説明

コーティングされた磁気ナノ粒子を含む硬化性インク

【課題】コーティングされた磁気金属ナノ粒子を含む新規な硬化性インク組成物を提供する。
【解決手段】モノマー、光開始剤、任意の硬化性オリゴマー、および1つ以上の任意の添加剤を含む硬化性インクキャリア;コーティングされた磁気ナノ粒子であって、このコーティングされた磁気ナノ粒子が、磁気金属コアおよびこの磁気金属コアに配置された保護コーティングを含むナノ粒子;および任意の着色剤を含むインク。前記磁気金属コアが、Fe、Mn、Co、Ni、FePt、CoPt、MnAlおよびMnBiならびにこれらの混合物からなる群から選択されるインク。

【発明の詳細な説明】
【背景技術】
【0001】
磁気インク文字認識(MICR)印刷に好適な非デジタルインクおよび印刷素子が一般に知られている。最も一般的に知られている2つの技術が、リボン系熱印刷システムおよびオフセット技術である。ナンバリングボックスを用いたオフセット印刷に好適なMICRインクは、通常濃厚で、高度に濃縮されたペーストであり、例えば塩基を含有する大豆系ワニスに分散した約60%を超える磁気金属酸化物で構成される。こうしたインクは、例えばHeath Custom Press(Auburn,WA)にて市販されている。500ミクロン未満の粒径を有する金属酸化物系強磁性粒子を用いたMICR用途のためのデジタル水系インク−ジェットインク組成物は、米国特許第6,767,396号明細書に開示されている。水系インクは、Diversified Nano Corporation(SanDiego,CA)から市販されている。
【0002】
本実施形態は、金属ナノ粒子を含むUV硬化性磁気インクに関する。これらの磁気インクは、自動化チェック処理のための磁気インク文字認識(MICR)および文書認証のためのセキュリティ印刷のような特定用途に必要とされる。商業的インクの製作での使用を不可能にするコーティングされていない磁気金属ナノ粒子の固有の特性の1つは、それらの自然発火性の性質である;通常約数十ナノメートル以下の特定サイズを有するコーティングされていない(裸の)磁気ナノ粒子は、周囲環境中の酸素に曝された場合に自然発火する。そういうものとして、コーティングされていない磁気金属ナノ粒子は深刻な火災の危険性がある。そういうものとして、こうした粒子を含むUV硬化性インクの大規模製造は、粒子を取り扱う場合に空気および水を完全に除去する必要があるので、困難である。加えて、インク調製プロセスは、無機磁気粒子が有機塩基構成成分と不相溶性であるため、磁気顔料を用いるのが特に難しい。
【発明の概要】
【発明が解決しようとする課題】
【0003】
故に、開示された硬化性インク配合物が、先行する配合物よりも優るいくつかの利点を与える一方で、依然として、硬化性インクおよび特に硬化性ゲルUVインクの所望の特性を与えるだけでなく、磁気性でもある配合物を得ることが必要とされている。さらに、特別な取り扱い条件を必要としない構成成分から容易に製造され、および誘導される磁気硬化性インク配合物を得ることが必要とされている。
【課題を解決するための手段】
【0004】
本明細書に例示される実施形態によれば、コーティングされた磁気金属ナノ粒子を含む新規な硬化性インク組成物が提供される。特定実施形態が、硬化性ゲルUVインク組成物、ならびにUV硬化性組成物を提供する。
【0005】
特に、本実施形態は、モノマー、光開始剤、任意の硬化性オリゴマー、および1つ以上の任意の添加剤を含む硬化性インクキャリア;および磁気金属コアおよびこの磁気金属コアに配置された保護コーティングをさらに含むコーティングされた磁気ナノ粒子を含むインクを提供し、ここでこの保護コーティングは無機酸化物を含む。
【図面の簡単な説明】
【0006】
【図1】本実施形態に従うコーティングされた磁気ナノ粒子の断面図を例示する。
【図2】図1の代替実施形態に従うコーティングされた磁気ナノ粒子の断面図を例示する。
【図3】図1または図2の代替実施形態に従うコーティングされた磁気ナノ粒子の断面図を例示する。
【発明を実施するための形態】
【0007】
硬化性インク技術は、多くの市場に対して印刷能および顧客基盤を拡大し、印刷用途の多様性は、プリントヘッド技術、プリントプロセスおよびインク材料の有効な集積によって促進される。上記で考察されたように、現在のインク選択肢は、種々の基材に対する印刷について成功しているが、ナノ粒子に関連する安全性の危険を低減する磁気金属ナノ粒子を含む磁気硬化性インクを製造する方法が必要とされている。
【0008】
