説明

タービン

【課題】タービンの性能向上、及び、車室のコンパクト設計を図れるようにする。
【解決手段】ブレード50と、その先端側に間隙を介して設けられると共に、ブレード50に対して相対回転する構造体とを備え、さらに、ブレード50の先端部及び構造体に、構造体の回転軸方向に交互に相手側に向かって延出して設けられ、相手側との間に微小隙間Hを画成する複数のシールフィン15,55と、隣り合うシールフィン15,55の間で、回転軸方向下流側のシールフィン15,55と共に微小隙間Hを画成するブレード50の先端部または構造体に、回転軸の径方向に窪んで形成される拡張用凹部17,57と、を備えるタービンを提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、発電プラント、化学プラント、ガスプラント、製鉄所、船舶等に用いられるタービンに関する。
【背景技術】
【0002】
周知のように、蒸気タービンの一種として、ケーシングと、ケーシングの内部に回転自在に設けられた軸体(ロータ)と、ケーシングの内周部に固定配置された複数の静翼と、これら複数の静翼の下流側において軸体に放射状に設けられた複数の動翼とを備えたものがある。このような蒸気タービンのうち衝動タービンの場合は、蒸気の圧力エネルギーを静翼によって速度エネルギーに変換し、この速度エネルギーを動翼によって回転エネルギー(機械エネルギー)に変換している。また、反動タービンの場合は、動翼内でも圧力エネルギーが速度エネルギーに変換され、蒸気が噴出する反動力により回転エネルギー(機械エネルギー)に変換される。
【0003】
この種の蒸気タービンでは、動翼の先端部と、動翼を囲繞して蒸気の流路を形成するケーシングとの間に径方向の間隙が形成され、また、静翼の先端部と軸体との間にも径方向の間隙が形成されているのが通常である。しかし、動翼先端部とケーシングとの間隙を下流側に通過する漏洩蒸気は、動翼に対して回転力を付与しない。また、静翼先端部と軸体との間隙を下流側に通過する漏洩蒸気は、その圧力エネルギーが静翼によって速度エネルギーに変換されないため、下流側の動翼に対して回転力をほとんど付与しない。したがって、蒸気タービンの性能向上のためには、前記間隙を通過する漏洩蒸気の流量(漏洩流量)を低減することが重要となる。
【0004】
従来では、例えば特許文献1のように、動翼の先端部に、軸方向上流側から下流側に向かって高さが次第に高くなる複数のステップ部を設け、ケーシングに、各ステップ部に向けて延出する複数のシールフィンを設け、各ステップ部と各シールフィンとの間に微小隙間を形成した構造のタービンが提案されている。なお、微小隙間は軸方向から見てリング状に形成される。
このタービンでは、上流側から前記間隙に入り込んだ蒸気がステップ部の段差面に衝突することで、段差面の上流側に主渦が発生し、段差面の下流側(前記微小隙間の上流側近傍)に剥離渦が発生する。そして、微小隙間の上流側近傍に生じる剥離渦によって、微小隙間を通り抜ける漏れ流れの低減化が図られている。すなわち、動翼の先端部とケーシングとの間隙を通過する漏洩蒸気の流量(漏洩流量)の低減化が図られている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2011−080452号公報(図6)
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上記従来のタービンのように、ステップ部及びシールフィンを軸方向に複数配列すると、ステップ部とシールフィンとの微小隙間も軸方向に複数配列されることになるが、複数の微小隙間のうち軸方向の下流側に配される微小隙間は、ステップ部によって,上流側に配される微小隙間よりも径方向外側に位置することになる。
このため、軸方向に配列するステップ部及びシールフィンの数を増やすと、下流側に配されるリング状の微小隙間の径寸法が大きくなり、これに伴って微小隙間の面積が大きくなってしまう。言い換えれば、ステップ部及びシールフィンの配列数が増えるほど、リング状に形成される複数の微小隙間の平均径寸法(クリアランス平均径)が大きくなってしまう。その結果として、動翼先端部とケーシングとの間隙を通過する漏洩流量の低減化、及びこれに伴うタービンの性能向上に限界が生じる虞がある。
【0007】
また、上記従来のように、動翼や静翼の先端部にステップ部を複数配列して設ける場合には、ステップ部の配列数が増加するにしたがって、ステップ部の重量が重くなる、すなわち、動翼や静翼の先端部の重量が重くなってしまう。この場合、重力によって動翼や静翼にかかる曲げ応力が大きくなる。さらに、動翼の場合には、軸体の回転に伴って動翼にかかる引張応力も大きくなる。
動翼や静翼の形状を設計する際には上記応力も考慮する必要があるが、上記応力が大きくなると上記応力による動翼や静翼の形状の制約が大きくなり、その結果として、タービンの性能向上を図るための動翼や静翼の形状を設計することが困難となる。言い換えれば、動翼や静翼の形状の設計自由度が低くなり、タービンの性能向上を図りにくくなってしまう、という問題がある。
【0008】
また、動翼や静翼の先端部にステップ部を複数配列する場合、ステップ部の配列数が増えるほど径方向外側に延びる動翼や静翼の長さが長くなるため、これに伴ってケーシングの車室内径も大きくなってしまう。すなわち、車室をコンパクトに設計することが難しくなる、という問題もある。
【0009】
本発明は、上述した事情に鑑みたものであって、性能向上及び車室のコンパクト設計を図ることが可能なタービンを提供することを目的とする。
【課題を解決するための手段】
【0010】
この課題を解決するために、本発明のタービンは、ブレードと、前記ブレードの先端側に間隙を介して設けられると共に、前記ブレードに対して相対回転する構造体と、を備え、さらに、前記ブレードの先端部及び前記構造体に、該構造体の回転軸方向に交互に相手側に向かって延出して設けられ、相手側との間に微小隙間を画成する複数のシールフィンと、隣り合う前記シールフィンの間で、前記回転軸方向下流側の前記シールフィンと共に前記微小隙間を画成する前記ブレードの先端部または前記構造体に、前記回転軸の径方向に窪んで形成される拡張用凹部と、を備えることを特徴とする。
【0011】
上記タービンでは、ブレードの先端部、構造体、及び、回転軸方向に隣り合う二つのシールフィンによって囲まれるキャビティが形成されている。また、このキャビティは、拡張用凹部によって回転軸の径方向に拡張されている。
さらに、上記タービンでは、隣り合う二つのシールフィンが互いに逆向きに延出しているため、前記二つのシールフィンによって画成される二つの微小隙間は、互いに回転軸の径方向にずれて位置している。
【0012】
