
【0106】
ステップ606において、ドップラーシフト仮説は検定のために選択される。図10の整合フィルタでは、このステップが、ユーザーによって課された拘束あるいは境界に応じるドップラーシフト仮説を連続的に生成する、インクリメントのドップラー発生器401によって暗に実行される。1つの実施例では、ドップラーシフト仮説が±62,000Hzから変動する。別の実施例では、ドップラーシフト仮説が±4,500Hzから変動する。
【0107】
ステップ608において、ステップ604で選択されたサブセグメントは、ステップ606で選択されたドップラーシフト仮説について修正される。図10の整合フィルタでは、このステップが、コンプレックスミキサ403(それはサンプルのサブセグメントにコンプレックスフェーザを乗算する)によって実行される。1つの実施例では、以前に参照によってここに組込まれたU.S.S.N.09/145,055に記述されるように、このステップは実行される。
【0108】
ステップ610において、ステップ608からの修正されたデータは、図10の整合フィルタに、格納される、修正されたデータは、サンプルレジスタ406に格納される。
【0109】
ステップ612において、コード位相仮説は検定のために選択される。図10の整合フィルタでは、このステップが、PNコード繰返周期(それは1つの実施で、2046半チップインクリメントを構成する)の可能なコード位相仮説の各々によって連続的に循環的にシフトするPNコードレジスタ415のオペレーションにおいて暗黙である。
【0110】
ステップ614(図13B)において、ステップ602で選択され格納されたPNコード仮説は、ステップ612で選択されたコード位相仮説から導き出された量によって循環的にシフトする。図10の整合フィルタでは、選択されたコード位相仮説は0から2045の半チップのインクリメントまでの範囲にわたり、ステップ614は、選択されたコード位相仮説を構成する半チップのインクリメントの数によってPNコード仮説を循環的にシフトすることによりインプリメントされる。
【0111】
ステップ616において、ステップ614からのシフトしたPNコードのプロダクト、およびステップ608からのサンプルの修正されたサブセグメントが得られる。1つの実施では、このステップが、IおよびQコンポーネント積和(SIおよびSQ)を形成して含む。1つの実施例では、SIとSQは以前に示した方程式(1)と(2)に従って導き出される。図10の整合フィルタでは、このステップが積和回路407によって実行される。
【0112】
ステップ618において、SIとSQの値は、ステップ600で格納されたセグメントから前のサブセグメントに適用されるのと同じ仮説に対する任意の対応する値に加えられる。1つの実施では、図11で示される形式の累積的な相関アレイが、セグメントについて維持され、ステップ616で決定されたSIとSQの値は、図12で示す手順に従ってこれらの配列で維持された対応する値に加えられる。図10の整合フィルタでは、このステップがコンプレックス加算器411によって実行され、セグメントのための累積的な配列はコンプレックスRAM 413で維持される。
【0113】
ステップ620において、フレーム境界に対抗したとしても、決定はなされる。そうである場合、代替のAについては、ステップ622は実行される。ステップ622において、フレーム境界に位相反転があっても、決定はなされる。そうである場合、ステップ624は実行される。そうでない場合、ジャンプはステップ626になされる。ステップ624において、ドップラーの修正のためのステップ608で用いられたコンプレックスフェーザの符号はフリップされる。その後、ステップ626は実行される。
【0114】
ステップ626において、選択されたPNコードおよびドップラーシフト仮説について検定されることになっているそれ以上のコード位相仮説があっても、決定はなされる。そうである場合、ステップ612にジャンプし、新しいコード位相仮説について繰り返されたこのポイントで始まる手順になされる。そうでない場合、ステップ628は実行される。図10の整合フィルタでは、このステップは、PNコードレジスタ414(それは、与えられたPNコードおよびドップラーシフト仮説について検定される2046コード位相の仮説によって、連続的にシフトする)のオペレーションにおいて暗黙である。
【0115】
ステップ628において、選択されたPNコード仮説について検定されることになっているドップラーシフト仮説がそれ以上あっても、決定はなされる。そうである場合、ステップ606にジャンプし、新しいドップラーシフト仮説について繰り返されたこのポイントで始まる手順になされる。そうでない場合、ステップ630は実行される。図10の整合フィルタでは、このステップが、インクリメントのドップラー発生器401(それは、与えられたPNコード仮説のための複数のドップラーシフト仮説によって循環する)のオペレーションにおいて暗黙である。1つの実施例では、ドップラーシフト仮説が、±62,000Hzからの与えられたPNコード仮説範囲について検定した。
【0116】
ステップ630において、ステップ600で格納されたセグメントについてそれ以上のサブセグメントを解析しなければならなくても、決定はなされる。そうである場合、ステップ604にジャンプし、この時点で始まる手順は新しいサブセグメントを用いて繰り返す。そうでない場合、代替のAについては、手順は終了する。このポイントでは、複数のコンプレックスの相関値が詳しい解析、PNコードの組合せの各々に対応する1つの複素数値、Dopple変更および検定したコード位相仮説に利用可能である。図10の整合フィルタでは、これらの値がRAM413に格納され、バス313によってGPSプロセッサ303(図8)に利用可能である。1つの実施例では、これらの値が、図11で示されるような配列の形をしている。
【0117】
前述のものの1つの機能的に等価な変形では、ブロック604およびブロック606の順序が、ブロック628およびブロック630のそれと同様に逆にされる。このアプローチ(ドップラーの仮説を変更する前にサブセグメントをすべて最初に処理して)の利益は、より小さなRAM400(図10)が用いられることをそれが可能にするということである。逆の命令(所定のサブセグメントのためのすべてのドップラー仮説は最初に処理される)の下で、RAMサイズはドップラーの仮説の数と等しい要因だけ拡張する必要があるだろう。
【0118】