本実施形態は、一般に紫外線(UV)硬化性磁気インクに関し、好ましい実施形態においては、紫外線(UV)硬化性磁気インクに関する。特に、本実施形態は、UV硬化性インクベースに分散されたコーティングされた磁気金属ナノ粒子を用いて製造される硬化性インクを提供する。商業的インクの製作での使用を不可能にするコーティングされていない磁気金属ナノ粒子の固有の特性の1つは、それらの自然発火性の性質である;コーティングされていない(裸の)磁気ナノ粒子は、周囲環境中の酸素に曝される場合に自然発火する。例えば、裸の鉄、コバルトおよび合金ナノ粒子は、深刻な火災の危険性がある。故に、本実施形態は、磁気インクの使用を必要とする用途に好適である安定な磁気UV硬化性インクの安全な調製方法を提供する。本実施形態は、水および空気に曝されないように保護されたコーティングされた磁気金属ナノ粒子を提供する。これらのナノ粒子は、例えば、炭素、ポリマー、無機酸化物、界面活性剤、またはこれらの混合物のような種々の材料のコーティングを有し、これが水または空気に対してバリアとして作用する。
【0009】
磁気インクは、2つの主要用途:(1)自動化チェック処理のための磁気インク文字認識(MICR)および(2)文書認証のためのセキュリティ印刷に必要とされる。得られた硬化性インクは、これらの用途に使用できる。
【0010】
得られた硬化性インクはまた、低温操作および高温操作の両方に好適な圧電タイプのインクジェット・プリント・ヘッドを用いて適用できる。現在のところ、水系MICRインクジェットインクだけが市販されている。水系インクは、噴出を無効にするインクの蒸発またはチャンネル内の塩の堆積を防止するためにプリントヘッドに特別な注意を必要とする。さらに、水性インクを用いた高品質印刷は、一般に特別に処理された画像基材を必要とする。加えて、UV硬化性インクおよび水系インクの両方を同じプリンター内で操作する場合に、不相溶性が生じる可能性があることについて一般的な懸念がある。有機硬化性の加熱されたインク槽に近接することによる水の蒸発、錆、UVインクの高い湿度感受性のような問題は、水系MICR溶液の実施を阻止し得る重要な問題である。故に、本実施形態はさらに、これらの問題を回避する。
【0011】
本実施形態は、UV硬化性インクベースに分散されたコーティングされた金属磁気ナノ粒子から製造されるUV硬化性インクを提供する。インクベースは、1つ以上の樹脂、1つ以上の着色剤、および/または1つ以上の添加剤、例えばゲル化剤、分散剤および/または分散剤/共力剤の組み合わせを含んでいてもよい。分散剤は、一部の実施形態では、インク調製前の粒子の表面に存在する界面活性剤と比較した場合に、同一または異なっていてもよい。けれども表面コーティングが界面活性剤を含む実施形態では、分散剤および/または共力剤は必要ではない場合がある。故に、分散剤および/または共力剤の選択は、保護コーティングのタイプに依存する。
【0012】
このインクは、MICR用途を含む種々の用途に使用するのに好適である。加えて、印刷されたインクは、たとえ得られたインクがMICR用途の使用に好適な十分な保磁力および残留力を示さない場合であっても、装飾目的のためには使用できる。それらはまた、セキュリティ印刷用途に使用できる。コーティングされた磁気ナノ粒子5は、図1から図3に示されるように、コーティング材料10を用いて表面上にコーティングされたコア磁気ナノ粒子15で構成される。コーティングされた磁気ナノ粒子は、楕円(図1)、キューブ状(図2)、および球体(図3)のような異なる形状を有するように製造できる。形状は、図に示されたものに限定されない。コーティング材料は、無機酸化物系組成物である。無機酸化物は、シリカ、酸化チタン、酸化鉄、酸化亜鉛など、およびこれらの混合物からなる群から選択できる。磁気インクは、UV硬化性インクベース中にコーティングされたナノ粒子を分散させることによって製造される。ナノ粒子の表面に存在する無機酸化物コーティングは、このナノ粒子が取り扱いに安全であるように空気および湿分安定性を与える。
【0013】
コーティングは、磁気金属ナノ粒子の表面に配置され、約0.2nm〜約100nm、または約0.5nm〜約50nm、または約1nm〜約20nmの層厚さを有していてもよい。
【0014】
コーティング材料として使用するのに好適な無機酸化物としては、シリカ、チタニア、酸化亜鉛および他の同様の無機酸化物およびこれらの混合物が挙げられる。
【0015】
無機酸化物から製造される保護層(シェル)を有するこうしたコア−シェル粒子の製作方法は、例えば米国特許公開番号2010/0304006に記載され、この文献では、金属ナノ粒子の表面上のシリカコーティングは、金属ナノ粒子の表面上でのテトラアルコキシシランの触媒加水分解によって提供される方法が記載されている。金属ナノ粒子の表面に水が直接接触するのを回避するために、このプロセスは、シリカ前駆体の加水分解/縮合に必要な量の水だけが存在する上で、テトラヒドロフラン(THF)のような有機溶媒を含有する媒体中で行われる。この方法によって製造されるコーティングされた磁気ナノ粒子としては、Fe、Fe/Co合金が挙げられる。
【0016】
実施形態において、粒径および形状に依存して、本明細書のプロセスによって2つのタイプの磁気金属系インク:強磁性インクおよび超常磁性インクを得ることができる。
【0017】
実施形態において、本明細書の金属ナノ粒子は、強磁性であることができる。強磁性インクは、磁石によって磁化され、磁石が除去されたら飽和磁化の一部のフラクションを維持する。このインクの主要な用途は、チェック処理のために使用される磁気インク文字認識(MICR)である。