なお、前記タービンにおいて、前記シールフィンが三つ以上配列されている場合には、前述したキャビティが回転軸方向に複数配列されることになる。また、微小隙間も三つ以上画成されることになるが、これら複数の微小隙間は回転軸方向に千鳥状に配列されることになる。
【0013】
以上のように構成されるタービンにおいて、流体が、回転軸方向上流側から微小隙間(上流側微小隙間)を通ってキャビティ内に流入すると、下流側のシールフィン(下流側シールフィン)に衝突して、回りながら上流側に戻るように流れる。すなわち、キャビティ内には第一回転方向(例えば反時計回り)に回る主渦が発生する。この主渦の中心軸は、拡張用凹部が形成されていない場合と比較して、拡張用凹部の窪み方向(回転軸の径方向)にずれるため、キャビティの下流側の微小隙間(下流側微小隙間)の径方向位置に近づくように位置する。その結果、キャビティのうち下流側微小隙間の上流側近傍では、主渦による回転軸の径方向の流速が大きくなり、下流側微小隙間からキャビティ外に流出する漏れ流れを低減することができる。すなわち、主渦による縮流効果を発揮することができる。
【0014】
さらに、前述したようにキャビティが回転軸方向に複数配列されれば、上述した縮流効果がキャビティ毎に得られるため、ブレードの先端部と構造体との間隙を通る漏洩流量を十分に低減することが可能となる。
なお、複数のキャビティを配列した場合には、前述したように複数の微小隙間が千鳥状に配列されることで、第一回転方向に回る主渦が発生するキャビティの下流側に位置する別のキャビティでは、第一回転方向とは反対方向(第二回転方向)に回る主渦が発生する。
【0015】
そして、上記タービンでは、前述したように、キャビティを回転軸方向に複数配列しても、複数の微小隙間は回転軸方向に千鳥状に配列されるため、キャビティの配列数が増加しても、ステップ部を用いた従来構成のように、リング状の微小隙間の径寸法が大きくなることを防いで、軸方向から見たリング状の微小隙間の面積を小さく抑えることができる。言い換えれば、複数の微小隙間の平均径寸法を小さく抑えることが可能となる。その結果、微小隙間を通る漏れ流れを低減して、主渦による縮流効果の向上を図ることが可能となる。
【0016】
さらに、上記タービンでは、キャビティを回転軸方向に複数配列しても、ブレードの先端部にはシールフィン及び拡張用凹部が交互に配列されるだけである。すなわち、キャビティ数が増加しても、ステップ部を用いた従来構成のように、ブレードの先端部の厚みを増加させる必要が無いため、ブレードの先端部の重量増加を抑え、ブレードの先端部の重量によってブレードにかかる応力を低減することができる。したがって、ブレード形状の設計自由度が向上し、タービンの性能向上を図るためのブレード形状の設計が容易となる。
【0017】
また、構造体がケーシングである場合には、キャビティの配列数が増加しても、ステップ部を用いた従来構成のように、ブレードの先端部の厚みが増すことは無い。すなわち、ブレードの径方向寸法が長くなることが無いため、ケーシングの車室内径をコンパクトに抑えることが可能となる。
【0018】
そして、前記タービンにおいては、前記拡張用凹部のうち下流側の端縁の前記回転軸方向の位置と、該拡張用凹部の下流側に形成された前記シールフィンの前記回転軸方向の位置とが一致しているとよい。
【0019】
上記タービンによれば、同一のキャビティを形成する下流側シールフィンと拡張用凹部との間に(回転軸方向の)段差が生じないため、キャビティの下流側微小隙間の上流側近傍において、キャビティ内に生じる主渦の流れに乱れが発生することを抑制できる。すなわち、主渦による縮流効果をさらに向上させることができる。
また、上記タービンによれば、ステップ部を利用して剥離渦を発生させる従来構成と比較して、前述した段差が無くなる分だけ、キャビティの回転軸方向の寸法を短く設定することが可能となる。したがって、ブレードの回転軸方向の長さを一定とした場合、従来構成と比較して、回転軸方向に配列可能なキャビティ数(シールフィンの数)を多く設定することができ、ブレードの先端部と構造体との間隙における漏洩流量をさらに低減することが可能となる。
【0020】
また、前記タービンにおいては、前記径方向に延出する前記シールフィンの延出長さと、該シールフィンの前記回転軸方向上流側に形成された前記拡張用凹部の深さ寸法と、が一致していることが好ましい。
【0021】
この場合には、前述したキャビティの径方向の中心位置がキャビティの下流側微小隙間の径方向位置に一致するため、このキャビティ内に生じる主渦の中心軸の径方向位置を、下流側微小隙間の径方向位置にさらに近づけて一致させることが可能となる。特に、主渦の中心軸及び下流側微小隙間の径方向が一致すると、主渦による回転軸の径方向の流速が下流側微小隙間の上流側近傍において最大となるため、下流側微小隙間からキャビティ外に流出する漏れ流れを効率よく低減することができる。言い換えれば、主渦による縮流効果を最大限に発揮することができる。
【0022】
さらに、前記タービンにおいては、前記ブレードの先端部、前記構造体、及び、前記回転軸方向に隣り合う二つの前記シールフィンによって囲まれると共に、二つの前記シールフィンの間の前記拡張用凹部によって拡張されるキャビティが形成され、該キャビティの前記回転軸方向の寸法及び前記径方向の寸法が等しいとよい。
【0023】
すなわち、上記タービンでは、前記キャビティの縦横比が1となっている。この場合には、キャビティ内に発生する主渦のエネルギーが、キャビティの縦横比が1より大きいあるいは小さい場合と比較して大きくなるため、これに伴って、キャビティのうち下流側微小隙間の上流側近傍では、主渦による回転軸の径方向の流速も大きくなる。したがって、下流側微小隙間からキャビティ外に流出する漏れ流れをさらに低減して、大きな縮流効果を得ることができる。
【0024】
また、前記タービンにおいては、前記拡張用凹部の底部と該拡張用凹部の前記回転軸方向の端縁部との凹部内角部、及び、前記ブレードの先端部あるいは前記構造体の一方と、該一方から延出する前記シールフィンのうち前記回転軸上流側に向く部位とのフィン角部の少なくとも一つの角部に、傾斜面が形成されていることが好ましい。
【0025】
そして、前記タービンにおいては、前記傾斜面が、曲面状に形成されていることが、さらに好ましい。
なお、前記傾斜面は、前記回転軸方向及び径方向の両方に傾斜する面のことを示している。また、前記凹部内角部や前記フィン角部は、前述したキャビティの角部をなし得るものである。
【0026】