代替のBはここで記述される。ステップ600-618は、代替のAに関して上述されたものと同一で、それの説明を繰り返す必要がない。ステップ620において、フレーム境界が代替のBのための検出された(622)場合、ステップ632は実行される。ステップ632において、配列の別のセットは、PNコード、ドップラーシフトおよび検定されたコード位相仮説の組合せの各々へのエントリを含む所望のセグメントについて作成される。1つの実施では、配列の第2のセットが複素数ではなく実数である。配列の第1のセットの個々のコンプレックスのエントリの振幅は、実数と虚数のコンポーネントの平方和の平方根をとることにより計算され、生じる値は、配列の第2のセットに対応するエントリに格納される。図10の整合フィルタでは、このステップが回路431によって実行される。この手順は、配列の第1のセットのエントリの各々について繰り返される。
【0119】
その後、ステップ634は実行される。ステップ634において、配列の第1のセットの各エントリはゼロにされる。その後、その手順はステップ626から始まって進む。その後、ステップ626-628は、代替のAに関して以前に説明された番号が同種のものに付けられたステップへの同一のやり方で実行され、それの説明をここに繰り返す必要がない。ステップ630において、さらなるサブセグメントが考察について残ることが確定的な場合、ジャンプはステップ604(図13A)になされる。また、手順はこの時点で繰り返す。図13Cで示されるように、考慮されるサブフレームのままであることができない場合、ステップ636および638が実行される。ステップ636において、配列の第1のセットを構成する複素数値の各々の振幅は以前に記述された方法で計算され、ステップ638において、値の振幅は配列の第2のセットに格納された対応する値に加えられる。図10の整合フィルタでは、このステップがコンプレックス加算器411と結合して回路431によって実行される。この手順は、配列の第1のセットの値の各々について繰り返される。このポイントでは、配列の第2のセットが、セグメントのための相関値を構成する。1つの実施では、配列の第2のセットがRAM413(図10)に格納され、その配列はGPSプロセッサ303(図8)によってアクセス可能である。
【0120】
代替のCはここで記述される。代替のCでは、ステップ600-606が上述された方法で実行される。その後、ステップ640は実行される。ステップ640において、コンプレックスフェーザ仮説フラグがセットだったとしても、決定はなされる。見られるように、このフラグは通常取り除かれ、フレーム境界に対抗する場合、論理的な「1」にセットされる。このイベントが生じる場合、セグメントについて維持されている配列の第1のセットは配列の別のセットへ複写される。その後、検定されるPNコード、ドップラーシフトおよびコード位相仮説はすべて、所定のサブセグメント上で2度実行される。第1の実行は、位相変化がフレーム境界にないという仮説か仮定の下で実行される。第1の実行では、ステップ608で用いられたコンプレックスフェーザの位相は変更されない。第2の実行は、位相変化がフレーム境界にあるという仮説か仮定の下で実行される。第2の実行では、ステップ608で使用されたコンプレックスフェーザの位相はフリップされる。
【0121】
ステップ640において、まだフレーム境界に対抗していないことを示して、フェーザ・フラグがセットされない場合、ステップ608にジャンプし、以前のように、手順は再開する。フレーム境界に対抗したことを示して、フェーザ・フラグがセットされた場合、ステップ642が実行される。ステップ642において、位相変化に関して上述された2つの仮説の1つ(すなわちそれの不足)は、フレーム境界で選択されている。その後、ステップ644は実行される。ステップ644において、ステップ608で使用されたコンプレックスフェーザの符号は変更されないか、あるいは、2つの仮説のどちら(位相に関する)がステップ642で選択されているかに依存してフリップされる。
【0122】
その後、その手順は、他の代案に関して上述された方法でステップ608-618によって進む。その後、ステップ620は実行される。ステップ620で図13Bで示されるように、フレーム境界に対抗する場合、ステップ646および648が実行される。ステップ646において、ステップ640に関して上述されたコンプレックスフェーザ仮説フラグは、論理的な「1」に設定され、ステップ648において、現在のセグメントについて維持されている配列の第1の設定で維持されたデータは、上述された方法で配列の別の設定へ複写される。ステップ620で、フレーム境界に対抗しない場合、手順はステップ626に直接移る。その後、ステップ628は実行される。
【0123】
ステップ628において、上述されるように、選択されたPNコードおよびドップラーシフト仮説に関して検定されることになっているそれ以上のコード位相仮説があっても、決定はなされる。そうである場合、ステップ612にジャンプし、この時点で始まる手順は、新しいコード位相仮説について繰り返される。そうでない場合、ステップ650は実行される。ステップ650において、コンプレックスフェーザ仮説フラグがセットでも、決定はなされる。そうである場合、ステップ652は実行される。そうでない場合、上述されるように、ステップ628は実行される。
【0124】
ステップ652において、現在のサブセグメントに関してどんなより多くの位相仮説も検定しなければならなくても、決定はなされる。そうである場合、その手順はステップ640(図13A)にジャンプし、この時点で再開する。そうでない場合、上述されるように、ステップ628は実行される。図13Cで示されるように、それ以上のサブセグメントを解析しなければならなくても、ステップ630(図13A)において、決定はなされる。そうである場合、その手順はステップ604(図13A)にジャンプし、この時点で再開する。そうでない場合、ステップ646は実行される。ステップ646において、検定した位相仮説のどちらがセグメントのための正確なものであるか決定がなされる。1つの実施では、このステップが、代替の仮説のための相関値より本質的に大きな相関値を産出する仮説の選択により実行される。一旦位相仮説が選択されれば、その仮説のための相関値は、セグメントのための相関値として選択される。1つの実施(配列の第1と第2のセットは2つの代替位相仮説について維持される)では、セグメントのための相関データは、配列2つのセットの1つあるいは他方を構成する。
【0125】
代替BおよびCのための方法の前述の記述が、特定のセグメントに1以上のフレーム境界がある場合について拡張する必要があることに注目すべきである。ステップ632(図13B)で、後のフレーム境界への対抗で、代替のBの場合には、そのイベントで、配列の第1のセットについて作成された振幅値は、それらの値を初期化するために用いられることではなく配列の第2のセットの対応する値に加えられる。代替のCの場合には、検定されるちょうど2つのフェーザ仮説の代わりに、nがセグメントで対抗したフレーム境界の数である場合、2n-1と同等のものを検定する。それに応じて、ステップ648(図13B)において、各フェーザ仮説が維持された配列の対応するセットを持っているように、配列の第1セットは2n-1回繰り返される必要がある。ステップ646(図13C)において、その後、これらの配列に対応する仮説のうちの1つは正確なものとして選択されている。