【0018】
実施形態において、本明細書の金属ナノ粒子は、超常磁性インクであることができる。超常磁性インクも、磁場の存在下で磁化されるが、それらは磁場の不存在下でそれらの磁化を失う。超常磁性インクの主要用途は、セキュリティ印刷用であるが、これに限定されない。この場合、例えば、本明細書に記載される磁気粒子およびカーボンブラックを含有するインクは、通常のブラックインクとして現れるが、磁気センサまたは磁気画像形成デバイスを用いることによって磁気特性を検出できる。あるいは、金属検出デバイスが、このインクを用いて調製された機密プリントの磁気金属特性を認証するために使用されてもよい。磁気センシングのための超常磁性の画像文字認識(すなわち、超常磁性インクを用いる)プロセスは、その全体が参考として本明細書に組み込まれる米国特許第5,667,924号明細書に記載されている。
【0019】
上記で記載されるように、本明細書の金属ナノ粒子は、強磁性または超常磁性であることができる。超常磁性ナノ粒子は、磁石によって磁化された後に0の残留磁化を有する。強磁性ナノ粒子は、磁石によって磁化された後に0より大きい残留磁化を有する、すなわち強磁性ナノ粒子が磁石によって誘導された磁化のフラクションを維持する。ナノ粒子の超常磁性または強磁性特性は、一般にサイズ、形状、材料選択および温度を含むいくつかの因子の関数である。所与の材料に関して、所与の温度では、保磁力(すなわち強磁性挙動)は、マルチドメインからシングルドメイン構造の転移に対応する臨界粒径にて最大化される。この臨界サイズは、臨界磁気ドメインサイズ(Dc,球体)と称される。シングルドメインの範囲において、熱緩和により粒径を低下させる場合に保磁力および残留磁化が著しく低下する。さらに、熱作用が支配的となり、予め磁気的に飽和されたナノ粒子を脱磁化するのに十分強いので、粒径の低下は誘導された磁化の完全な喪失をもたらす。超常磁性ナノ粒子はまた、0残留力および保磁力を有する。Dc付近およびDcを超えるサイズの粒子は強磁性である。例えば、室温において、鉄のDcは約15ナノメートルであり、fccコバルトについては約7ナノメートルであり、ニッケルについてその値は約55nmである。さらに、3、8、および13ナノメートルの粒径を有する鉄ナノ粒子は超常磁性である一方で、18〜40ナノメートルの粒径を有する鉄ナノ粒子は強磁性である。合金について、Dc値は、材料に依存して変化し得る。
【0020】
実施形態において、ナノ粒子は、例えば特にCoおよびFe(立方体)を含む磁気金属性ナノ粒子であってもよい。他のものとしては、Mn、Niおよび/または前述のすべてのもので構成される合金が挙げられる。加えて、磁気ナノ粒子は、二金属または三金属、またはこれらの混合物であってもよい。好適な二金属磁気ナノ粒子の例としては、これらに限定されないが、CoPt、fcc相FePt、fct相FePt、FeCo、MnAl、MnBi、これらの混合物などが挙げられる。三金属ナノ粒子の例としては、これらに限定されないが、上記磁気ナノ粒子の三混合物、または三金属ナノ粒子を形成するコア/シェル構造、例えばco被覆されたfct相FePtを挙げることができる。
【0021】
磁気ナノ粒子は、当該技術分野において既知のいずれかの方法(より大きい粒子のボールミル加工摩耗(ナノサイズ化された顔料製造に使用される一般的方法)、続くアニーリングを含む)によって調製されてもよい。ボールミル加工は、必要とする単結晶形態に後で結晶化される必要がある非晶質ナノ粒子を生じるので、アニーリングが一般に必要である。ナノ粒子はまた、RFプラズマによって直接製造できる。
【0022】
磁気ナノ粒子の平均粒径は、すべての次元において、例えば約5nm〜約300nmのサイズであってもよい。それらは、球体、立方体および六角形を含むいずれかの形状を有することができる。1つの実施形態において、ナノ粒子は、サイズが約5nm〜約500nm、例えば約10nm〜約300nm、または20nm〜約250nmであるが、この量はこれらの範囲外であることができる。本明細書において、「平均」粒径は、通常、d50として表され、または粒径分布の中央値において中間粒径値として規定され、分布中の粒子の50%がd50粒径値より大きく、分布中の粒子の残りの50%がd50値未満である。平均粒径は、動的光散乱のような粒径を推論する光散乱技術を使用する方法によって測定できる。粒子直径は、透過型電子顕微鏡(TEM)または動的光散乱測定によって得られる粒子の画像から誘導されるような顔料粒子の長さを指す。
【0023】
磁気ナノ粒子はいずれかの形状であってもよい。磁気ナノ粒子の例示的な形状としては、これらに限定されないが、例えばニードル形状、顆粒状、小球体、小板形状、針状、円柱状、八面体、十二面体、管状、立方体、六角形、楕円、球体、樹枝状(densdritic)、角柱状、非晶質形状などを挙げることができる。非晶質形状は、認識可能な形状を有する不明瞭な形状として本実施形態の内容で規定される。例えば非晶質形状は、明らかな縁部または角度を有さない。ナノ単結晶のサイズの主軸と短軸との比(Dmajor/Dminor)は、約10:1未満、例えば約3:2未満、または約2:1未満であることができる。特定実施形態において、磁気金属コアは、約3:2〜約10:1のアスペクト比を有するニードル様形状を有する。