上記タービンによれば、前述したキャビティの角部をなす凹部内角部やフィン角部に傾斜面が形成されることで、キャビティ形状がキャビティ内に生じる主渦の形状に近づくため、キャビティの角部における主渦のエネルギー損失を小さく抑えることが可能となる。なお、傾斜面が曲面状に形成されていると、キャビティの形状が主渦の形状にさらに近づくため、主渦のエネルギーロスを特に小さく抑えることができる。このため、下流側微小隙間の上流側近傍において、主渦によって発生する回転軸の径方向の流速を、大きくすることができる。したがって、下流側微小隙間からキャビティ外に流出する漏れ流れをさらに低減して、主渦による縮流効果の向上をさらに図ることができる。
【発明の効果】
【0027】
本発明によれば、シールフィン及び拡張用凹部(キャビティ)の配列数を増やしても、リング状の微小隙間の面積を小さく抑えることができるため、ブレードの先端部と構造体との間隙を通過する漏洩流量を低減化、及び、これに伴うタービンの性能向上を容易に図ることができる。
また、シールフィン及び拡張用凹部(キャビティ)の配列数を増やしても、ブレードの先端部の重量増加を抑えてブレードにかかる応力を低減できるため、ブレード形状の設計自由度が向上して、タービンの性能向上を容易に図ることができる。
さらに、構造体がケーシングである場合に、シールフィン及び拡張用凹部(キャビティ)の配列数が増加しても、ブレードの径方向寸法が長くなることは無いため、ケーシングの車室内径をコンパクトに抑えることが可能となる。
【図面の簡単な説明】
【0028】
【図1】本発明に係る蒸気タービンを示す概略構成断面図である。
【図2】本発明の第一実施形態を示す図であって、図1における要部Iを示す拡大断面図である。
【図3】本発明の第一実施形態に係る蒸気タービンの作用説明図である。
【図4】本発明の第二実施形態を示す図であって、図1における要部Iを示す拡大断面図である。
【図5】本発明の第二実施形態に係る蒸気タービンの作用説明図である。
【発明を実施するための形態】
【0029】
〔第一実施形態〕
以下、図1〜3を参照して本発明の第一実施形態について説明する。
図1に示すように、本実施形態に係る蒸気タービン1は、ケーシング(構造体)10と、ケーシング10に流入する蒸気(流体)Sの量と圧力を調整する調整弁20と、ケーシング10の内方に回転自在に設けられ、動力を図示しない発電機等の機械に伝達する軸体(ロータ)30と、ケーシング10に保持された静翼40と、軸体30に設けられた動翼(ブレード)50と、軸体30を軸回りに回転可能に支持する軸受部60と、を備えて大略構成されている。
【0030】
ケーシング10は、その内部空間を気密に封止するように形成されて、蒸気Sの流路を画成する本体部11と、本体部11の内壁面に強固に固定されたリング状の仕切板外輪12と、を備えている。
調整弁20は、ケーシング10の本体部11内部に複数個取り付けられており、それぞれ図示しないボイラから蒸気Sが流入する調整弁室21と、弁体22と、弁座23と、蒸気室24とを備えている。この調整弁20では、弁体22が弁座23から離れることで蒸気流路が開き、これによって、蒸気Sが蒸気室24を介してケーシング10の内部空間に流入するようになっている。
【0031】
軸体30は、軸本体31と、軸本体31の外周から径方向外側に延出した複数のディスク32とを備えている。この軸体30は、回転エネルギーを、図示しない発電機等の機械に伝達するようになっている。
また、軸受部60は、ジャーナル軸受装置61及びスラスト軸受装置62を備えており、ケーシング10の本体部11内部に挿通された軸体30を本体部11の外側において回転可能に支持している。
【0032】
静翼40は、軸体30を囲繞するように放射状に多数配置されて環状静翼群を構成しており、それぞれ前述した仕切板外輪12に保持されている。すなわち、静翼40はそれぞれ仕切板外輪12からその径方向内側に延出している。
静翼40の延出方向の先端部は、ハブシュラウド41によって構成されている。このハブシュラウド41は、同一の環状静翼群をなす複数の静翼40を連結するようにリング状に形成されている。ハブシュラウド41には軸体30が挿通されているが、ハブシュラウド41は軸体30との間に径方向の間隙を介して配されている。
そして、複数の静翼40からなる環状静翼群は、ケーシング10や軸体30の回転軸方向(以下、軸方向と記す)に間隔をあけて六つ形成されており、蒸気Sの圧力エネルギーを速度エネルギーに変換して、軸方向下流側に隣接する動翼50側に案内するようになっている。
【0033】
動翼50は、軸体30を構成するディスク32の外周部に強固に取り付けられ、軸体30から径方向外側に延出している。この動翼50は、各環状静翼群の下流側において、放射状に多数配置されて環状動翼群を構成している。
前述した環状静翼群と上記環状動翼群とは、一組一段とされている。すなわち、蒸気タービン1は、六段に構成されている。このうち、最終段における動翼50の先端部は、周方向に延びるチップシュラウド51となっている。
【0034】
動翼50の先端部をなすチップシュラウド51は、図2に示すように、ケーシング10の仕切板外輪12との間に径方向の間隙を介して対向配置されている。
本実施形態では、チップシュラウド51が断面矩形状に形成されている。そして、このチップシュラウド51の外周面51bは、軸方向に平行するように形成されている。また、チップシュラウド51の軸方向の上流側の端面(以下、上流側端面51cと記す)及び下流側の端面(以下、下流側端面51dと記す)は、径方向に平行するように形成されている。
【0035】
一方、仕切板外輪12には、チップシュラウド51に対応する部位に周方向に延びる環状溝12aが形成されている。
本実施形態では、環状溝12aが仕切板外輪12の内周面から径方向外側に窪んで形成され、断面矩形状に形成されている。そして、この環状溝12aの溝底面12bは軸方向に平行するように形成され、環状溝12aのうち軸方向の上流側の内側面(以下、上流側内側面12cと記す)、及び、下流側の内側面(下流側内側面12dと記す)は、それぞれ径方向に平行するように形成されている。
【0036】
前述したチップシュラウド51は、上記環状溝12a内に収容されている。この収容状態では、チップシュラウド51の外周面51bが環状溝12aの溝底面12bに対向している。また、チップシュラウド51の上流側端面51cが環状溝12aの上流側内側面12cに対向し、チップシュラウド51の下流側端面51dが環状溝12aの下流側内側面12dに対向している。
【0037】
以上のように構成されるチップシュラウド51及び環状溝12aには、軸方向に交互に配列されるように、相手側に向かって径方向に延出する複数(図示例では四つ)のシールフィン15,55が設けられている。そして、各シールフィン15,55と前記相手側との間には微小隙間Hが画成されている。なお、微小隙間Hは軸方向から見てリング状に形成されている。