【0126】
関連問題はコンプレックスセグメントを越えて実行された積分である。このイベントで、ドップラーの仮説によるコンプレックスの位相変化と同様に説明する多くの介在するフレーム境界(またデータ・ビット)があるだろう。コンプレックスのセグメント増加の合計処理時スパンとして、周波数のドップラーの仮説の間隔は減少しなければならない。所定のセグメントの所定の仮説のための各出力が累算されたデータ位相フリップによって重みが加えられることになっている結果は、累算されたドップラー位相ejwdTの時間を測定する(Tは第1セグメントに関連のあるセグメントの時間である)。
【実施例】
【0127】
VI. 実施例
サンプリング回路308、タイミング回路307、および図.8および10の整合フィルタ310の機能性のうちのいくらかを組み合わせる「Magna」とコード名をつけられた整合フィルタチップは、主題適用(ニューポートビーチ(CA)のコネクサント・システムズ社)の譲受人によって開発されている。「さそり座」(部分11577-11番)とコード名をつけられた図4のGPSプロセッサ303の機能性を具体化するプロセッサ・チップは、主題適用の譲受人から利用可能である。1つの実施では、プロセッサが、連続的に多くのGPS衛星信号を追跡するための追跡するチャネルのような追加のGPSに特有の回路を持っている。典型的には、プロセッサは、外部バスを持った少なくとも1の埋込み型マイクロプロセッサを含んでいる。1つの構成では、プロセッサは、メモリ写像した周辺機器として整合フィルタチップを見なす。それは、整合フィルタチップへのコマンドを出し、それがコマンドの所定のセットのための処理を完了した後、結果を検索する。No.R6732-13の部分、「双子座/パイスモノパック」とコード名をつけられた図4のGPS無線受信器300の機能性を具体化するRF受信器チップは主題適用の譲受人から利用可能である。この実施例に関する追加の詳細はU.S.S.N.09/145,055およびライアンとライアンDktにおいて得られる。No.241/151番、以前に参照によってここに組込まれた。間隔に関するコヒーレント積分を20mS以上実行するために、2つのものが必要である。最初に、1つは、50Hzのデータ・ビット・エッジ(すなわちデータエポック)(DE)がどこに生じるか知る必要がある。次に、ドップラーシフトは、コヒーレント積分期間にわたって、必要な信号の位相角が著しく変わらないように精度に知られている必要がある。
【0128】
GPS時間が、1mS未満の精度に知られている場合、データエポックの位置は知ることができる。GPS時間が週値の時間で、50Hzのデータが週境界と提携するので、これは可能である。GPS時間が法として20mS得られる場合、生じる値は現在の20mSの長いビット内の時間である。正確なGPS時間がGPSナビゲーション方程式の事前の解決から、あるいはGPS時間へのタイミング関係を持っている移動電話システムのような外のソースから決定されることができる。さらに、PNコード(すなわちコード・エポック)(CE)の各1mSの期間が、データ・ビットに対して、正確なタイミング関係を持っていることはそうである。さらに、すべての第20のCEはDEである。この関係を利用して、DEの位置を説明することは実現可能である。この情報はコヒーレント積分に20mS以上の間隔を与えるのに十分である。さらに、データ・ビットの値が知られている場合、積分はドップラーシフトおよび受信器移動によってのみ制限されて、より長い期間の間拡張することができる。
【0129】
ドップラーシフト不確かさおよび受信器運動の両方は、さらにコヒーレント積分が有効な継続時間を制限する。約62Hzの分解能では、整合フィルタの所定のオペレーションのためのドップラーシフトが±31Hzほど正確になりえない。31Hzのエラーについては、ドップラーが、1/31=32mS後に信号の実数と虚数のコンポーネントの符号反転を引き起こす。コヒーレント積分でこれより長い期間のドップラーの仮説検定を実行することは、62Hzより大きなドップラーの分解能を要求する。
【0130】
それがコヒーレントにいくつかの20mSの間隔に関して積分するために要求される場合、ドップラー発生器設計は62Hzより細かいドップラーシフト分解能を提供するべきである。一般的に、Tが第1のデータ収集の開始から最終データ収集の開始まで実際の経過時間ではコヒーレント積分時間である場合、必要なドップラーシフト分解能はそうである、1/(2T)。したがって、1秒の積分時間については、必要なドップラーの分解能は0.5Hzであるか、あるいはもっと良い。
【0131】
ドップラーシフトに加えて、受信器の動作は考慮されなければならない。L1=1575.42MHzでGPS信号の波長は、約19cmあるいは7.5インチである。受信器が手に保持されるデバイスであれば、この距離の半分の動作はコヒーレント積分を用いる場合に信号取り消しに帰着する位相反転を引き起こす。4mphで歩く人は、53mSで3.75インチ移動する。したがって、ゆっくり動いている受信器さえ実際的な限界は、ほんの少数の20mSの期間かもしれない。しかしながら、データ・ビットの値が利用可能な場合、より急速にSNRを改善するために、コヒーレント積分を持ったいくつかの20mSの期間上で作動することはまだ有益である。
【0132】
図10は、コヒーレント積分の処理についてMagnaの実施例を示す。第1の様相は相関加算器ツリー(すなわち回路407)の出力である。振幅を計算するために1mSのコヒーレント積分を処理する代わりに、複素数値は、相関アレイRAM記憶装置413へ直接合計される。RAMのサイズは、振幅だけではなく実数と虚数の値を提供する。非コヒーレント積分がいくつかの適用においてまだ必要かもしれないので、この様相はスイッチで達成される。コヒーレント・モードにおいて、振幅計算は回避される。
【0133】
別の様相はDEが生じるコード・エポック(CE)またはサブセグメントの値を保持するレジスタ438の実施である。この値は、GPS時間についてのその知識からの外部プロセッサによって提供される。DEに対抗する場合、インクリメントのドップラー発生器401はデータ・ビット境界を越えてコヒーレントな積分を保存して、フリップ信号440(それはコンプレックスフェーザにその符号をフリップさせる)をこのように受け取る。フリップ信号はビット値439によって制御される。ビット値が符号変更を引き起こさない場合、フリップ信号状態はDEで変わらない。外部プロセッサは、ビットの値を提供する。整合フィルタルゴリズムがその衛星について実行される前にプロセッサによってセットされ、各衛星が異なるDEおよびビット・レジスタ値を持つということに注意すべきである。