【0024】
インク中の磁気ナノ粒子の充填要件は約0.5重量%〜約30重量%、例えば約5重量%〜約10重量%、または約6重量%〜約8重量%であってもよいが、この量はこれらの範囲外であることができる。
【0025】
磁気ナノ粒子は、約20emu/g〜約100emu/g、例えば約30emu/g〜約80emu/g、または約50emu/g〜約70emu/gの残留力を有することができるが、この量はこれらの範囲外であることができる。
【0026】
磁気ナノ粒子の保磁力は、例えば、約200エルステッド〜約50,000エルステッド、例えば約1,000エルステッド〜約40,000エルステッド、または約10,000エルステッド〜約20,000エルステッドであることができるが、この量はこれらの範囲外であることができる。
【0027】
磁気飽和モーメントは、例えば、約20emu/g〜約150emu/g、例えば約30emu/g〜約120emu/g、または約40emu/g〜約80emu/gであってもよいが、この量はこれらの範囲外であることができる。
【0028】
インク組成物はまた、キャリア材料または2つ以上のキャリア材料の混合物を含む。
【0029】
放射線(例えば紫外線)硬化性インク組成物の場合、インク組成物は、硬化性キャリア材料、光開始剤、任意の着色剤、および追加の添加剤を含む。硬化性キャリア材料は、通常、硬化性モノマー、硬化性オリゴマーなどである。硬化性キャリアは、実施形態において、1つ以上のこれらの材料(これらの混合物を含む)を含んでいてもよい。硬化性材料は、通常、25℃で液体である。硬化性インク組成物はさらに、上記の着色剤および他の添加剤に加えて他の硬化性材料、例えば硬化性ワックスなどを含むことができる。「硬化性」という用語は、例えば、重合性である構成成分または組み合わせ、すなわち重合(例えばフリーラジカル経路を含む、および/または重合が放射線感受性光開始剤の使用により光開始される)を介して硬化され得る材料を指す。故に、例えば「放射線硬化性」という用語が言及するものは、放射線源(光および熱源を含み、開始剤の存在下または不存在下を含む)に曝される際に硬化するすべての形態をカバーすることが意図される。放射線硬化経路の例としては、例えば200〜400nm以上のほどんど見えない光の波長を有する紫外(UV)光を用いる硬化、例えば光開始剤および/または増感剤の存在下での硬化、例えば光開始剤の不存在下でのe−ビーム放射線を用いる硬化、高温熱開始剤(一般に噴出温度にて主として不活性である)の存在または不存在下での熱硬化を用いる硬化、およびこれらの適切な組み合わせが挙げられるが、これらに限定されない。
【0030】
好適な放射線−(例えばUV−)硬化性モノマーおよびオリゴマーとしては、アクリル化エステル、アクリル化ポリエステル、アクリル化エーテル、アクリル化ポリエーテル、アクリル化エポキシ、ウレタンアクリレート、およびペンタエリスリトールテトラアクリレートが挙げられるが、これらに限定されない。好適なアクリル化オリゴマーの具体的な例としては、アクリル化ポリエステルオリゴマー、例えばCN2262(Sartomer Co.)、EB812(Cytec Surface Specialties)、EB810(Cytec Surface Specialties)、CN2200(Sartomer Co.)、CN2300(Sartomer Co.)など、アクリル化ウレタンオリゴマー、例えばEB270(Cytec Surface Specialties)、EB5129(Cytec Surface Specialties)、CN2920(Sartomer Co.)、CN3211(Sartomer Co.)など、およびアクリル化エポキシオリゴマー、例えばEB600(Cytec Surface Specialties)、EB3411(Cytec Surface Specialties)、CN2204(Sartomer Co.)、CN110(Sartomer Co.)など;およびペンタエリスリトールテトラアクリレートオリゴマー、例えばSR399LV(Sartomer Co.)などが挙げられるが、これらに限定されない。好適なアクリル化モノマーの具体的な例としては、ポリアクリレート、例えばトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、グリセロールプロポキシトリアクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートトリアクリレート、ペンタアクリレートエステルなど、エポキシアクリレート、ウレタンアクリレート、アミンアクリレート、アクリル酸アクリレートなどが挙げられるが、これらに限定されない。2つ以上の材料の混合物はまた、反応性モノマーとして使用できる。好適な反応性モノマーは、例えば、Sartomer Co.,Inc.、BASF Corporation、Rahn AGなどから市販されている。実施形態において、少なくとも1つの放射線硬化性オリゴマーおよび/またはモノマーは、カチオン硬化性、ラジカル硬化性などであることができる。