具体的に説明すれば、チップシュラウド51に設けられる二つのシールフィン55(以下、ブレード側シールフィン55とも記す)は、チップシュラウド51の外周面51bから環状溝12aの溝底面12bに向けて延出している。このブレード側シールフィン55の延出方向の先端と溝底面12bとの間には、微小隙間H(H2,H4)が画成されている。
【0038】
一方、環状溝12aに設けられる二つのシールフィン15(以下、構造体側シールフィン15とも記す)も、ブレード側シールフィン55の場合と同様に、環状溝12aの溝底面12bからチップシュラウド51の外周面51bに向けて延出している。この構造体側シールフィン15の延出方向の先端とチップシュラウド51の外周面51bとの間には微小隙間H(H1,H3)が画成されている。
そして、これらブレード側シールフィン55と構造体側シールフィン15とが、軸方向に交互に配列されている。
【0039】
なお、本実施形態では、全てのシールフィン15,55の延出長さLが等しく設定されており、また、複数のシールフィン15,55が軸方向に等間隔で配列されている。さらに、軸方向の最も上流側には構造体側シールフィン15(第一構造体側シールフィン15A)が配され、軸方向の最も下流側にはブレード側シールフィン55(第四ブレード側シールフィン55D)が配されている。また、第一構造体側シールフィン15Aは、チップシュラウド51の上流側端面51cの軸方向位置よりも下流側に配され、第四ブレード側シールフィン55Dは、チップシュラウド51の下流側端面51dの軸方向位置よりも上流側に配されている。
【0040】
そして、上述したように隣り合う二つのシールフィン15,55が互いに逆向きに延出しているため、隣り合う二つのシールフィン15,55によって画成される二つの微小隙間H(H1,H3),H(H2,H4)は、互いに径方向にずれて位置している。なお、本実施形態では、シールフィン15,55の個数に対応して四つの微小隙間H(H1〜H4)が画成されているが、これら四つの微小隙間H(H1〜H4)は、軸方向に千鳥状に配列されている。特に、本実施形態では、全てのシールフィン15,55の延出長さLが等しいため、構造体側シールフィン15とチップシュラウド51の外周面51bとの間に画成される二つの微小隙間H1,H3が、同一の径方向位置に配されている。また、ブレード側シールフィン55と環状溝12aの溝底面12bとの間に画成される二つの微小隙間H2,H4が、同一の径方向位置に配されている。
【0041】
このように複数のシールフィン15,55が設けられることで、チップシュラウド51と仕切板外輪12との間には、複数のキャビティCが軸方向に配列して形成されている。
具体的に説明すれば、軸方向の最も上流側に形成されるキャビティC(以下、最上流キャビティC1と記す)は、環状溝12aの上流側内側面12cと、上流側内側面12cに対して軸方向下流側で対向する第一構造体側シールフィン15A及びチップシュラウド51の上流側端面51cと、環状溝12aの溝底面12bとによって囲まれるように形成されている。
また、最上流キャビティC1よりも軸方向下流側に順番に配列される残りのキャビティC(以下、間隙キャビティC2〜C4と記す)は、チップシュラウド51の外周面51bと、環状溝12aの溝底面12bと、軸方向に隣り合う二つのシールフィン15,55とによって囲まれるように各々形成されている。
【0042】
さらに、チップシュラウド51及び環状溝12aには、軸方向に隣り合う二つのシールフィン15,55の間において径方向に窪む拡張用凹部17,57が形成されている。拡張用凹部17,57は、隣り合う二つのシールフィン15,55のうち軸方向下流側に位置するシールフィン15,55と共に微小隙間Hを画成するチップシュラウド51または環状溝12aに形成されるように設定されている。そして、各拡張用凹部17,57は、断面矩形状に形成され、前述した間隙キャビティC2〜C4をそれぞれ径方向に拡張している。
【0043】
具体的に説明すれば、環状溝12aには、互いに隣り合う第一構造体側シールフィン15Aと第二ブレード側シールフィン55Bとの間、及び、第三構造体側シールフィン15Cと第四ブレード側シールフィン55Dとの間において、溝底面12bから径方向外側に窪む拡張用凹部17(以下、構造体側凹部17とも記す)が形成されている。各構造体側凹部17は、第一間隙キャビティC2及び第三間隙キャビティC4をそれぞれ径方向外側に拡張している。
一方、チップシュラウド51には、第二ブレード側シールフィン55Bと第三構造体側シールフィン15Cとの間において、チップシュラウド51の外周面51bから窪む拡張用凹部57(以下、ブレード側凹部57とも記す)が形成されている。このブレード側凹部57は、第二間隙キャビティC3を径方向内側に拡張している。
【0044】
そして、上述した各拡張用凹部17,57の軸方向下流側の端縁(以下、下流側端縁18d,58dと記す)は、各拡張用凹部17,57の下流側に形成されたシールフィン15,55(以下、下流側シールフィン55B,15C,55Dとも記す)と、軸方向の位置について一致している。これにより、同一の間隙キャビティC2〜C4を形成する下流側シールフィン55B,15C,55Dと拡張用凹部17,57との間には、軸方向の段差が生じない。
本実施形態では、各拡張用凹部17,57が断面矩形状に形成されているため、拡張用凹部17,57の下流側端縁18d,58dから径方向に延びる拡張用凹部17,57の軸方向下流側の内側面(以下、下流側内側面19d,59dと記す)は、径方向に平行している。したがって、拡張用凹部17,57の下流側内側面19d,59dと、下流側シールフィン55B,15C,55Dのうち軸方向上流側に向く面とが、同一平面をなしている。
【0045】
また、各拡張用凹部17,57の深さ寸法D(D2〜D4)は、各拡張用凹部17,57の下流側に形成された下流側シールフィン55B,15C,55Dの延出長さLに一致している。これにより、各間隙キャビティC2〜C4の径方向の中心位置が、間隙キャビティC2〜C4の下流側をなす各微小隙間H2〜H4の径方向に一致している。
【0046】
さらに、本実施形態では、各拡張用凹部17,57の軸方向上流側の端縁(以下、上流側端縁18c,58cと記す)が、各拡張用凹部17,57の上流側に形成されたシールフィン15,55(以下、上流側シールフィン15A,55B,15Cと記す)と、軸方向の位置について一致している。特に、本実施形態では、拡張用凹部17,57が断面矩形状に形成されているため、各拡張用凹部17,57の上流側端縁18c,58cから径方向に延びる拡張用凹部17,57の軸方向上流側の内側面(以下、上流側内側面19c,59cと記す)が、径方向に平行している。したがって、拡張用凹部17,57の上流側内側面19c,59cと、上流側シールフィン15A,55B,15Cのうち軸方向下流側に向く面とが、同一平面をなしている。