【0134】
前述の実施例、実施および実施例は、インクリメントの部分のコヒーレントな積分による相関データの信号対雑音比(SNR)あるいはサンプルのサブセグメント中でさらにより多くの迅速な拡張を達成する。その結果、発明がGPS受信器へ組み入れられる時に、結果は、必要なGPS衛星がより速く検出されるということである。さらに、電源消費は、パワー検波回路が使用可能である必要があるより短い時により縮小される。GPS受信器がモバイルのワイヤレス電話に統合されるケースでの、別の結果は増加したバッテリ生活のための増加した電話時間である。
【0135】
1例において、第1のオーダーに、コヒーレント積分を用いることによって、処理時間を200%増加させることにより、発明に従う信号検出器がSNRにおける3dBの改良を達成することができることが見い出された。対照的に、非コヒーレント積分を用いる先行技術信号検出器は、SNRにおける3dBの改良を達成する時間の処理の247%の増加を要求する。さらに、この関係は指数関数的である。例えば、SNRで6dBの改良を達成するために、発明に従う信号検出器が400%の処理時間増加を必要とするのに対して、先行技術の信号検出器が処理時間の610%の増加を必要とすることが見いだされた。
【0136】
発明の別の利点は、それがセルラー電話システムとPCS電話システム、およびGPSにとって有用なデータの外部ソースを提供するそれらの能力を利用するということである。このデータは正確な時間および周波数情報、およびデータエポック(フレーム境界)、およびコヒーレント積分のための求められるようなフレーム境界での位相反転に関する直接あるいは間接の情報を含んでいる。
【0137】
別の利点は、コヒーレント積分を実行する本発明の整合フィルタに対する信頼が、GPSプロセッサ上のロードを縮小するということである。さらに、それは外部のプロセッサがGPSのために専用しなくてはならないRAMの量を減らす。種々の機能を実行するためにGPSプロセッサを利用する実施例と実施が記述されたが、一般のプロセッサがこれらの機能を行うために使われる実施が可能であることは理解されるべきである。この開示の目的のために、一般のプロセッサがどんなデバイスでも、コンピュータ、DSP、ベースバンドプロセッサを含めて、マイクロプロセッサ、あるいはマイクロ・コンピュータを意味するために定義される。そしてそれはプロセッサによってアクセス可能なメモリに格納された別々の命令のシリーズを実行することができる。実施例が、これらの機能を実行するためにどのアナログ回路が用いられるかにおいて可能であることはさらに理解されるべきである。
【0138】
適用の様々な実施例が記述された一方、主題発明の範囲の中にあるさらに多くの実施例および実施が可能であることは通常の技術を有するものにとって明らかである。それに応じて、本発明は、アペンドされた請求項およびそれに等価な物の権利を除いて制限されない。
【図面の簡単な説明】
【0139】
【図1】図1は、GPS受信器のオペレーションのための例環境を示す。
【図2】図2は、本発明の実施の形態に係る信号検出器の実施例を示す。
【図3】図3は、本発明の実施の形態に係る信号検出器のオペレーションの方法の実施例を示す。
【図4】図4は、本発明の実施の形態に係る信号検出器の他の実施例を示す。
【図5】図5は、本発明の実施の形態に係る信号検出器のオペレーションの方法の他の実施例を示す。
【図6】図6は、本発明の実施の形態に係る信号検出器の実施例3を示す。
【図7】図7は、本発明の実施の形態に係る信号検出器のオペレーションの方法の実施例3を示す。
【図8】図8は、本発明の実施の形態に係るGPS受信器の実施例を示す。
【図9】図9は、本発明の実施の形態に係るGPS受信器のオペレーションの方法の実施例を示す。
【図10】図10は、本発明の実施の形態に係る整合フィルタの実施例を示す。
【図11】図11は、本発明の実施の形態に係る整合フィルタの1つの実施例によって出力されたデータ構造を示す。
【図12】図12は、本発明の実施の形態に係る整合フィルタの1つの実施例中のデータ構造を更新する過程を示す。
【図13A】図13Aは、本発明の実施の形態に係る整合フィルタのオペレーションの方法の3つの代替実施例を図示する。
【図13B】図13Bは、本発明の実施の形態に係る整合フィルタのオペレーションの方法の3つの代替実施例を図示する。
【図13C】図13Cは、本発明の実施の形態に係る整合フィルタのオペレーションの方法の3つの代替実施例を図示する。

【特許請求の範囲】
【請求項1】
予め定義されたフレーム境界での位相反転に従ったノイズあるいは擬似ノイズによって乱された所望の信号からなる受信信号のコンプレックスサンプルのセグメントを提供するための受信器;
所望の信号に関する仮説あるいは所望の信号のパラメータを表すデータとセグメントから導き出されたデータを乗算するように構成され、その乗算結果を表すプロダクトデータを提供するための乗算器;
受信信号以外のソースから決定されたフレーム境界の位置に応じて所望の継続期間に渡って前記プロダクトデータをコヒーレントに積分し、その結果から前記所望の信号あるいはそれのパラメータを検出するのに有用な相関データを導き出す積分器
からなることを特徴とする信号を検出するための方法。
【請求項2】
前記受信器がRF受信器であることを特徴とする請求項1に記載の信号検出器。
【請求項3】
前記所望の信号が反復PNコードで調整された搬送信号であることを特徴とする請求項1に記載の信号検出器。
【請求項4】
さらに、複数の仮説を生成する仮説発生器を含むことを特徴とする請求項1に記載の信号検出器。
【請求項5】
さらに、前記相関データを受信し分析するプロセッサを含むことを特徴とする請求項1に記載の信号検出器。
【請求項6】
前記ソースがセルラー電話ネットワーク又はPCS電話ネットワークであることを特徴とする請求項1に記載の信号検出器。
【請求項7】
さらに、前記所望の信号の位相反転を検出するための位相検出器と、位相反転の検出に応じて、フレーム境界を越えてコヒーレント積分を続行させる位相反転を調節するコヒーレント積分器とを含むことを特徴とする請求項1に記載の信号検出器。
【請求項8】
さらに、位相反転の検出に応じて受信信号のサンプルの符号をフリップするための回路を含むことを特徴とする請求項7に記載の信号検出器。
【請求項9】
さらに、フレーム境界を検出するためのフレーム境界検出器を含むことを特徴とする請求項1に記載の信号検出器。
【請求項10】
前記コヒーレント積分器が、フレーム境界の検出に応じて、フレーム境界の一方の面上で実行されるコヒーレント積分を非コヒーレントに結合されるように構成されることを特徴とする請求項9に記載の信号検出器。
【請求項11】