【0031】
硬化性モノマーまたはオリゴマーは、実施形態において、インク中に、例えばインクの約20〜約90重量%、例えば約30〜約85重量%、または約40〜約80重量%の量で含まれるが、この量はこれらの範囲外であることができる。実施形態において、場合によりオリゴマーと硬化性モノマーとの混合物は、25℃の粘度が約1〜約50cP、例えば約1〜約40cPまたは約10〜約30cPを有するように選択されるが、この量はこれらの範囲外であることができる。1つの実施形態において、硬化性モノマーおよびオリゴマーの混合物は、25℃の粘度が約20cPである。また、一部の実施形態において、硬化性モノマーまたはオリゴマーが皮膚刺激性でなく、結果として未硬化インク組成物はユーザーにとって刺激性ではないことが望ましい。
【0032】
インク組成物はさらに開始剤を含む。フリーラジカル開始剤の例としては、ベンジルケトン、モノマー性ヒドロキシルケトン、ポリマー性ヒドロキシルケトン、α−アミノケトン、アシルホスフィンオキシド、メタロセン、ベンゾフェノン、ベンゾフェノン誘導体などが挙げられる。
【0033】
任意に、硬化性インクはまた、アミン共力剤を含有でき、それは水素原子を光開始剤に供与でき、それによって重合を開始するラジカル種を形成し、またフリーラジカル重合を阻害する溶解酸素を消費でき、それによって重合速度を増加させる共開始剤である。好適なアミン共力剤の例としては、エチル−4−ジメチルアミノベンゾエート、2−エチルヘキシル−4−ジメチルアミノベンゾエートなど、ならびにこれらの混合物が挙げられる(が、これらに限定されない)。
【0034】
本明細書に開示されたインク用の開始剤は、いずれかの所望のまたは有効な波長において放射線を吸収でき、1つの実施形態では少なくとも約200ナノメートル、1つの実施形態では約560ナノメートル以下、別の実施形態では約420ナノメートル以下の放射線を吸収できるが、波長はこれらの範囲外であることができる。
【0035】
開始剤は、インク中に、いずれかの所望のまたは有効な量にて、1つの実施形態では少なくともキャリアの約0.5重量%、別の実施形態では少なくともキャリアの約1重量%、1つの実施形態ではキャリアの約15重量%以下、別の実施形態ではキャリアの約10重量%以下で存在し得るが、この量はこれらの範囲外であることができる。
【0036】
調製されるようなMICRインクは、黒色または暗褐色のいずれかである。さらなる実施形態において、本開示に従うMICRインクは、さらにインク製造中に着色剤を添加することによって着色されたインクとして製造されてもよい。あるいは、着色剤を欠いたMICRインクは、第1のパス中に基材に印刷され、MICR粒子を欠いた着色されたインクが、その着色されたインクにわたって直接印刷され、着色されたインクをMICR−解読可能にする第2のパスが続いてもよい。これは、当該技術分野において既知のいずれかの手段を通して達成されることができる。例えば、各インクは分離した貯蔵器に貯蔵できる。印刷システムは、基材に別個に各インクを送達し、2つのインクが相互作用する。インクは、基材に同時または連続的に送達されてもよい。いずれかの所望または有効な着色剤は、インク組成物に使用されることができ、顔料、染料、顔料および染料混合物、顔料混合物、染料混合物などが挙げられる。コーティングされた磁気ナノ粒子はまた、実施形態において、着色剤特性の一部またはすべてをインク組成物に付与し得る。
【0037】
着色剤の量は、広い範囲、例えば約0.1〜約50重量%、または約3〜約20重量%で変更でき、着色剤の組み合わせが使用されてもよい。
【0038】
本実施形態のインクはさらに、それらの既知の目的のために1つ以上の添加剤を含有してもよい。例えば、好適な添加剤としては、ワックス、分散剤、架橋剤、安定剤、粘度調整剤、酸化防止剤、およびゲル化剤が挙げられる。
【0039】
硬化した画像は、非常に堅牢性であり、1つ以上のワックスがMICRインクジェットインクに添加されてもよい。ワックスは、例えば、インク組成物の総重量に基づいて約0.1〜約10重量%、または約1〜約6重量%の量で存在でき、この量はこれらの範囲外であることができる。好適なワックスの例としては、ポリオレフィンワックス、例えば低分子量ポリエチレン、ポリプロピレン、これらのコポリマーおよびこれらの混合物が挙げられるが、これらに限定されない。他の例としては、ポリエチレンワックス、ポリプロピレンワックス、フルオロカーボン系ワックスまたはフィッシャートロプシュワックスを挙げることができるが、他のワックスも使用できる。
【0040】
1つの特定実施形態において、ワックスは硬化性ワックスであることができる。これらのワックスは、変形可能な官能基を含有するワックスの反応によって合成できる。
【0041】