【0047】
以上のようにシールフィン15,55と拡張用凹部17,57との相対位置が設定されていることで、隣り合う二つのシールフィン15,55同士の間隔、及び、二つのシールフィン15,55の間に形成される拡張用凹部17,57の軸方向寸法が、互いに等しくなっている。すなわち、拡張用凹部17,57によって拡張される各間隙キャビティC2〜C4がそれぞれ断面矩形状に形成されている。
さらに、本実施形態では、各間隙キャビティC2〜C4の軸方向の寸法及び径方向の寸法が互いに等しくなっている。このため、本実施形態の間隙キャビティC2〜C4は、それぞれ断面正方形状に形成されている。言い換えれば、各間隙キャビティC2〜C4の縦横比が1に設定されている。
【0048】
なお、以上のように構成される蒸気タービン1において後述する効果を十分に発揮するためには、上述したシールフィン15,55と拡張用凹部17,57との相対的な位置関係や各種寸法、各キャビティCの形状、各微小隙間Hの寸法等が、蒸気タービン1の運転状態の変化に伴うケーシング10や動翼50の熱伸び量、動翼50の遠心伸び量等を考慮した上で、設定されることが好ましい。
すなわち、上述したシールフィン15,55と拡張用凹部17,57との相対的な位置関係や各種寸法、各キャビティCの形状、各微小隙間Hの寸法等は、蒸気タービン1の運転時において設定されるようにすることが好ましく、特に、定格運転時において最適に設定されるようにすることがさらに望ましい。例えば、各拡張用凹部17,57の下流側端縁18d,58dと、各拡張用凹部17,57の下流側に位置する下流側シールフィン55B,15C,55Dとの軸方向の相対位置は、運転時において互いに一致することが好ましく、さらに定格運転時において一致することが最適である。
【0049】
次に、上述した構成の蒸気タービン1の動作について説明する。
まず、調整弁20(図1参照)を開状態とすると、図示しないボイラから蒸気Sがケーシング10の内部空間に流入する。
【0050】
ケーシング10の内部空間に流入した蒸気Sは、各段における環状静翼群と環状動翼群とを順次通過する。この際には、圧力エネルギーが静翼40によって速度エネルギーに変換され、静翼40を経た蒸気Sのうちの大部分が同一の段を構成する動翼50間に流入し、動翼50により蒸気Sの速度エネルギーが回転エネルギーに変換されて、軸体30に回転が付与される。一方、蒸気Sのうちの一部(例えば、数%)は、静翼40から流出した後、図3に示すように、環状溝12a内(動翼50の先端部とケーシング10の仕切板外輪12との間隙)に流入する、いわゆる、漏洩蒸気となる。
【0051】
ここで、環状溝12a内に流入した蒸気Sは、まず、最上流キャビティC1に流入すると共にチップシュラウド51の上流側端面51cに衝突して、最上流キャビティC1内において回りながら上流側に戻るように流れる。これにより、最上流キャビティC1内には、反時計回り(第一回転方向)に回る主渦MV1が発生する。
【0052】
その際、特にチップシュラウド51の上流側端面51cと外周面51bとの角部(エッジ)においては、主渦MV1から一部の流れが剥離されることで、チップシュラウド51の外周面51bの前記角部近傍には、主渦MV1とは反対の時計回り(第二回転方向)に回る剥離渦SV1が発生する。
この剥離渦SV1は、第一構造体側シールフィン15Aとチップシュラウド51との間の第一微小隙間H1の上流側近傍に位置している。特に、剥離渦SV1のうち径方向内側に向かうダウンフローが、第一微小隙間H1の直前で生じるため、最上流キャビティC1から第一微小隙間H1を通って下流側の第一間隙キャビティC2に流入する漏れ流れを低減する縮流効果が、上記剥離渦SV1によって得られる。
【0053】
そして、蒸気Sが、上述した最上流キャビティC1から第一微小隙間H1を通り抜けて第一間隙キャビティC2内に流入すると、第一間隙キャビティC2の下流側をなす下流側シールフィン55Bに衝突して、回りながら上流側に戻るように流れる。これにより、第一間隙キャビティC2内には、最上流キャビティC1に生じる主渦MV1と同一の第一方向(反時計回り)に回る主渦MV2が発生する。
【0054】
このように発生する主渦MV2の中心軸A2は、拡張用凹部17が形成されていない場合と比較して、拡張用凹部17の窪み方向(径方向外側)にずれるため、第一間隙キャビティC2の下流側の第二微小隙間H2の径方向位置に近づくように位置する。
これにより、第一間隙キャビティC2のうち第二微小隙間H2の上流側近傍では、拡張用凹部17が形成されていない場合と比較して、主渦MV2による径方向外側の流速が大きくなる。すなわち、第二微小隙間H2の上流側近傍における主渦MV2の速度ベクトルのうち径方向外側の速度成分が大きくなり、第一間隙キャビティC2から第二微小隙間H2を通り抜けて下流側の第二間隙キャビティC3に流出する漏れ流れを低減することができる。言い換えれば、第一間隙キャビティC2内の主渦MV2による縮流効果を発揮することができる。
【0055】
特に、本実施形態では、第一間隙キャビティC2の径方向の中心位置が第二微小隙間H2の径方向位置に一致しているため、第一間隙キャビティC2内に生じる主渦MV2の中心軸A2の径方向位置を、第二微小隙間H2の径方向位置にさらに近づけて一致させることができる。
【0056】
さらに、本実施形態では、第一間隙キャビティC2の下流側をなす下流側シールフィン55Bと拡張用凹部17との間に軸方向の段差が生じていないため、第二微小隙間H2の上流側近傍において、第一間隙キャビティC2内に生じる主渦MV2の流れに乱れが発生することが抑制されている。言い換えれば、第一間隙キャビティC2のうち第二微小隙間H2の上流側近傍において、径方向外側に向かう流れが弱められることを抑えることができる。
以上のことから、本実施形態では、第二微小隙間H2の上流側近傍において、主渦による径方向外側の流速が最大となり、第一間隙キャビティC2から第二微小隙間H2を通り抜けて第二間隙キャビティC3に流出する漏れ流れを効率よく低減することができる。言い換えれば、第一間隙キャビティC2内の主渦MV2による縮流効果を最大限に発揮することができる。
【0057】
また、蒸気Sが、上述した第一間隙キャビティC2から第二微小隙間H2を通り抜けて第二間隙キャビティC3内に流入すると、第一間隙キャビティC2の場合と同様に、第二間隙キャビティC3の下流側をなす下流側シールフィン15Cに衝突して、回りながら上流側に戻るように流れる。すなわち、第二間隙キャビティC3内にも主渦MV3が発生する。ただし、第二間隙キャビティC3は第一間隙キャビティC2と径方向に逆向きに形成されているため、第二間隙キャビティC3内に生じる主渦MV3は、第一間隙キャビティC2内で生じる主渦MV2の第一回転方向とは反対の第二回転方向(時計回り)に回る。