前記コヒーレント積分器が、フレーム境界の検出に応じて、所望の信号の位相はフレーム境界を越えて不変であると仮定する第1の仮説の下の前記フレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第1の相関データを導き出し、および所望の信号の位相はフレーム境界を越えてフリップすると仮定する第2の仮説の下の前記フレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第2の相関データを導き出すことを特徴とする請求項9に記載の信号検出器。
【請求項12】
さらに、2つの対応する仮説のどちらがよりあり得るかに基づいて第1と第2の相関のうちの1つを選択する回路を含むことを特徴とする請求項11に記載の信号検出器。
【請求項13】
さらに、GPS受信器を含むことを特徴とする請求項1に記載の信号検出器、
【請求項14】
予め定義されたフレーム境界での位相反転に従ったノイズあるいは擬似ノイズによって乱された所望の信号からなる受信信号のコンプレックスサンプルのセグメントを受信し;
所望の信号に関する仮説あるいはプロダクトデータを提供する所望の信号のパラメータを表すデータとセグメントから導き出されたデータを乗算し;
受信信号以外のソースからのフレーム境界を検出し;
所望の信号あるいはそれのパラメータを検出するのに有用な相関データを提供するためにフレーム境界の位置に応じて所望の継続時間にわたって前記プロダクトデータをコヒーレントに積分することを特徴とする信号を検出するための方法。
【請求項15】
前記所望の信号が、反復PNコードで調整された搬送信号であることを特徴とする請求項14に記載の方法。
【請求項16】
さらに、セルラー電話ネットワーク又はPCS電話ネットワークから前記フレーム境界を検出することを特徴とする請求項14に記載の方法。
【請求項17】
さらに、位相反転を検出し、フレーム境界を越えてコヒーレント積分を続行させるそれに応じたコヒーレントに積分するステップを調節することを特徴とする請求項14に記載の方法。
【請求項18】
さらに、複数の仮説を生成し検定することを特徴とする請求項17に記載の方法。
【請求項19】
さらに、フレーム境界を検出し、それに応じてフレーム境界の一方の面上で実行されたコヒーレント積分を非コヒーレントに組み合わせることを特徴とする請求項14に記載の方法。
【請求項20】
さらに、フレーム境界を検出し、それに応じて、所望のシグナルの位相はフレーム境界を越えて不変であるという第1の仮説の下のコヒーレント積分ステップを実行することにより第1の相関データを導き出し、所望のシグナルの位相はフレーム境界を越えてフリップするという第2の仮説の下のコヒーレント積分ステップを実行することにより第2の相関データを導き出すことを特徴とする請求項14に記載の方法。
【請求項21】
さらに、2つの対応する仮説のどちらが正確なものかの決定に基づいて第1と第2の相関データのうちの1つを選択することを特徴とする請求項20に記載の方法。
【請求項22】
少なくとも請求項14のステップを実行するための一連の命令を格納する読取り可能な記憶媒体からなることを特徴とする請求項14に記載の方法。
【請求項23】
ノイズによって乱された少なくとも1つの所望の信号を検出し、少なくとも1つの基準信号を検出する受信器;
前記少なくとも1つの所望の信号のセグメントからデータを導き出し、少なくとも1つの仮説を表すデータで前記データを乗算し、前記少なくとも1つの仮説と前記セグメントを表すプロダクトデータを提供する乗算器;
前記所望の信号を検出するのに有用な相関データを導き出し、継続時間にわたって前記プロダクトデータを積分するコヒーレント積分器
からなることを特徴とする信号検出器。
【請求項24】
前記所望の信号はフレーム境界によって分離された複数の連続のフレームであり、ここに、前記各セグメントは、前記複数のフレームの第1のフレームの終了部分、前記第1のフレームに連続する第2のフレームの開始部分、および前記第1のフレームと前記第2のフレームの間のフレーム境界からなることを特徴とする請求項23に記載の信号検出器。
【請求項25】
前記少なくとも1つの基準信号が前記フレーム境界の位置を決定することを特徴とする請求項24に記載の信号検出器。
【請求項26】
前記少なくとも1つの基準信号が前記所望の信号に関連したビット同期情報を提供することを特徴とする請求項24に記載の信号検出器。
【請求項27】
前記少なくとも1つの基準信号が前記所望の信号に関連したデータエポックの位置を指定する情報を提供することを特徴とする請求項24に記載の信号検出器。
【請求項28】
前記少なくとも1つの基準信号が前記データエポックの位相反転を決定する情報を提供することを特徴とする請求項27に記載の信号検出器。
【請求項29】
前記第2のフレームの前記開始部分の位相が、前記第2のフレームの前記終了部分に関連した前記フレーム境界での位相反転があることを特徴とする請求項24に記載の信号検出器。
【請求項30】
さらに、前記位相反転を検出するために構成された位相検出器を含み、ここに、前記コヒーレント積分器は前記位相反転に応じ、前記フレーム境界を越えてコヒーレント積分を続行させる前記第2のフレームの前記開始部分を調整することを特徴とする請求項29に記載の信号検出器。
【請求項31】
さらに、前記位相反転を検出するように構成された位相検出器を含み、ここに、前記コヒーレント積分器は前記位相反転に応じ、前記フレーム境界を越えてコヒーレント積分を続行させる前記第2のフレームの前記開始部分に存在する前記データの符号をフリップすることを特徴とする請求項29に記載の信号検出器。
【請求項32】
さらに、前記フレーム境界を検出するフレーム境界検出器を含み、ここに、前記コヒーレント積分器は前記フレーム境界に応じて前記第2のフレームの前記開始部分と前記第1のフレームの前記終了部分を非コヒーレントに積分することを特徴とする請求項29に記載の信号検出器。
【請求項33】
さらに、前記フレーム境界を検出するフレーム境界検出器を含み、ここに、前記コヒーレント積分器は前記フレーム境界に応じて第1の仮説の下の前記フレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第1の相関値を導き出し、第2の仮説の下の前記フレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第2の相関値を導き出すことを特徴とする請求項29に記載の信号検出器。
【請求項34】
さらに、前記第1の仮説と前記第2の仮説のどちらがよりあり得るかに基づいて前記第1の相関データと前記第2の相関データのうちの1つを選択する回路を含むことを特徴とする請求項33に記載の信号検出器。
【請求項35】