ワックスは、いずれかの所望のまたは有効な量のインク中に存在することができ、1つの実施形態において、インクキャリアの少なくとも約1重量%、別の実施形態において少なくとも約2重量%、およびさらに別の実施形態では少なくとも約3重量%、1つの実施形態において、約40重量%以下、別の実施形態において約30重量%以下、さらに別の実施形態において約20重量%以下で存在できるが、この量はこれらの範囲外であることができる。
【0042】
インク組成物はまた、任意に、ゲル化剤を含有できる。ゲル化剤は、所望の温度範囲内で放射線硬化性の相変化インクの粘度を顕著に増大させるように機能し得る。インクは、温度がインクのゲル相転移を超えてまたはそれ未満に変動した場合に半固体ゲル状態と液体状態との間の熱可逆性転移を示す。この半固体ゲル相と液体相との間の転移の可逆性サイクルは、インク配合物にて多数回繰り返され得る。1つ以上のゲル化剤の混合物は、相変化転移を有効にするために使用できる。好適なゲル化剤材料の例としては、参考として本明細書に完全に組み込まれる米国特許第7,714,040号明細書に開示されるような硬化性アミドゲル化剤が挙げられる(が、これらに限定されない)。
【0043】
インク組成物はまた、酸化防止剤を任意に含有することができる。インク組成物の任意の酸化防止剤は、酸化から画像を保護するとともに、インク調製プロセスの加熱部分の間に、酸化からインク構成成分を保護する。存在する場合、任意の酸化防止剤は、インク中、いずれかの所望または有効な量、例えばインクの少なくとも約0.01〜約20重量%、例えばインクの約0.1〜約5重量%、またはインクの約1〜約3重量%の量で存在できるが、この量はこれらの範囲外であることができる。
【0044】
インク組成物はまた、任意に粘度調整剤を含有できる。特定実施形態において、粘度制御剤は、脂肪族ケトン、例えばステアロンなど、ポリマー、例えばポリスチレン、ポリメチルメタクリレートなど、増粘化剤、例えばBYK Chemieから入手可能なものからなる群から選択されてもよい。存在する場合、任意の粘度調整剤は、インク中、いずれかの所望量または有効量、例えばインクの約0.1〜約99重量%、例えばインクの約1〜約30重量%、またはインクの約10〜約15重量%で存在できるが、この量はこれらの範囲外であることができる。
【0045】
分散剤は、場合により、この場合のインク配合物に存在してもよい。分散剤の役割は、コーティング材料との相互作用を安定化することによってコーティングされた磁気ナノ粒子の改善された分散安定性をさらに確実にすることである。好適な量の分散剤は、例えばインク重量の約0.1〜約10重量%の量、例えば約0.2〜約5重量%の量で選択できるが、この量はこれらの範囲外であることができる。特定分散剤またはこれらの組み合わせの選択、ならびに使用されるべきそれぞれの量は、当業者の範囲内である。
【0046】
本開示のインク組成物は、いずれかの所望のまたは好適な方法によって調製できる。例えば、硬化性ゲルUVインクの場合、インク成分は、共に混合され、続いて通常、約50℃〜約100℃の温度に加熱されるが、この温度はこの範囲外であることができ、さらに均質インク組成物が得られるまで撹拌し、続いて周囲温度(通常約20℃〜約25℃)にインクを冷却できる。液体インク組成物の場合、インク成分は、簡単に、均質組成物を提供するために撹拌しながら共に混合できるが、加熱は組成物を形成するのを助けることが所望または必要であればで使用できる。インク組成物を製造する他の方法は当該技術分野において既知であり、本開示に基づいて明らかである。
【0047】
磁気金属粒子インクは、一般に、これらに限定されないが、紙、ガラスアート紙、ボンド紙、板紙、クラフト紙、ボール紙、半合成紙またはプラスチックシート、例えばポリエステルまたはポリエチレンシートなどの好適な基材に印刷されてもよい。これらの種々の基材は、それらの自然状態、例えばコーティングされていない紙で提供されることができ、またはそれらは改質された形態、例えばコーティングされたまたは処理された紙または板紙、印刷された紙または板紙などで提供されることができる。
【0048】
透明材料、布地、繊維製品、プラスチック、ポリマーフィルム、無機記録媒体、例えば金属および木材など、透明材料、布地、繊維製品、プラスチック、ポリマーフィルム、無機基材、例えば金属および木材などが挙げられるが、これらに限定されないさらに好適な材料が使用されてもよい。
【0049】
本開示のインクは、MICRおよび非MICR用途の両方に使用できる。
【実施例】
【0050】
実施例1
炭素コーティングされた磁気ナノ粒子を用いた磁気インク濃縮物の製作