【0058】
さらに、蒸気Sが、第二間隙キャビティC3から下流側の第三微小隙間H3を通り抜けて第三間隙キャビティC4内に流入すると、第三間隙キャビティC4の下流側をなす下流側シールフィン55Dに衝突して、回りながら上流側に戻るように流れる。すなわち、第三間隙キャビティC4内にも主渦MV4が発生する。ただし、第三間隙キャビティC4内に生じる主渦MV4は、第二間隙キャビティC3内で生じる主渦MV3の第二回転方向とは反対の第一回転方向(反時計回り)に回る。
【0059】
これら第二間隙キャビティC3及び第三間隙キャビティC4内に発生する主渦MV3,MV4は、前述した第一間隙キャビティC2内の主渦MV2の場合と同様の縮流効果を発揮する。例えば、第二、第三間隙キャビティC3,C4内に生じる主渦MV3,MV4の中心軸A3,A4の径方向位置も、それぞれ第三、第四微小隙間H3,H4の径方向位置に近づけて一致させることができるため、第二、第三間隙キャビティC3,C4から第三、第四微小隙間H3,H4を通り抜けて第二、第三間隙キャビティC3,C4外に流出する漏れ流れを効率よく低減することができる。
したがって、本実施形態では、縮流効果を得られる複数の間隙キャビティC2〜C4が配列されていることで、動翼50の先端部とケーシング10の仕切板外輪12との間隙を通る漏洩流量を十分に低減することが可能である。
【0060】
以上説明したように、本実施形態の蒸気タービン1によれば、隣り合う二つのシールフィン15,55によって形成される間隙キャビティC2〜C4を軸方向に複数配列しても、複数の微小隙間Hは軸方向に千鳥状に配列されるため、間隙キャビティC2〜C4の配列数が増加しても、ステップ部を用いた従来構成のように、リング状の微小隙間Hの径寸法が大きくなることを防いで、軸方向から見たリング状の微小隙間Hの面積を小さく抑えることができる。言い換えれば、複数の微小隙間Hの平均径寸法を小さく抑えることが可能となる。その結果、微小隙間Hを通る漏れ流れを低減して、主渦MV2〜MV4による縮流効果の向上を図ることが可能となる。
したがって、動翼50の先端部とケーシング10の仕切板外輪12との間隙を通過する蒸気Sの漏洩流量の低減化、及び、これに伴う蒸気タービン1の性能向上を容易に図ることができる。
【0061】
また、本実施形態の蒸気タービン1では、間隙キャビティC2〜C4を軸方向に複数配列しても、動翼50の先端部をなすチップシュラウド51にはシールフィン15,55及び拡張用凹部17,57が交互に配列されるだけである。すなわち、間隙キャビティC2〜C4の数が増加しても、ステップ部を用いた従来構成のように、チップシュラウド51の厚みを増加させる必要が無いため、チップシュラウド51の重量増加を抑え、チップシュラウド51の重量によって動翼50にかかる応力を低減することができる。したがって、動翼50の形状の設計自由度が向上し、蒸気タービン1の性能向上を図るための動翼50の形状の設計が容易となる。
【0062】
さらに、本実施形態の蒸気タービン1では、間隙キャビティC2〜C4の配列数が増加しても、ステップ部を用いた従来構成のように、チップシュラウド51の厚みが増すことは無い。すなわち、動翼50の径方向寸法が長くなることが無いため、ケーシング10の車室内径をコンパクトに抑えることも可能となる。
【0063】
また、本実施形態の蒸気タービン1によれば、同一の間隙キャビティC2〜C4を形成する下流側シールフィン55B,15C,55Dと拡張用凹部17,57との間に、軸方向の段差が生じないため、ステップ部を利用して剥離渦を発生させる従来構成と比較して、この段差が無くなる分だけ、間隙キャビティC2〜C4の軸方向の寸法を短く設定することが可能となる。したがって、チップシュラウド51の軸方向長さを一定とした場合、従来構成と比較して、軸方向に配列可能な間隙キャビティC2〜C4の数(シールフィン15,55の数)を多く設定することができ、動翼50の先端部とケーシング10の仕切板外輪12との間隙における漏洩流量をさらに低減することが可能となる。
【0064】
また、本実施形態の蒸気タービン1では、各間隙キャビティC2〜C4の縦横比が1となっているため、各間隙キャビティC2〜C4内に発生する主渦MV2〜MV4のエネルギーが、間隙キャビティC2〜C4の縦横比が1より大きいあるいは小さい場合と比較して大きくなる。これに伴って、各間隙キャビティC2〜C4の下流側に位置する微小隙間H2〜H4の上流側近傍では、主渦MV2〜MV4による径方向の流速も大きくなる。したがって、各間隙キャビティC2〜C4から下流側の微小隙間H2〜H4を通り抜ける漏れ流れをさらに低減して、大きな縮流効果を得ることができる。
【0065】
〔第二実施形態〕
次に、図4,5を参照して本発明の第二実施形態について説明する。
この実施形態では、第一実施形態の蒸気タービン1と比較して、各キャビティCの断面形状のみが異なっており、その他の構成については第一実施形態と同様である。本実施形態では、第一実施形態と同一の構成要素について同一符号を付す等して、その説明を省略する。
【0066】
図4に示すように、本実施形態のチップシュラウド51及び環状溝12aには、第一実施形態と同様のシールフィン15,55及び拡張用凹部17,57が設けられ、これによって複数のキャビティC(C1〜C4)が形成されている。
【0067】
そして、本実施形態では、各拡張用凹部17,57の底部と、軸方向の端縁部との凹部内角部に傾斜面70A,70Bが形成されている。なお、本実施形態では、各拡張用凹部17,57が断面矩形状に形成されているため、前記底部は、各拡張用凹部17,57の凹部底面19a,59aのことを示している。また、前記端縁部は、上流側端縁18c,58cを含む各拡張用凹部17,57の上流側内側面19c、59cや、下流側端縁18d,58dを含む各拡張用凹部17,57の下流側内側面19d、59dのことを示している。そして、前記凹部内角部は、断面矩形状に形成された各間隙キャビティC2〜C4のうち二つの角部をなすものである。
このように各凹部内角部に形成される傾斜面70A,70Bは、凹部底面19a,59aと、上流側内側面19c、59cや下流側内側面19d、59dとが滑らかに連なるように曲面状に形成されている。
【0068】
また、本実施形態では、チップシュラウド51の外周面51bと、チップシュラウド51から延出するブレード側シールフィン55のうち軸方向上流側に向く面(部位)とのフィン角部にも、傾斜面70Cが形成されている。さらに同様にして、環状溝12aの溝底面12bと、溝底面12bから延出する構造体側シールフィン15のうち軸方向上流側に向く面(部位)とのフィン角部にも、傾斜面70Cが形成されている。なお、前記フィン角部は、各間隙キャビティC2〜C4のうち一つの角部をなすもの、あるいは、最上流キャビティC1の一つの角部をなすものである。