前記第1の仮説が、前記第2のフレームの前記開始部分の位相が前記フレーム境界を越えて前記第1のフレームの前記開始部分の位相から不変であると仮定し、前記第2の仮説が、前記第2のフレームの前記開始部分の位相が前記第1のフレームの前記終了部分の位相に関連した前記フレーム境界を越えて位相の符号をフリップすると仮定することを特徴とする請求項の信号検出器。
【請求項36】
前記受信器がRF受信器であることを特徴とする請求項23に記載の信号検出器。
【請求項37】
前記所望の信号が反復擬似ノイズ(PN)コードで調整された搬送信号であることを特徴とする請求項23に記載の信号検出器。
【請求項38】
前記ノイズが擬似ノイズであることを特徴とする請求項23に記載の信号検出器。
【請求項39】
前記セグメントが実数コンポーネントおよび虚数コンポーネントからなる複素数データを持ち、ここに、前記複素数データは、前記乗算器および前記相関データが複素数となるように複素数加算および複素数乗算によって前記コヒーレント積分器により処理されることを特徴とする請求項23に記載の信号検出器。
【請求項40】
前記セグメントが振幅コンポーネントおよび位相コンポーネントからなる複素数データを持ち、ここに、前記複素数データは、前記乗算器および前記相関データが複素数となるように複素数加算および複素数乗算によって前記コヒーレント積分器により処理されることを特徴とする請求項23に記載の信号検出器。
【請求項41】
さらに、前記少なくとも1つの仮説を生成する仮説発生器を含むことを特徴とする請求項23に記載の信号検出器。
【請求項42】
さらに、前記相関データを受信し分析するプロセッサを含むことを特徴とする請求項23に記載の信号検出器。
【請求項43】
前記基準信号がセルラーネットワークによって生成されることを特徴とする請求項23に記載の信号検出器。
【請求項44】
前記基準信号がPCS電話ネットワークによって生成されることを特徴とする請求項23に記載の信号検出器。
【請求項45】
前記受信器がグローバルポジショニングシステム(GPS)受信器であることを特徴とする請求項23に記載の信号検出。
【請求項46】
前記少なくとも1つの所望の信号が、少なくとも1つのグローバルポジショニングシステム(GPS)に応じて生成されることを特徴とする請求項23に記載の信号検出器。
【請求項47】
前記GPS衛星によって生成される前記所望の信号が、連続的に追跡されないことを特徴とする請求項46に記載の信号検出器。
【請求項48】
前記受信器が前記所望の信号のパラメータを検出することを特徴とする請求項23に記載の信号検出器。
【請求項49】
ノイズによって乱された所望の少なくとも1つの信号を受信するための手段;
少なくとも1つの基準信号を検出するための手段;
前記少なくとも1つの所望の信号のセグメントからデータを導き出すための手段;
前記データに少なくとも1つの仮説を表すデータを乗算するための手段;
前記少なくとも1つの仮説と前記セグメントを表すプロダクトデータを提供するための手段;
継続時間にわたって前記プロダクトデータを積分するための手段;
所望の信号を検出するのに有用な相関データを導き出すための手段 からなることを特徴とする信号検出器。
【請求項50】
前記所望の信号がフレーム境界によって分離された複数の連続のフレームであり、ここに、前記各セグメントは、前記複数のフレームの第1のフレームの終了部分、前記第1のフレームに連続する第2のフレームの開始部分、および前記第1のフレームと前記第2のフレームの間のフレーム境界からなることを特徴とする請求項49に記載の信号検出器。
【請求項51】
前記少なくとも1つの基準信号が前記フレーム境界の位置を決定することを特徴とする請求項50に記載の信号検出器。
【請求項52】
前記少なくとも1つの基準信号が前記所望の信号に関連したビット同期情報を提供することを特徴とする請求項50に記載の信号検出器。
【請求項53】
前記少なくとも1つの基準信号が前記所望の信号に関連したデータエポックの位置を指定する情報を提供することを特徴とする請求項50に記載の信号検出器。
【請求項54】
前記少なくとも1つの基準信号が前記データエポックの位相反転を決定する情報を提供することを特徴とする請求項53に記載の信号検出器。
【請求項55】
前記第2のフレームの前記開始部分の位相が、前記第2のフレームの前記終了部分に関連した前記フレーム境界で位相反転があることを特徴とする請求項50に記載の信号検出器。
【請求項56】
さらに、前記位相反転を検出するための手段を含み、ここに前記積分するための手段は前記位相反転を検出するための手段に応じて、ここに、積分するための手段が前記フレーム境界を越えてコヒーレント積分を続行させる前記第2のフレームの前記開始部分を調整することを特徴とする請求項55に記載の信号検出器。
【請求項57】
さらに、前記位相反転を検出するための手段を含み、ここに、前記積分するための手段が前記位相反転の検出に応じて、ここに、前記積分するための手段が前記フレーム境界を越えてコヒーレント積分を続行させる前記第2のフレームの前記開始部分に存在する前記データの符号をフリップすることを特徴とする請求項55に記載の信号検出器。
【請求項58】
さらに、前記フレーム境界を検出するための手段を含み、ここに、前記積分するための手段が前記フレーム境界の検出に応じて、ここに、前記積分するための手段は前記第2のフレームの前記開始部分と前記第1のフレームの終了部分を積分することを特徴とする請求項55に記載の信号検出器。
【請求項59】
さらに、前記フレーム境界を検出するための手段を含み、ここに、前記積分するための手段はフレーム境界の検出に応じて、ここに、前記積分するための手段は第1の仮説の下の前記第1のフレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第1の相関データを導き出し、第2の仮説の下の前記フレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第2の相関データを導き出すことを特徴とする請求項55に記載の信号検出器。
【請求項60】
さらに、前記第1の仮説と前記第2の仮説のどちらがよりあり得るかに基づいて前記第1の相関データと前記第2の相関データのうちの1つを選択するための手段を含むことを特徴とする請求項59に記載の信号検出器。
【請求項61】
前記第1の仮説が、前記第2のフレームの前記開始部分の位相が前記第1のフレーム境界を越えて前記第1のフレームの前記終了部分の位相から不変であると仮定し、前記第2の仮説が、前記第2のフレームの前記開始部分の位相が前記第1のフレームの前記終了部分の位相に関連した前記フレーム境界を越えて位相の符号をフリップすると仮定することを特徴とする請求項60に記載の信号検出器。
【請求項62】
前記所望の信号が反復擬似ノイズ(PN)コードで調整された搬送信号であることを特徴とする請求項49に記載の信号検出器。