ステンレス・スチール・ショット(1,800g)を充填した磨砕機に、プロポキシル化ネオペンチルジアクリレート硬化性モノマー(SR9003、57.6g、Sartomer Co.Inc.,Exeter,PAから得られた)および27.4gのEFKA4340(以前はCiba、現在はBASFから入手可能なメトキシプロパノール中のアクリルブロックコポリマーからなる分散剤;メトキシプロパノールは使用前に蒸留によって除去された)を添加した。得られた混合物は、200r.p.m.にて撹拌しながら、分散液を50℃未満に維持した。次いで、15gの炭素コーティングされた鉄ナノ粒子(Nanoshel Corporation,Wilmington,DEから得られた、平均粒子直径25nmを有する)を1分間かけて添加した。次いでこの混合物を、20時間撹拌し、次いでステンレス・スチール・ショットを除去するためにふるいにかけ、炭素コーティングされた鉄粒子の濃縮分散液(約15%濃度)を得た。
【0051】
実施例2
シリカコーティングされた磁気ナノ粒子を用いた磁気インク濃縮物の製作
平均粒径300nmのシリカコーティングされた鉄ナノ粒子は、FeCl3・6H2OをNaOH/N2H4・H2O還元剤で還元することによって合成する。エタノールで洗浄した後、シリカコーティングをStober方法を用いることによって堆積させる。この手順において、シリカ層は、テトラエチルオルトシリケート前駆体から堆積させ、それをアンモニア/水混合物にてpH8〜9にて40℃で4時間加水分解する。シリカコーティングされた鉄ナノ粒子の製作手順は、Materials Chemistry and Physics 10:206−212(2010)におけるNi et alによって完全に記載される。
【0052】
実施例1に記載される磁気インク濃縮物の製作手順は、炭素コーティングされたナノ粒子を上記のような15gのシリカコーティングされ、鉄コーティングされたナノ粒子で置換することによって繰り返される。この手順により、シリカコーティングされた鉄ナノ粒子を含有するUV硬化性磁気インク濃縮物が得られる。
【0053】
実施例3
炭素コーティングされた鉄ナノ粒子を含有するUV硬化性磁気インクの製作
13重量%の炭素コーティングされた鉄磁気粒子を有する10gのインクは、8.73gの15重量%の磁気鉄ナノ粒子分散液、0.5gのジペンタエリスリトールペンタアクリレート硬化性モノマー(SR399LV、Sartomer Corporationから得られた)、0.3gのIRGACURE379光開始剤(2−(4−メチルベンジル)−2−(ジメチルアミノ)−1−(4−モルホリノフェニル)ブタン−1−オン(BASF Corporation,Wilmington,DEから得られた)、0.1gのIRGACURE819光開始剤(ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド(BASF Corporationから得られた)、0.35gのIRGACURE127光開始剤(2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]−フェニル}−2−メチル−プロパン−1−オン(BASF Corporationから得られた)、および0.02gのIRGASTAB UV10(缶内窒酸化物系安定剤、BASF Corporationから得られた)を混合することによって調製された。得られた混合物を、ガラス瓶中で85℃にて2時間撹拌した。インクを、加熱された1μmのフィルター装置を通して圧力下でろ過し、最終インクを与える。
【0054】
実施例4
シリカコーティングされた鉄ナノ粒子を含有するUV硬化性磁気インクの製作
実施例3の手順を、炭素コーティングされた鉄ナノ粒子を含有するインク濃縮物(実施例1から)を、シリカコーティングされた鉄ナノ粒子を含有する8.7gのインク濃縮物(実施例2から)で置換することによって繰り返し、13%のシリカコーティングされた鉄ナノ粒子を含有する10gの硬化性インクを提供する。
【0055】
実施例5
UV硬化性磁気インクの製作のための一般的手順
実施例3に記載される手順を、インク構成成分の量を表1に示される範囲内で変更することによって繰り返す。個々のインク構成成分のための具体的な量を選択する場合に、最終インクの構成成分すべての合計は100%になると理解される。
【表1】

【0056】
実施例6
硬化性ゲルUVインクの製作
実施例3からの手順を、同じ量のインク構成成分を用いて繰り返し、これに、米国特許第7,714,040号明細書(その開示が参考として本明細書に完全に組み込まれる)のインク実施例Aに開示されるものと同じ0.57gのアミドゲル化剤を、開始剤がインク組成物に添加されるときに添加する。これにより、約12%の炭素コーティングされた鉄ナノ粒子を含有する10.75gの硬化性ゲルUVインクが得られる。
【0057】
実施例7
硬化性ゲルUVインクの製作のための一般的手順
実施例5に記載される手順を、表2に示されるように、インクに5〜10%の割合でアミドゲル化剤を添加することによって繰り返す。
【表2】

【0058】
実施例8(予測)
ポリマーコーティングされた磁気ナノ粒子を含有する硬化性磁気インク
ポリスチレンコーティングされたコバルトナノ粒子は、アルゴン下、160℃にて、4:1(w/w)の比にてホスフィンオキシド基で末端処理されたポリスチレンポリマーおよびアミン末端処理されたポリスチレンの存在下、溶媒としてのジクロロベンゼン中のジコバルトオクタカルボニルの30分間の熱分解によって得られる。反応混合物を、ヘキサン中に沈殿させ、さらに洗浄してポリスチレンコーティングされたコバルトナノ粒子を得る。製作プロセスは、US2010/0015472A1(Bradshaw)に記載される。
【0059】
濃縮物(実施例1)およびインク(実施例3)の両方のインクの製作手順を、炭素コーティングされた鉄ナノ粒子を、ポリスチレンコーティングされたコバルトナノ粒子で置換することによって繰り返し、ポリマーコーティングされたコバルトナノ粒子を含有するインクを得る。
【0060】
実施例9
界面活性剤でコーティングされた磁気ナノ粒子を有する硬化性磁気インク
約10nm(TEMで決定される場合)の平均径の界面活性剤コーティングされたFeCo合金磁気ナノ粒子は、300℃にて、93%のAr+7%H2のガス混合物下、1,2−ヘキサデカンジオール中の界面活性剤の混合物(オレイン酸およびトリオクチルホスフィン)中、Fe(III)アセチルアセトネートおよびCo(II)アセチルアセトネートの還元分解によって得られる。実験的手順は、J.Am.Chem.Soc.120:7214−5(2007)に完全に記載されている。濃縮物(実施例1)およびインク(実施例3)の両方のインクの製作手順を、炭素コーティングされた鉄ナノ粒子を、上記のような界面活性剤の混合物でコーティングされたFeCoナノ粒子で置換することによって繰り返す。
【0061】
磁気インク硬化
実施例3からのインク組成物の液滴をピペットを用いて紙の上に堆積させた。インクコーティングされた紙を、水銀D−バルブを備えた600W Fusion UV Systems,IncのLighthammerランプ下に32フィート/分のベルト速度にて通すことによって液滴を硬化させた。スキン層が、液滴表面に視覚可能であり、硬化が行われたことを示す。

【特許請求の範囲】
【請求項1】
モノマー、
光開始剤、
任意の硬化性オリゴマー、および
1つ以上の任意の添加剤を含む硬化性インクキャリア;
コーティングされた磁気ナノ粒子であって、このコーティングされた磁気ナノ粒子が、磁気金属コアおよびこの磁気金属コアに配置された保護コーティングを含むナノ粒子;および
任意の着色剤
を含むインク。
【請求項2】
前記磁気金属コアが、Fe、Mn、Co、Ni、FePt、CoPt、MnAlおよびMnBiならびにこれらの混合物からなる群から選択される、請求項1に記載のインク。
【請求項3】
前記保護コーティングが、炭素材料、ポリマー材料、無機酸化物、界面活性剤およびこれらの混合物からなる群から選択される、請求項1に記載のインク。
【請求項4】
前記保護コーティングが約0.2nm〜約100nmの厚さを有する、請求項1に記載のインク。
【請求項5】
前記磁気ナノ粒子が、約20emu/グラム〜約100emu/グラムの残留力を有する、請求項1に記載のインク。
【請求項6】
前記磁気ナノ粒子が、約200エルステッド〜約50,000エルステッドの保磁力を有する、請求項1に記載のインク。
【請求項7】
前記磁気ナノ粒子が、約20emu/グラム〜約150emu/グラムの磁気飽和モーメントを有する、請求項1に記載のインク。
【請求項8】
前記ナノ粒子のサイズが、すべての次元で、約3nm〜約300nmである、請求項1に記載のインク。
【請求項9】
前記磁気金属コアが、約3:2〜約10:1のアスペクト比を有するニードル様形状を有する、請求項1に記載のインク。
【請求項10】
次からなる群から選択されるゲル化剤をさらに含む、請求項1に記載のインク:
(a)次の一般構造を有するポリアミド:
【化1】

式中、nは1〜5の整数であり;Rは(i)アルキレン基、(ii)アリーレン基、(iii)アリールアルキレン基、(iv)アルキルアリーレン基である;RおよびR’は、それぞれ互いに独立に、(i)アルキレン基、(ii)アリーレン基、(iii)アリールアルキレン基、(iv)アルキルアリーレン基であり;RおよびR’は、それぞれ互いに独立に、(A)光開始剤基、または(B)(i)アルキル基、(ii)アリール基、(iii)アリールアルキル基、(iv)アルキルアリール基のいずれかであり、およびXおよびX’は、それぞれ互いに独立に、酸素原子または式NRの基であり、式中Rは、(i)水素原子、(ii)アルキル基、(iii)アリール基、(iv)アリールアルキル基、または(v)アルキルアリール基である;(b)硬化性アミドゲル化剤;
(c)エステル末端処理されたジアミド化合物;および
(d)トランス−1,2−シクロヘキサン−ビス(尿素−ウレタン)化合物。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−193349(P2012−193349A)
【公開日】平成24年10月11日(2012.10.11)
【国際特許分類】
【出願番号】特願2012−37249(P2012−37249)
【出願日】平成24年2月23日(2012.2.23)
【出願人】(596170170)ゼロックス コーポレイション (1,961)
【氏名又は名称原語表記】XEROX CORPORATION
【Fターム(参考)】