このように各フィン角部に形成される傾斜面70Cは、チップシュラウド51の外周面51bや環状溝12aの溝底面12bと、軸方向上流側に向くシールフィン15,55の面とが滑らかに連なるように曲面状に形成されている。
【0069】
さらに、本実施形態では、環状溝12aの溝底面12bと上流側内側面12cとの溝内角部にも、傾斜面70Dが形成されている。なお、前記溝内角部は、最上流キャビティC1の一つの角部をなすものである。このように溝内角部に形成される傾斜面70Dは、溝底面12bと上流側内側面12cとが滑らかに連なるように曲面状に形成されている。
【0070】
そして、上述した全ての傾斜面70(70A〜70D)は、いずれも軸方向及び径方向の両方に傾斜している。また、各傾斜面70は、ケーシング10の仕切板外輪12やチップシュラウド51、シールフィン15,55に直接形成されてもよいが、図示例のように、ケーシング10の仕切板外輪12やチップシュラウド51、シールフィン15,55とは別体の傾斜用壁部71を各角部に設けることで形成されてもよい。
【0071】
以上により、各間隙キャビティC2〜C4の断面形状は、傾斜面70A〜70Cによって、それぞれ第一実施形態のような矩形(図2,3参照)から「楕円」を含む円形に近づくように丸みを帯びて形成されることになる。特に、本実施形態では、第一実施形態と同様に間隙キャビティC2〜C4の縦横比が1に設定されているため、間隙キャビティC2〜C4の断面形状が「正円」に近づくことになる。ただし、各間隙キャビティC2〜C4の四つの角部のうち、傾斜面70A〜70Cは三つの角部にのみ形成されている。残り一つの角部には、微小隙間H1〜H3が位置するため傾斜面70は形成されない。
また、最上流キャビティC1の二つの角部(溝内角部及びフィン角部)が、傾斜面70C,70Dによって丸みを帯びて形成されることになる。
【0072】
以上のように構成される本実施形態の蒸気タービンの動作は、第一実施形態の場合と同様である。
すなわち、図5に示すように、環状溝12a内に流入した蒸気Sが、まず、最上流キャビティC1に流入し、これによって、最上流キャビティC1内に第一回転方向に回る主渦MV1、及び、第二回転方向に回る剥離渦SV1が発生する。
ここで、最上流キャビティC1の溝内角部は、傾斜面70Dによって主渦MV1の形状に近い円弧状に形成されているため、この溝内角部において生じる主渦MV1のエネルギー損失を小さく抑えることができる。言い換えれば、主渦MV1によって生じる剥離渦SV1のエネルギーが、第一実施形態の場合と比較して大きくなる。
【0073】
また、最上流キャビティC1のフィン角部は、傾斜面70Cによって剥離渦SV1の形状に近い円弧状に形成されているため、このフィン角部において生じる剥離渦SV1のエネルギー損失を小さく抑えることができる。
以上のことから、剥離渦SV1によって第一微小隙間H1の直前で生じる径方向内側に向かうダウンフローが、第一実施形態の場合と比較して大きくなり、最上流キャビティC1から下流側の第一間隙キャビティC2に流れ出す漏れ流れをさらに低減することができる。すなわち、剥離渦SV1による縮流効果の向上を図ることができる。
【0074】
また、蒸気Sが、軸方向上流側(例えば最上流キャビティC1)から微小隙間H1〜H3を通って各間隙キャビティC2〜C4内に流入すると、各間隙キャビティC2〜C4内には主渦MV2〜MV4が発生する。
ここで、各間隙キャビティC2〜C4の三つの角部は、傾斜面70A〜70Cによって各主渦MV2〜MV4の形状に近い円弧状に形成されているため、これら三つの角部において生じる主渦MV1のエネルギー損失を小さく抑えることができる。言い換えれば、各間隙キャビティC2〜C4の下流側に位置する微小隙間H2〜H4(以下、下流側微小隙間H2〜H4と記す)の上流側近傍において、主渦MV2〜MV4によって発生する径方向の流速が、第一実施形態の場合と比較して大きくなる。
したがって、下流側微小隙間H2〜H4から各間隙キャビティC2〜C4外に流出する漏れ流れをさらに低減して、主渦MV2〜MV4による縮流効果の向上を図ることができる。
【0075】
本実施形態の蒸気タービンでは、上述した効果の他、第一実施形態と同様の効果も奏する。
【0076】
以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
例えば、第二実施形態では、傾斜面70が、同一の間隙キャビティC2の三つの角部全てに形成されるとしたが、例えば一つの角部にのみ形成されてもよい。
また、第二実施形態では、傾斜面70が、全てのキャビティCに形成されているが、少なくとも一つの間隙キャビティC2〜C4に形成されていればよい。
【0077】
さらに、第二実施形態において、各傾斜面70は、キャビティCの角部が丸みを帯びるように曲面状に形成されることに限らず、少なくともキャビティCの角部形状が、キャビティC内で生じる主渦MV1〜MV4や剥離渦SV1の形状に近づくように、軸方向及び径方向の両方に傾斜して形成されていればよい。したがって、各傾斜面70は、例えばキャビティCが矩形状よりも多くの角を有する多角形状に形成されるように断面直線状に形成されてもよい。
また、傾斜面70が断面直線状である場合、同一の角部には、傾斜面70が一つだけ形成されることに限らず、例えば、キャビティCの角部形状が、キャビティC内で生じる主渦MV1〜MV4や剥離渦SV1により近づくように、傾斜角度の異なる傾斜面70が複数連ねて形成されてもよい。
【0078】
そして、上述した全ての実施形態では、最上流キャビティC1から第一間隙キャビティC2への漏れ流れを低減する縮流効果は、剥離渦SV1を利用しているが、例えば主渦MV1を利用してもよい。この場合には、例えば間隙キャビティC2〜C4の下流側シールフィン55B,15C,55Dの場合と同様に、第一構造体側シールフィン15Aの軸方向位置をチップシュラウド51の上流側端面51cに一致させればよい。なお、この場合には、第一微小隙間H1の上流側近傍において主渦MV1による径方向外側の流速が増加するように、第一構造体側シールフィン15Aの延出長さLを上流側端面51cの径方向寸法に一致させる等することがより好ましい。
【0079】
また、各拡張用凹部17,57の深さ寸法Dは、各拡張用凹部17,57の下流側に位置する下流側シールフィン55B,15C,55Dの延出長さLに一致するとしたが、例えば延出長さLと異なっていてもよい。