【請求項63】
前記ノイズが擬似ノイズであることを特徴とする請求項49の信号検出器。
【請求項64】
前記セグメントが実数コンポーネントおよび虚数コンポーネントからなる複素数データを持ち、ここに、前記複素数データは、前記乗算するための手段および前記相関データが複素数となるように複素数加算および複素数乗算によって積分するための手段により処理されることを特徴とする請求項49に記載の信号検出器。
【請求項65】
前記セグメントが振幅コンポーネントおよび位相コンポーネントからなる複素数データを持ち、ここに、前記複素数データは、前記乗算するための手段および前記相関データが複素数となるように複素数加算および複素数乗算によって前記積分するための手段により処理されることを特徴とする請求項49に記載の信号検出器。
【請求項66】
さらに、前記少なくとも1つの仮説を生成する仮説発生のための手段を含むことを特徴とする請求項49に記載の信号検出器。
【請求項67】
前記基準信号がセルラーネットワークによって生成されることを特徴とする請求項49に記載の信号検出器。
【請求項68】
前記基準信号がPCS電話ネットワークによって生成されることを特徴とする請求項49に記載の信号検出器。
【請求項69】
前記受信するための手段がグローバルポジショニングシステム(GPS)信号を受信することを特徴とする請求項49に記載の信号検出器。
【請求項70】
前記少なくとも1つの所望の信号が、対応する少なくとも1つのグローバルポジショニングシステム(GPS)によって生成されることを特徴とする請求項49に記載の信号検出器。
【請求項71】
前記GPS衛星によって生成された前記所望の信号が、連続的に追跡されないことを特徴とする請求項70に記載の信号検出器。
【請求項72】
前記受信するための手段が、前記所望の信号のパラメータを受信することを特徴とする請求項49に記載の信号検出器。
【請求項73】
ノイズによって乱された所望の少なくとも1つの信号を受信し;
少なくとも1つの基準信号を受信し;
前記少なくとも1つの所望の信号のからデータを導き出し;
前記データに少なくとも1つの仮説を表すデータを乗算し;
前記少なくとも1つの仮説と前記セグメントを表すプロダクトデータを提供し;
継続時間にわたって前記プロダクトデータを積分し;
所望の信号を検出するのに有用な相関データを導き出す
ステップからなることを特徴とする所望の信号を検出するための方法。
【請求項74】
前記所望の信号はフレーム境界によって分離された複数の連続のフレームであり、ここに、前記各セグメントは、前記複数のフレームの第1のフレームの終了部分、前記第1のフレームに連続する第2のフレームの開始部分、および前記第1のフレームと前記第2のフレームの間のフレーム境界からなることを特徴とする請求項73に記載の信号検出器。
【請求項75】
前記少なくとも1つの基準信号が、前記フレーム境界の位置を決定することを特徴とする請求項74に記載の信号検出器。
【請求項76】
前記少なくとも1つの基準信号が、前記所望の信号に関連したビット同期情報を提供することを特徴とする請求項74に記載の信号検出器。
【請求項77】
前記少なくとも1つの基準信号が、前記所望の信号に関連したデータエポックの位置を指定する情報を提供することを特徴とする請求項74に記載の信号検出器。
【請求項78】
前記少なくとも1つの基準信号が前記データエポックの位相反転を決定する情報を提供することを特徴とする請求項77に記載の信号検出器。
【請求項79】
前記第2のフレームの前記開始部分の位相が、前記第2の前記終了部分に関連した前記フレーム境界で位相反転があることを特徴とする請求項74に記載の信号検出器。
【請求項80】
さらに、前記位相反転を検出するステップを含み、ここに、積分するステップが前記位相を検出するステップに応じて、ここに、前記積分するステップは前記フレーム境界を越えて進むことをコヒーレント積分器に可能にする前記第2のフレームの前記開始部分を調整することを特徴とする請求項79に記載の信号検出器。
【請求項81】
さらに、前記位相反転を検出するステップを含み、ここに、前記積分するステップは前記位相反転を検出するステップに応じて、ここに、前記積分するステップは前記フレーム境界を越えてコヒーレント積分を続行させる前記第2のフレームの前記開始部分に存在する前記データの符号をフリップすることを特徴とする請求項79に記載の信号検出器。
【請求項82】
さらに、前記フレーム境界を検出するステップを含み、ここに、前記積分するステップが前記フレーム境界を検出するステップに応じて、ここに、前記積分するステップは前記第2のフレームの前記開始部分と前記第1のフレームの終了部分を積分することを特徴とすることを特徴とする請求項79に記載の信号検出器。
【請求項83】
さらに、前記フレーム境界を検出するステップを含み、ここに、前記積分するステップはフレーム境界を検出するステップに応じて、ここに、前記積分するステップは第1の仮説の下の前記第1のフレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第1の相関データを導き出し、第2の仮説の下の前記フレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第2の相関データを導き出すことを特徴とする請求項79に記載の信号検出器。
【請求項84】
さらに、前記第1の仮説と前記第2の仮説のどちらがよりあり得るかに基づいて前記第1の相関データと前記第2の相関データのうちの1つを選択するステップを含むことを特徴とする請求項83に記載の信号検出器。
【請求項85】
前記第1の仮説が、前記第2のフレームの前記開始部分の位相が前記第1のフレーム境界を越えて前記第1のフレームの前記終了部分の位相から不変であると仮定し、前記第2の仮説が、前記第2のフレームの前記開始部分の位相が前記第1のフレームの前記終了部分の位相に関連した前記フレーム境界を越えて位相の符号をフリップすると仮定することを特徴とする請求項84に記載の信号検出器。
【請求項86】
前記所望の信号が反復擬似ノイズ(PN)コードで調整された搬送信号であることを特徴とする請求項73に記載の信号検出器。
【請求項87】
前記ノイズが擬似ノイズであることを特徴とする請求項73に記載の信号検出器。
【請求項88】
前記セグメントが実数コンポーネントおよび虚数コンポーネントからなる複素数データを持ち、ここに、前記複素数データは、乗算するステップおよび複素数となるように複素数加算および複素数乗算によって積分するステップにより処理されることを特徴とする請求項73に記載の信号検出器。
【請求項89】
前記セグメントが振幅コンポーネントおよび位相コンポーネントからなる複素数データを持ち、ここに、前記複素数データは、乗算するステップおよび複素数となるように複素数加算および複素数乗算によって積分するステップより処理されることを特徴とする請求項73の信号検出器。
【請求項90】
前記少なくとも1つの仮説を生成するための仮説発生のステップからなることを特徴とする請求項73に記載の信号検出器。
【請求項91】
前記基準信号がセルラーネットワークによって生成されることを特徴とする請求項73に記載の信号検出器。
【請求項92】
前記基準信号がPCS電話ネットワークによって生成されることを特徴とする請求項73に記載の信号検出器。
【請求項93】
前記受信するステップがグローバルポジショニングシステム(GPS)信号を受信することを特徴とする請求項73に記載の信号検出器。
【請求項94】
前記少なくとも1つの所望の信号が対応する少なくとも1つのグローバルポジショニングシステム(GPS)によって生成されることを特徴とする請求項73に記載の信号検出器。
【請求項95】
前記GPS衛星によって生成された前記所望の信号が、連続的に追跡されないことを特徴とする請求項94に記載の信号検出器。
【請求項96】
前記少なくとも1つの所望の信号を受信するステップは、前記所望の信号のパラメータを受信することを特徴とする請求項73に記載の信号検出器。
【請求項97】
所望の信号を検出するための一連の命令を格納するプログラムからなるコンピュータ読取り可能な媒体であって、少なくとも以下のものを実行させるためのプログラム:
ノイズによって乱された所望の少なくとも1つの信号を受信し;
少なくとも1つの基準信号を受信し;
前記少なくとも1つの所望の信号セグメントからデータを導き出し;
前記データに少なくとも1つの仮説を表すデータを乗算し;
前記少なくとも1つの仮説と前記セグメントを表すプロダクトデータを提供し;
時間の継続時間の前記プロダクトデータを積分し;
所望の信号を検出するのに有用な相関データを導き出す。
【請求項98】
前記所望の信号がフレーム境界によって分離された複数の連続のフレームであり、ここに、前記各セグメントは、前記複数のフレームの第1のフレームの終了部分、前記第1のフレームに連続する第2のフレームの開始部分、および前記第1のフレームと前記第2のフレームの間のフレーム境界からなることを特徴とする請求項97に記載のコンピュータ読取り可能な媒体。
【請求項99】
前記第2のフレームの前記開始部分の位相が、前記第2の前記終了部分に関連した前記フレーム境界で位相反転があり、さらに、前記位相反転を検出する一連の命令を持ち、ここに、積分する前記一連の命令は前記位相反転を検出する前記一連の命令に応じて、ここに、前記積分する一連の命令は前記フレーム境界を越えてコヒーレント積分を続行させる前記第2のフレームの前記開始部分を調整することを特徴とする請求項98に記載のコンピュータ読取り可能な媒体。
【請求項100】
前記第2のフレームの前記開始部分の位相が、前記第2の前記終了部分に関連した前記フレーム境界で位相反転があり、さらに、前記位相反転を検出する一連の命令を持ち、ここに、積分する前記一連の命令は前記位相反転を検出する前記一連の命令に応じて、ここに、前記積分する一連の命令は前記フレーム境界を越えてコヒーレント積分を続行させる前記第2のフレームの前記開始部分に存在する前記データの符号をフリップすることを特徴とする請求項98に記載のコンピュータ読取り可能な媒体。
【請求項101】
前記第2のフレームの前記開始部分の位相が、前記第2の前記終了部分に関連した前記フレーム境界で位相反転があり、さらに、前記フレーム境界を検出する一連の命令を持ち、ここに、積分する前記一連の命令は前記フレーム境界を検出する前記一連の命令に応じて、ここに、積分する前記一連の命令は前記第2のフレームの前記開始部分と前記第1のフレームの前記終了部分を積分することを特徴とする請求項98に記載のコンピュータ読取り可能な媒体。
【請求項102】
前記第2のフレームの前記開始部分の位相が、前記第2の前記終了部分に関連した前記フレーム境界で位相反転があり、さらに、前記フレーム境界を検出する一連の命令を持ち、ここに、積分する前記一連の命令は前記フレーム境界を検出する前記一連の命令に応じて、ここに、前記積分する一連の命令は第1の仮説の下の前記第1のフレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第1の相関データを導き出し、第2の仮説の下の前記フレーム境界を越えてプロダクトデータをコヒーレントに積分することにより第2の相関データを導き出すことを特徴とする請求項98に記載のコンピュータ読取り可能な媒体。
【請求項103】
前記第1の仮説が、前記第2のフレームの前記開始部分の位相が前記第1のフレーム境界を越えて前記第1のフレームの前記終了部分の位相から不変であると仮定し、前記第2の仮説が、前記第2のフレームの前記開始部分の位相が前記第1のフレームの前記終了部分の位相に関連した前記フレーム境界を越えて位相の符号をフリップすると仮定することを特徴とする請求項102に記載のコンピュータ読取り可能な媒体。
【請求項104】
前記セグメントが実数コンポーネントおよび虚数コンポーネントからなる複素数データを持ち、ここに、前記複素数データは、乗算する前記一連の命令および複素数となるように複素数加算および複素数乗算によって積分する前記一連の命令により処理されることを特徴とする請求項97に記載のコンピュータ読取り可能な媒体。
【請求項105】
前記セグメントが振幅コンポーネントおよび位相コンポーネントからなる複素数データを持ち、ここに、前記複素数データは、乗算する前記一連の命令および複素数となるように複素数加算および複素数乗算によって積分する前記一連の命令により処理されることを特徴とする請求項97に記載のコンピュータ読取り可能な媒体。
【請求項106】
前記少なくとも1つの仮説を生成する仮説発生器のための一連の命令からなることを特徴とする請求項97に記載のコンピュータ読取り可能な媒体。
【請求項107】
少なくとも1つの所望の信号を受信するための前記一連の命令が前記所望の信号のパラメータを受信することを特徴とする請求項97に記載のコンピュータ読取り可能な媒体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図13C】
image rotate


【公開番号】特開2007−327952(P2007−327952A)
【公開日】平成19年12月20日(2007.12.20)
【国際特許分類】
【外国語出願】
【出願番号】特願2007−140620(P2007−140620)
【出願日】平成19年5月28日(2007.5.28)
【分割の表示】特願2000−608192(P2000−608192)の分割
【原出願日】平成12年3月29日(2000.3.29)
【出願人】(501382085)サーフ テクノロジー インコーポレイテッド (26)
【Fターム(参考)】