ただし、上述した深さ寸法Dと延長長さLとの差は小さい方が好ましい。すなわち、深さ寸法Dと延長長さLとの差が小さい程、各間隙キャビティC2〜C4に生じる主渦MV2〜MV4の中心軸A2〜A4の径方向位置が、各間隙キャビティC2〜C4の下流側に位置する微小隙間H2〜H4の径方向位置に近づくことなる。その結果、各間隙キャビティC2〜C4から各微小隙間H2〜H4を通り抜けて下流側に流出する漏れ流れが減少し、各間隙キャビティC2〜C4内の主渦MV2〜MV4による縮流効果をより効果的に発揮することができる。
【0080】
また、各拡張用凹部17,57の上流側端縁18c,58cの軸方向位置は、上記実施形態のように、各拡張用凹部17,57の上流側シールフィン15A,55B,15Cの軸方向位置に一致していなくてもよく、例えば、上流側シールフィン15A,55B,15Cに対して軸方向下流側にずれていてもよい。
さらに、上記実施形態では、同一の間隙キャビティC2〜C4を形成する下流側シールフィン55B,15C,55Dと拡張用凹部17,57との間に、軸方向の段差が生じていないが、例えば段差が生じていてもよい。ただし、この場合には、各拡張用凹部17,57の下流側端縁18d,58dが、下流側シールフィン55B,15C,55Dよりも軸方向上流側に位置していることがより好ましい。
【0081】
また、各間隙キャビティC2〜C4は、上記実施形態のように、その縦横比が1に設定されなくてもよい。
さらに、上記実施形態では、複数のシールフィン15,55が軸方向に等間隔で配列されているが、例えば不等間隔で配列されてもよい。
【0082】
また、複数のシールフィン15,55の延出長さLは、全て等しくなるように設定されているが、例えば互いに異なっていても構わない。
さらに、上記実施形態では、間隙キャビティC2〜C4が複数形成されるとしたが、少なくとも一つだけ形成されていればよい。言い換えれば、上記実施形態ではシールフィン15,55が四つ形成されているが、少なくとも二つだけ形成されていればよい。
また、上記実施形態では、全てのシールフィン15,55が、チップシュラウド51及び環状溝12aから相手側に向かって交互に延出しているが、少なくとも上記実施形態と同様の間隙キャビティC2〜C4が一つ形成されるように、少なくとも一つの構造体側シールフィン15及び一つのブレード側シールフィン55(一対のシールフィン15,55)が、軸方向に隣り合わせて配列されればよい。したがって、上述した一対のシールフィン15,55の他には、例えば、複数の構造体側シールフィン15のみ、あるいは、複数のブレード側シールフィン55のみが軸方向に連続して配列されてもよい。
【0083】
また、キャビティCや、キャビティCをなすシールフィン15,55、拡張用凹部17,57は、ケーシング10の仕切板外輪12に形成されるとしたが、例えば仕切板外輪12を設けずに、ケーシング10の本体部11に直接形成してもよい。
さらに、上記実施形態では、縮流効果を発揮するキャビティCが最終段の動翼50に形成されているが、例えば、他の段の動翼50に形成されてもよい。
【0084】
また、上記実施形態のように縮流効果を発揮するキャビティCは、動翼50の先端部をなすチップシュラウド51とケーシング10との間隙に形成されることに限らず、例えば、静翼40の先端部をなすハブシュラウド41と軸体30との間隙に形成されてもよい。すなわち、静翼40を本発明の「ブレード」とし、軸体30を本発明の「構造体」としてもよい。この場合でも、上述した全ての実施形態と同様の効果が得られる。
【0085】
また、上記実施形態では、本発明を復水式の蒸気タービンに適用したが、他の型式の蒸気タービン、例えば、二段抽気タービン、抽気タービン、混気タービン等のタービン型式に本発明を適用することもできる。
さらに、上記実施形態では、本発明を蒸気タービンに適用したが、ガスタービンにも本発明を適用することができ、さらには、回転翼のある全てのものに本発明を適用することができる。
【符号の説明】
【0086】
1…蒸気タービン(タービン)、10…ケーシング(構造体)、11…本体部、12…仕切板外輪、12a…環状溝、12b…溝底面、15,15A,15C,55,55B,55D…シールフィン、17,57…拡張用凹部、19a,59a…底面(底部)、18c,58c…上流側端縁(端縁)、18d,58d…下流側端縁(端縁)、19c,59c…上流側内側面(端縁部)、19d,59d…下流側内側面(端縁部)、30…軸体、40…静翼、50…動翼(ブレード)、70,70A,70B,70C,70D…傾斜面、71…傾斜用壁部、C…キャビティ、C1…最上流キャビティ、C2,C3,C4…間隙キャビティ、D,D2,D3,D4…深さ寸法、L…延出長さ、H,H1,H2,H3,H4…微小隙間

【特許請求の範囲】
【請求項1】
ブレードと、
前記ブレードの先端側に間隙を介して設けられると共に、前記ブレードに対して相対回転する構造体と、を備えるタービンであって、
前記ブレードの先端部及び前記構造体に、該構造体の回転軸方向に交互に相手側に向かって延出して設けられ、相手側との間に微小隙間を画成する複数のシールフィンと、
隣り合う前記シールフィンの間で、前記回転軸方向下流側の前記シールフィンと共に前記微小隙間を画成する前記ブレードの先端部または前記構造体に、前記回転軸の径方向に窪んで形成される拡張用凹部と、を備えることを特徴とするタービン。
【請求項2】
前記シールフィンが、三つ以上配列されていることを特徴とする請求項1に記載のタービン。
【請求項3】
前記拡張用凹部のうち下流側の端縁の前記回転軸方向の位置と、該拡張用凹部の下流側に形成された前記シールフィンの前記回転軸方向の位置とが一致していることを特徴とする請求項1又は請求項2に記載のタービン。
【請求項4】
前記径方向に延出する前記シールフィンの延出長さと、該シールフィンの前記回転軸方向上流側に形成された前記拡張用凹部の深さ寸法と、が一致していることを特徴とする請求項1から請求項3のいずれか一項に記載のタービン。
【請求項5】
前記ブレードの先端部、前記構造体、及び、前記回転軸方向に隣り合う二つの前記シールフィンによって囲まれると共に、二つの前記シールフィンの間の前記拡張用凹部によって拡張されるキャビティが形成され、
該キャビティの前記回転軸方向の寸法及び前記径方向の寸法が等しいことを特徴とする請求項1から請求項4のいずれか一項に記載のタービン。
【請求項6】
前記拡張用凹部の底部と該拡張用凹部の前記回転軸方向の端縁部との凹部内角部、及び、前記ブレードの先端部あるいは前記構造体の一方と、該一方から延出する前記シールフィンのうち前記回転軸上流側に向く部位とのフィン角部の少なくとも一つの角部に、傾斜面が形成されていることを特徴とする請求項1から請求項5のいずれか一項に記載のタービン。
【請求項7】
前記傾斜面が、曲面状に形成されていることを特徴とする請求項6に記載のタービン。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate